複變函數與應用
po文清單文章推薦指數: 80 %
關於「複變函數與應用」標籤,搜尋引擎有相關的訊息討論:
延伸文章資訊
- 1提要377:以複變分析解析實數函數由-∞至∞的線積分
這一類問題若欲直接對變數x 作積分,通常會遭遇很多困難。但若將其轉換為與複數變. 數z 有關之線積分,則容易許多,說明如下。 已知在如圖一所示複數平面之水平軸上的 ...
- 2單元5 複數之線積分
單元5 複數之線積分. 【例題1】. Evaluate. 2 c z dz. ∫. , where C is the straight line segment from -2 to 1 in ...
- 3Green 定理與應用(第7 頁)
為複數平面上之單連通區域(simply connected domain),f 為定義在 ${\mathcal{R}}$ ... 解:假設f=u+iv , z=x+iy 則複變積分(實際上就是線...
- 4複數線積分
複數線積分的整體概念。 ... 設f(z) 是一個複數函數,則線積分的形態是 ... 其中γ 是複數平面上的一條圓滑曲線,而f(z)dz 是複數乘法,其幾何意義是兩個內積。
- 5曲線積分- 維基百科,自由的百科全書
根據柯西-黎曼方程式,一個全純函數的共軛函數所對應的向量場的旋度是0。 複曲線積分[編輯]. 在複分析中,曲線積分是通過複數的 ...