Progress in Brain Computer Interface: Challenges and ...

文章推薦指數: 80 %
投票人數:10人

Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. ThisarticleispartoftheResearchTopic CognitiveNeurodynamics:IntegratingCognitiveScienceandBrainDynamics Viewall 15 Articles Articles AlessandroE.Villa Neuro-heuristicResearchGroup(NHRG),Switzerland DongruiWu HuazhongUniversityofScienceandTechnology,China DavidR.Painter TheUniversityofQueensland,Australia Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract 1.Introduction 2.Challenges 3.Neuroplasticity,Sensors,SignalProcessing,Modeling,andApplications 4.EthicalConcernsandSocioeconomicContexts 5.Conclusion AuthorContributions ConflictofInterest Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.Syst.Neurosci.,25February2021 |https://doi.org/10.3389/fnsys.2021.578875 ProgressinBrainComputerInterface:ChallengesandOpportunities SimantoSaha1,2*,KhondakerA.Mamun3,KhawzaAhmed2,RaqibulMostafa2,GaneshR.Naik4,SamDarvishi1,AhsanH.Khandoker5andMathiasBaumert1* 1SchoolofElectricalandElectronicEngineering,TheUniversityofAdelaide,Adelaide,SA,Australia 2DepartmentofElectricalandElectronicEngineering,UnitedInternationalUniversity,Dhaka,Bangladesh 3AdvancedIntelligentMultidisciplinarySystems(AIMS)Lab,DepartmentofComputerScienceandEngineering,UnitedInternationalUniversity,Dhaka,Bangladesh 4AdelaideInstituteforSleepHealth,CollegeofMedicineandPublicHealth,FlindersUniversity,Adelaide,SA,Australia 5HealthcareEngineeringInnovationCenter,DepartmentofBiomedicalEngineering,KhalifaUniversityofScienceandTechnology,AbuDhabi,UnitedArabEmirates Braincomputerinterfaces(BCI)provideadirectcommunicationlinkbetweenthebrainandacomputerorotherexternaldevices.Theyofferanextendeddegreeoffreedomeitherbystrengtheningorbysubstitutinghumanperipheralworkingcapacityandhavepotentialapplicationsinvariousfieldssuchasrehabilitation,affectivecomputing,robotics,gaming,andneuroscience.Significantresearcheffortsonaglobalscalehavedeliveredcommonplatformsfortechnologystandardizationandhelptacklehighlycomplexandnon-linearbraindynamicsandrelatedfeatureextractionandclassificationchallenges.Time-variantpsycho-neurophysiologicalfluctuationsandtheirimpactonbrainsignalsimposeanotherchallengeforBCIresearcherstotransformthetechnologyfromlaboratoryexperimentstoplug-and-playdailylife.Thisreviewsummarizesstate-of-the-artprogressintheBCIfieldoverthelastdecadesandhighlightscriticalchallenges. 1.Introduction Thebraincomputerinterface(BCI)isadirectandsometimesbidirectionalcommunicationtie-upbetweenthebrainandacomputeroranexternaldevice,whichinvolvesnomuscularstimulation.Ithasshownpromiseforrehabilitatingsubjectswithmotorimpairmentsaswellasforaugmentinghumanworkingcapacityeitherphysicallyorcognitively(LebedevandNicolelis,2017;SahaandBaumert,2020).BCIwashistoricallyenvisionedasapotentialtechnologyforaugmenting/replacingexistingneuralrehabilitationsorservingassistivedevicescontrolleddirectlybythebrain(Vidal,1973;Birbaumeretal.,1999;Alcaide-Aguirreetal.,2017;Shahriarietal.,2019).Thefirstsystematicattempttoimplementanelectroencephalogram(EEG)-basedBCIwasmadebyJ.J.Vidalin1973,whorecordedtheevokedelectricalactivityofthecerebralcortexfromtheintactskullusingEEG(Vidal,1973),anon-invasivetechniquefirststudiedinhumansinventedbyBerger(1929).AnotherearlyendeavortoestablishdirectcommunicationbetweenacomputerandthebrainofpeoplewithseveremotorimpairmentshadutilizedP300,aneventrelatedbrainpotential(FarwellandDonchin,1988).Asanalternativetoconventionaltherapeuticrehabilitationformotorimpairments,BCItechnologyhelpstoartificiallyaugmentorre-excitesynapticplasticityinaffectedneuralcircuits.Byexploitingundamagedcognitiveandemotionalfunctions,BCIaimsatre-establishingthelinkbetweenthebrainandanimpairedperipheralsite(Vansteenseletal.,2016).However,theresearchapplicationsofBCItechnologyevolvedsignificantlyovertheyears,includingbrainfingerprintingforliedetection(Farwelletal.,2014),detectingdrowsinessforimprovinghumanworkingperformances(Aricòetal.,2016;Weietal.,2018),estimatingreactiontime(Wuetal.,2017b),controllingvirtualreality(Vourvopoulosetal.,2019),quadcopters(LaFleuretal.,2013)andvideogames(Singhetal.,2020),anddrivinghumanoidrobots(ChoiandJo,2013;Spataroetal.,2017).Figure1demonstratestheprogressionofBCIinvariousapplicationfieldssinceitsconception. FIGURE1 Figure1.Thenumberofpublicationsovertheyears:ThestatisticswasbasedonasearchonPubMedinwhich“braincomputerinterface”wasthesearchkeyword.Thepublicationsthosewerelisteduntil4thDecember2020havebeenaccountedonly.Asignificantincreaseinthenumberofpublicationsinthisdecadeascomparedtothelastdecadeimplicatestheengagementofagreatercommunityinthisfieldand,thustheimportanceofBCItechnology. AccordingtotheBrain/NeuralComputerInteractionHorizon2020project,aninitiativebytheEuropeanCommissionforcoordinatingBCIresearch,sixmajorapplicationthemes,i.e.,restore(e.g.,unlockingthecompletelylocked-in),replace(e.g.,BCI-controlledneuroprosthesis),enhance(e.g.,enhanceduserexperienceincomputergames),supplement(e.g.,augmentedrealityglasses),improve(e.g.,upperlimbrehabilitationafterstroke),andresearchtool(e.g.,decodingbrainactivitywithreal-timefeedback)havebeenoutlinedasfeasibleandpromisingfields(Brunneretal.,2015).ThisoverviewencompassesawiderangeofchallengesandtrendsinBCIfield.ForspecializedreviewsonparticularBCItopicswerefertotherecentliterature(McFarlandetal.,2006;Schwartzetal.,2006;Bashashatietal.,2007;Lotteetal.,2007,2018;Matthewsetal.,2007;Sitarametal.,2007;MakandWolpaw,2009;Menonetal.,2009;NicolelisandLebedev,2009;Summereretal.,2009;VaadiaandBirbaumer,2009;MilanandCarmena,2010;Minetal.,2010;Clausen,2011;Krusienskietal.,2011;Liaoetal.,2012;Nicolas-AlonsoandGomez-Gil,2012;Shihetal.,2012;Jebari,2013;McCullaghetal.,2014;AhnandJun,2015;Jayarametal.,2016;LebedevandNicolelis,2017;Mudgaletal.,2020;Rashidetal.,2020;SahaandBaumert,2020). 1.1.CharacterizationofBCISystems BCIsystemscanbecategorizedbythewaytheyusethebrain:PassiveBCIdecodeunintentionalaffective/cognitivestatesofthebrain(Zanderetal.,2009),whileactiveBCIdirectlyinvolvetheuser'svoluntaryintention-inducedbrainactivity.ReactiveBCIusebrainwavesgeneratedasresponsetoexternalstimuli.Detectingdriver'sdrowsinesstopreventroadaccidentsisanexampleofpassiveBCI(Linetal.,2008;Gaoetal.,2019).BCIsystemsdrivenbyusers'intentionalmotorimagery(MI)(Marchesottietal.,2016;Sahaetal.,2019a;SahaandBaumert,2020)andvisuallyevokedP300producedbyexternalstimulation(Farwelletal.,2014)canbeconsideredactiveBCIandreactiveBCI,respectively. Themodalityofsignalacquisitionhasbeenusedtodividesystemsintoinvasiveandnon-invasiveBCI(Minetal.,2010;RosenfeldandWong,2017).Non-invasiveBCIexploitingEEGaremostcommon,althoughmorerecently,functionalnearinfraredspectroscopy(fNIRS)(Matthewsetal.,2007),magnetoencephalography(MEG)(Fukumaetal.,2016),functionalmagneticresonanceimaging(fMRI)(Kaasetal.,2019)andfunctionaltranscranialDopplerultrasonography(FaressandChau,2013;Luetal.,2015;Khalafetal.,2019)havebeenexploited.Incontrast,invasiveintracorticalelectrodes(Pandarinathetal.,2017)andelectrocorticography(ECoG)(Kaijuetal.,2017)havebeenused,providingasuperiorsignal-to-noiseratioandbetterlocalizationofbrainactivity.Table1summarizessignalacquisitionmodalitiesandtheirsuitabilityforBCIapplications. TABLE1 Table1.Alistofneuroimagingtechniquesandtheirsuitabilityinbraincomputerinterface(BCI)applications. Recenttechnologicaladvancementsallowboththedecodingofneuralactivitiesandthedeliveryofexternalsignalsintotargetedbrainareastoinduceplasticity,i.e.,remodelingofneurosynapticorganization(Lajoieetal.,2017).PlasticityisaninherentcharacteristicofthebrainandperipheralnervoussystemunderpinningBCI-basedrehabilitationandotherneuroscientificapplications.WhilemostoftheBCIsystemstranslatebrainsignalstocomputercommands,somesystemsutilizeexternalstimulationmodalitiessuchastranscranialmagneticstimulation(Grauetal.,2014;Raoetal.,2014;Schaworonkowetal.,2019)andtranscranialdirectcurrentstimulation(Baxteretal.,2017)tostimulatespecificbrainareas.ThebidirectionalframeworkofBCIcompriseseitheronebrainwithfeedbackmodalityortwobrains.TranscranialdirectcurrentstimulationdirectedbyMI-relatedEEGsignalsalterstheconnectivityinsensorimotornetworksofhealthyindividuals(Baxteretal.,2017).AnotherpossibleapplicationofbidirectionalBCIframeworkisdirectbrain-to-braincommunication(Grauetal.,2014;Raoetal.,2014).Moreover,someBCIapplicationsrequireauxiliarymodalities,e.g.,proprioceptivefeedbackandfunctionalelectricalstimulationdrivenbybrainsignalsasfeedbackforaugmentingorregainingperipheralmotoractions(Darvishietal.,2017;Bhattacharyyaetal.,2019;Bockbraderetal.,2019;Murovecetal.,2020). 1.2.FactorsInfluencingBCIPerformance FormedicalapplicationsofBCI,threecriteriaareessential:(1)acomfortableandconvenientsignalacquisitiondevice,(2)systemvalidationanddissemination,and(3)reliabilityandpotentialityofBCI(Shihetal.,2012).Fortherestorationofmobilityinpatientswithmotorimpairments,invasiveintracorticalrecordingsshowbetterBCIperformance(Hochberg,2013)thannon-invasivemethodssuchasEEG(MilanandCarmena,2010).Theperformancedetermineshowefficientlyapatientcanperformanimpairedmotortaskorcommunicatewithanexternaldevice.Invasivemodalitiesarealsosuitableforlocked-inpatients,becausethebenefits(significantlyimprovedquality-of-life)outweightherisksassociatedwithimplantation(Giljaetal.,2011).Apilotstudyfoundnoadverseeffectspertainingtosurgeryortissuereactionat1yearfollow-up(Friehsetal.,2006).InvasiveBCIshouldgenerallynotbeconsideredforneurologicallyintactpeopleduetorisksassociatedwithsurgery.However,invasiverecordingsmayenabletheutilizationoflocalizedinnercortexactivitiesandabetterinterpretationofsurfacerecordingsfromanon-invasivemodality(Schalk,2010;Linaetal.,2012). ManyfactorsinfluenceBCIperformance;takingtheunderlyingcortical-subcorticalnetworksintoconsiderationisofcrucialimportance.Forexample,MI-inducedsignalsarebestrecordedfrompremotorandmotorareas,becausepremotorcortex,primarymotorcortexandsupplementarymotorareaalongwithbasalgangliaandthalamusofthesubcorticalareasarethemostlyactivatedareasduringMI(Marchesottietal.,2017).WhileEEGcancapturepremotorandmotorareaactivation(Edelmanetal.,2015;Sahaetal.,2019a),intracorticalelectrodescanrecordsignalsfrombasalgangliaandthalamus(Sandetal.,2017). SeveralissuescansignificantlyimpedeBCIperformance.Maintaininganacceptablesignal-to-noiseratioinnon-invasivelong-termrecordingsiscritical.Event-inducedbrainwavesoroscillationsaredynamicandaffectedbyunstablerestingstatenetworks(RSNs)(Mantinietal.,2007).Time-variantpsychophysiological(Gonçalvesetal.,2006;Zhangetal.,2015;Acqualagnaetal.,2016;SahaandBaumert,2020),neuroanatomical(Kasaharaetal.,2015)factorsandusers'fundamentaltraits(AhnandJun,2015)causeunreliableestimatesofRSNs,causingshortandlong-termsignalvariationwithinandacrossindividuals(SahaandBaumert,2020).Duetotheseintrinsicsignalvariations,BCIsystemsrequiresubject-specifictraining,duringwhichsubjectsattendacalibrationsessionthatistediousandoftenfrustrating.Toeliminatesubject-specifictraining,theconceptofinter-subjectassociativity,demonstratedinpreviousworksincaseofnaturalvision(Hassonetal.,2004)andnaturalmusiclistening(Abramsetal.,2013),couldbeexploitedtowardinter-subjectoperableBCI.Recentstudiessuggestthatinter-subjectoperablesensorimotorrhythm-basedBCImightbecomefeasibleforsubjectswhosharecommonbraindynamics(Sahaetal.,2017,2018,2019a;SahaandBaumert,2020).Inter-subjectBCIholdspromisepredominantlyforhealthypeopleandinapplicationssuchasgaming,drowsinessandliedetection,becauserehabilitativeBCImustconsiderthecharacteristicsandseverityofindividualimpairment(Parketal.,2016).Transferlearningcanalsoreducetheeffectsofsession-to-sessionandsubject-to-subjectvariabilities,byusingsystemsthatweretrainedondatafromdifferentpeopleexploitingcommonaltiesandreducingtrainingrequirements(Jayarametal.,2016;Sahaetal.,2017,2018,2019a;HeandWu,2019;Wuetal.,2020). 2.Challenges 2.1.PsychophysiologicalandNeurologicalChallenges Emotionalandmentalprocesses,neurophysiologyassociatedwithcognitionandneurologicalfactors,i.e.,functions,anatomy,playcrucialrolesinBCIperformanceandgiverisetosignificantintra-andinter-individualvariability(SahaandBaumert,2020).Psychologicalfactorssuchasattention,memoryload,fatigueandcompetingcognitiveprocesses(Gonçalvesetal.,2006;Käthneretal.,2014;CalhounandAdali,2016)aswellasusers'basiccharacteristicssuchaslifestyle,gender,andage,(Kasaharaetal.,2015)influenceinstantaneousbraindynamics.Forexample,individualswithlowerempathyparticipatelessemotionallyinaP300-BCIparadigmandcanproducehigheramplitudesofP300wavesthansubjectswithgreaterempatheticinvolvement(KleihandKübler,2013).MotivationisalsorelatedtoP300-BCIperformance(Nijboeretal.,2010). Besidespsychologicaltraits,restingstatephysiologicalparameters,forexample,frequencydomainfeaturesofrestingstateheartratevariabilityareassociatedwithBCIperformance(Kaufmannetal.,2012).Inaddition,thebaselinesofRSNsaredynamicandmodifyanycorticalsignatureinstantaneously(Mantinietal.,2007).AgealtersRSNsandassociatedcognitiveresponses(Wangetal.,2016b).Adaptingtosuchtime-variantRSNsismoredemandingwhentheeffectsofRSNsmaskevent-relatedcorticalresponses(Jensenetal.,2011).Moreover,theinherentcomplexityanddiversityintheformationofhumanbrains(Sporns,2013)thatinfluencethefunctionalneuralnetworks(Honeyetal.,2010),constructhighlyvolatileneuronalconnectivityovertimeandacrosssubjects(Honeyetal.,2009).AnefficientBCIsystemmustberobusttosuchinherentphysiologicalfluctuationsovertimetoenablemoregeneralizedsystems(SahaandBaumert,2020). ExperimentscorrelatingBCIperformancewithneuroanatomical,neurophysiologicalandpsychologicalparametershaveprovidedfascinatingresults:graymattervolumeinsensorimotorcorticalareasisassociatedwithBCIsuccess(Kasaharaetal.,2015).Sensorimotorrhythm-basedBCIhasimplicatedthatphysiologicalpredictorssuchasspectralentropyandpowerspectraldensity,derivedfromrestingstateEEGrecordingsarecorrelatedwithBCIperformance(Zhangetal.,2015;Acqualagnaetal.,2016).Psychologicalpredictorssuchasattentionandmotivation,arealsoassociatedwithsensorimotorrhythm-basedBCIperformance(Hammeretal.,2012).CorticospinalexcitabilitycouldbeusedasanotherreliablemarkerforBCIperformance(Vasilyevetal.,2017).TakingheadanatomyintoconsiderationaugmentsBCIperformance(Wronkiewiczetal.,2015;Sahaetal.,2019a). Around15–30%ofindividualsareinherentlynotabletoproducebrainsignalsrobustenoughtooperateaBCI(Blankertzetal.,2009;Halderetal.,2019;Cecotti,2020).ConsideringneurophysiologicalphenomenamayreduceBCIilliteracy.AnadaptivemachinelearningapproachincorporatingneurophysiologicalandpsychologicaltraitshasbeenproposedtoreduceBCIilliteracy(VidaurreandBlankertz,2010).ThecausesofBCIilliteracydonotexclusivelyrelyonusers'abilitytoproducesignals.SometimestechnologicallimitationsmayhinderessentialfeaturesextractionforasuccessfulBCIoperationforanindividual.Forexample,measurementsofscalpEEG/MEGmaynotshowgoodtask-specificsignalsduetothefoldingofthecortexorscalp-to-cortexdistanceforthatindividual(Andersenetal.,2020). Othercase-specificinvestigationsonneuro-psycho-physiologicalparameterscontributingtoBCIperformanceareessential.Fortherehabilitationofstrokesurvivors,affectedneuralcircuits,i.e.,lesionsaretobeidentifiedcarefully,becausebrainresponsesfluctuateaccordingtothespatiallocationofthestrokelesion(Parketal.,2016).Althoughcurrentneuroimagingmethodsareeffectiveincapturingstrokelesionsites,acase-specificBCIdesignthatincorporatesresidualbrainfunctionisrequiredforrehabilitativeinterventions.HighlyindividualizeddesignimpedeswidedisseminationofBCI-drivenrehabilitationofneurologicalconditions. 2.2.TechnologicalChallenges Eventrelatedpotential(ERP)(McCaneetal.,2015),steady-statevisualevokedpotential(SSVEP)(Chenetal.,2015;Abu-AlqumsanandPeer,2016),auditoryevokedpotential(AEP)(Schreuderetal.,2010),steady-statesomatosensoryevokedpotential(SSSEP)(Muller-Putzetal.,2006;Oxleyetal.,2017),andmotorimagery(MI)(Marchesottietal.,2016;Sahaetal.,2019a;SahaandBaumert,2020),havebeenproposedtodetectcognitivesignaturesalthoughnoneoftheapproachesperformswellforallBCIapplications.Forexample,ERPsandSSVEPsaretarget-specificandelicitedbyexternalstimuli;however,ifERPsdependonvisualstimuli,theycannotbeusedforcommunicationbylocked-inpatientswithimpairedvisualprocessing.Inthatcase,auditory-basedERP(e.g.,AEP)couldbeusedifauditoryprocessingremainsintact.TheSSVEPmethodprovidesthehighestinformationtransferrateofanon-invasiveEEG-basedBCI(Chenetal.,2015;Abu-AlqumsanandPeer,2016).LimitationsoftheSSVEPtechniqueincludevisualfatiguecausedbylookingataflickeringdisplayforalongtime.Whenusingthistechnique,thecontrolsignalcouldbearbitraryandcounter-intuitive,althoughitmightdependmostlyontheexperimentalcontext.Forexample,whenusingaBCIspellerbasedonSSVEP,anindividuallooksattheletter“A”,whichflickersat10Hz.Itisgenerallynotgivenimportancetoanyinherentrelationshipbetween“A”and10Hz,insteadthecontrolsignalisarbitrarymappedtointerfacewithacomputer.AnadvantageofanMI-basedBCIistheuseofexplicitmappingoftask-relatedbrainsignalstooperate(SahaandBaumert,2020).However,MIseemstooslowforactioncontrol,thustheyarenotsuitableforcontrollingvirtualrealityenvironmentsorvideogames(Lécuyeretal.,2008).RecentlyproposedhybridBCIswhichutilizemorethanonesignature,i.e.,SSVEP/ERP(CombazandVanHulle,2015;Yinetal.,2015)andSSVEP/MI(Pfurtschelleretal.,2010;Horkietal.,2011),seemtooffermorerobustfeatures.ConsideringasynchronousBCIwheretheuserdecidestoactivateacommandwhennecessary,theperformanceisstillunsatisfactory(Hanetal.,2020). TheintrinsicneurophysiologicalinstabilityofbraindynamicsposescriticalchallengesformakingBCIsystemsefficient.ThemajorcomponentsofaBCIsystemaresignalacquisition,signalprocessingandeffectordevice(Schwartzetal.,2006).Variousneuroimagingtechniqueshavebeenusedtoexplorecorticalactivitiesthrougheitherelectricalorhemodynamicsignatures(Minetal.,2010),butnoneofthemethodsshowsanyadvantageforalucrativeBCIdesignmeetingthefourimportantcriteria:costefficiency,portability,easymaintenance,andlittleornoinvolvementofsurgery.EEG-basedBCIarerelativelymorecompliantwiththeabovementionedcriteriaascomparedtoothersignalacquisitionmodalities.Tables2,3listadiverserangeofBCIapplicationsexploitingEEG.Bothinvasiveandnon-invasivesignalacquisitionshaverecentlyshownthatreliablelong-term(i.e.,foratleastseveralmonths)useofBCIsystemsisquitefeasible(Saeedietal.,2016;Sauter-Starceetal.,2019;Shahriarietal.,2019;Oxleyetal.,2020). TABLE2 Table2.Asummaryofsensorimotorrhythmsandelectroencephalography-basedbraincomputerinterface(BCI)studies. TABLE3 Table3.Asummaryofnon-sensorimotorrhythmsandelectroencephalography-basedbraincomputerinterface(BCI)studies. EEGprovidesrelativelypoorspatialresolutionduetonon-invasivescalprecordingscomparedtofMRI,butfinertemporalresolution(LystadandPollard,2009;Minetal.,2010;Heetal.,2011;Nicolas-AlonsoandGomez-Gil,2012).EmployinghighdensityEEGmappingincreasesspatialresolutionbutresultsinhighcomputationalcostandeffortstomaintainareasonablesignal-to-noiseratioacrossallchannels(Chenetal.,2015).SinceEEGcapturesonlytheelectricalfieldassociatedcognitiveprocesses,concomitantassessmentofblood-oxygenlevel-dependent(BOLD)activitymayimproveBCIperformance.BOLDactivityistypicallycapturedwithfMRI(Sitarametal.,2007),whichisnotfeasibleformostBCIapplications,duetounmanageablesizeandcostofthedevice.fNIRSprovidesasafe,non-invasive,relativelyinexpensiveandportableneuroimagingalternativeforrecordingBOLDactivity(Matthewsetal.,2007).IntegratingfNIRSwithEEGcansignificantlyenhanceclassificationperformancesregardlessoflowinformationtransferratecausedbyinherentdelaysinhemodynamics(Fazlietal.,2012).ArecentstudyhassuggestedthatfNIRSisunabletoadequatelyofferacceptableperformancesonitsown,butcanbecombinedwithEEGtoboosttheperformances(Geetal.,2017).However,continuoustechnologicaladvancescouldpromotefNIRSasanexclusivetoolforneuroscienceresearch,includingthedevelopmentofBCI(Scholkmannetal.,2014;NaseerandHong,2015). Probingsourcesincortico-subcorticalnetworksisanotherimportantlimitationofscalp-basedsensorssuchasEEG.Reconstructingtask-inducednetworkswhileresolvingtheso-calledinverseproblemimposesasignificantchallenge.Atwo-equivalent-dipolemodelwasappliedonEEGdatatodiscerntheanatomicalnatureoftheMIinducedsourcesandtoaidtheclassificationperformances(Kamousietal.,2005).Sahaetal.proposedawavelet-basedsourcelocalizationapproachtoinvestigateMI-relatedsourcesandtheirimpactonBCIperformance(Sahaetal.,2019a).Theneuronalpotentialsattenuatethroughseveraltissuelayersofcomplexgeometryanddiverseelectricalproperties;however,themagneticpermeabilityinthecerebrospinalfluid,skull,andskin,isconsistent(daSilva,2013).Thus,MEGcancapturesignalwithlessdistortionthanEEG.AlthoughMEGprovidesbetterspatiotemporalresolutionascomparedtoEEG,themagneticfieldcreatedbythebrainisverysmall,requiringcostly,stationaryrecordingequipment(Mellingeretal.,2007;Corsietal.,2019). TheBCIclassifierdesignhastoaddresstwoissues(Bashashatietal.,2007;Lotteetal.,2007,2018).First,thedimensionalityofthefeaturessetusedforestimatingthemodelparametersshouldbechosenforoptimalperformancebasedonthenatureoftheclassifier.Second,thetrade-offbetweenbiasandvariancehastobeconsideredandmayinvolveregularizingtheparameterestimation. Covariateshiftoccurswhenthefeaturesextractedfromthetrainingdifferfromthoseoftestdataimpactingtheclassificationperformance(Krusienskietal.,2011).Covariateshiftisanimportantissuerequiringtheapplicationofadaptivemethodsforcompensatingfeaturespacetransitions(Jayarametal.,2016;SahaandBaumert,2020).Theunsupervisedsubspacelearningmethodenablessession-to-sessionandsubject-to-subjectinformationtransfers,augmentingBCIperformance(Sameketal.,2013;Jayarametal.,2016;Sahaetal.,2018).Thecommonspatialpattern,asupervisedmethod,hasbeenextensivelyusedinEEG-basedonlineandofflineBCIsettings(Ramoseretal.,2000;Wuetal.,2017a).Acommonproblemwithsuchadata-driventechniqueisover-fittingofthemodelparametersbasedontrainingsets,causingunreliablepredictiononthetestdata(Sannellietal.,2016).RecentstudiesintegrateddiversemethodsintopotentialtransferlearningframeworksforBCIincludingspatialfilters(e.g.,commonspatialpattern),Riemanniangeometry,Euclideanalignmentandsubspaceadaptationanddeeplearning-basedtechniques(Barachantetal.,2011;Congedoetal.,2013,2017;Maratheetal.,2015;Wuetal.,2016,2017b;Wuetal.,2020;HeandWu,2019,2020;Kwonetal.,2019;ZhangandWu,2020). 3.Neuroplasticity,Sensors,SignalProcessing,Modeling,andApplications Exploitingneuroplasticity,designinghi-fidelityandcustomizedneuralsensors,applyingadvancedsignalprocessing,andmachinelearningtechniquesarethekeyaspectsofaneffectiveBCIdesign.Tables2–5highlightdiversecharacteristicsofBCIcomponentsandapplicationsincludingsignalacquisitionmodality,experimentalparadigm,dataanalysisandpatternrecognition,applicationfield,andsignificance.Notably,therearenospecificselectioncriteriaforstudiesinTables2–5duetothebroadspectrumoftopicscoveredinthisreview;however,theyaresummarizedsuchthatcriticaladvancesoverthelastseveralyearscanbeappreciated. 3.1.NeuroplasticityandCognitiveRehabilitation Thetime-variantbehaviorofsynapseswithincomplexneuralnetworksunderpinstheplasticcharacteristicsofthebrainandwasfirstillustratedbyDonaldO.Hebbin1949(BrownandMilner,2003).Neuroplasticitynotonlyhelpstoassistcognitiveandperceptuallearningbutalsoisthemainingredientforneurorehabilitation.Howplasticaparticularbrainareais,maydefinetheeffectivenessofaneurofeedbackstrategytoinducespecificactivitypatterns.Studieshaveshownvisualcorticesareplasticenoughtoproducerobustneuralsignalsforpost-neurofeedbackperceptuallearning(Shibataetal.,2011;Amanoetal.,2016).Anotherstudyhasdemonstratedifright/lefthemisphericdifferencesinneurofeedback-inducedalphaactivitiesareassociatedwithvisualinformationprocessingandmotorbehaviors,and,thus,controlspatialattention(JonesandSliva,2020).fMRI-basedneurofeedbacktrainingsessionsinducetheplasticityofattention-relatedbehavior.Implicationssuggestthatneurofeedbackcanofferrehabilitationofattentionaldeficit(Meganetal.,2015).Arecentstudyhasusedneurofeedbacktogeneraterobustsomatosensoryoscillationsassociatedwithhumanperception(Brickweddeetal.,2019). Closed-loopBCIwithneurofeedbackisassumedtocontributetothereorganizationofcortical-subcorticalneuralnetworksandassistsubjectsinself-regulatingspecificbrainrhythms;notwithstanding,theunderlyingmechanismsthatalterneuralsubstratesarestillnotfully-understood(Sitarametal.,2017).Forexample,BCI-basedcovertvisuomotortrainingmodulatesassociatedneuralsubstrates,wheretheeffectsofmodulatedneuralsubstratesareobservedwhileperformingthatparticularmovement-relatedtask(Vyasetal.,2018).Substantialchangesinovertmovement-relatedtaskfollowingBCI-driventraininginducedlearningsuggestacriticalroleofBCIinenhancedmotorlearningforproficientlycontrollingneuroprosthetics(Orsbornetal.,2014),i.e.,devicesthatcanenhanceorrepairtheoutputofthenervoussystem.Forexample,intracorticalelectrodesmaybeusedtostimulatespecificbrainregionstoregainmotorcontrol(Oxleyetal.,2016;Sandetal.,2017).BCImayaugmenttraining-inducedplasticityduringtherapeuticmotorrehabilitationand,thus,re-excitecorrespondingneuralsubstratestoregaincontrolbymeansofneuroprostheticsorupperlimbfunctions(Dobkin,2007).OtherexamplesincludeBCI-drivenexoskeletonstoenhancehumanworkingcapacity(Benabidetal.,2019). TheextentofBCI-inducedplasticityentailsseveralfactors,including(1)theselectionofthesignalacquisitionmodality,whichplaysanimportantroleindiagnosingneuralstates,(2)thedesignoffeedbackmodalitythathasexplicitassociationwiththeneuralsignalclassificationperformance,(3)theconsiderationofapplication-specificfeedbackdelays,and(4)theutilizationofasuitablefeedbackmodality(Grosse-Wentrupetal.,2011).NeuralensemblerecordingsusingsignalacquisitionmodalitiessuchasEEG,MEG,fNIRS,andfMRIhavebecomedominantoversingleunitrecordings.Behavioralactivitiesarelikelytobedistributedacrossthree-dimensionalcortical-subcorticalnetworksandthatcannotbecapturedwithinsingleunitrecordings(NicolelisandLebedev,2009). RehabilitativeBCIcanbedesignedeitherbyattachingneuralprosthesestotheimpairedbodypartsorbyre-stimulatingthedamagedsynapticnetworks;inanyofthecases,theideaistoexploitandpromoteneuroplasticity(Wangetal.,2010;Ramos-Murguialdayetal.,2013;Parketal.,2016;Darvishietal.,2017;Toriyamaetal.,2018;SongandKim,2019;Romero-Laisecaetal.,2020).Instrokepatientswithpareticmuscleswithoutresidualfingermovement,increasedelectromyographicactivitypostrehabilitationbyBCI-drivenorthosesexhibitsincreasedneuromuscularcoherencethatisessentialforrestoringmovementcontrol(Pfurtschelleretal.,2000;Ramos-Murguialdayetal.,2013).ExplicitapplicationoffunctionalelectricalstimulationregulatedbyEEG-basedmovement-relatedsignaturesfurthersuggestsaroleofBCIinrehabilitation(Zhaoetal.,2016).Increasedelectromyographicactivityinpareticmusclesisindicativeofplasticityinducedbyelectricalstimulation(DeMarchisetal.,2016).ForBCI-basedrehabilitationinareal-lifeenvironment,differentiatingbetweentask-inducedactivitiesandrestingstateactivitiesisakeyfactorforcontrollingtheprosthesisorstimulationmodality(Pahwaetal.,2015). Externallystimulatingtheaffectedbrainareasbyelectricormagneticfieldsholdspromiseforstrokerehabilitation.Arecentstudydemonstratedtheinductionofneuroplasticityinwhitematterandcorticalfunctionsinchronicstrokepatientsbymotorimagery-basedBCIandtranscranialdirectcurrentstimulationappliedtotargetedbrainareas(Hongetal.,2017).MagneticstimulationofbrainareasdrivenbyBCIincreasescorticalactivationinstrokepatients(Johnsonetal.,2018).Thelevelofneuroplasticityachievedpost-rehabilitationvariesacrosssubjectsand,thus,anindividual-specifictrainingsessionisnecessary(Leamyetal.,2014).TheuseofBCI-basedmotorrehabilitationforlocked-inpatientsislimitedbecausetheyareunabletofullyinteractwiththesystem(BirbaumerandCohen,2007).OtherexamplesofBCI-drivenrehabilitationsincludeoptimizingtheparametersfordeepbrainstimulationappliedintothesubthalamicnucleusinpatientswithParkinson'sdisease(Sandetal.,2017)andtreatingmajordepressivedisorderbyBCI-driventranscranialmagneticstimulation(Rayetal.,2015). Eitherbyprovidingdirectcontrolofassistivetechnologiesorbydirectneurostimulation,BCIcanhelppatientswhomaysufferfromamyotrophiclateralsclerosis,cerebralpalsy,brainstemstroke,spinalcordinjuries,musculardystrophies,orchronicperipheralneuropathies(Kauhanenetal.,2006;Iturrateetal.,2009;MakandWolpaw,2009;Allisonetal.,2010;Ramos-Murguialdayetal.,2013;Leamyetal.,2014;Botreletal.,2015;CombazandVanHulle,2015;Edelmanetal.,2015;Parketal.,2016;Zhaoetal.,2016;Alcaide-Aguirreetal.,2017;Geetal.,2017;Chiarellietal.,2018;Guyetal.,2018;Yuetal.,2018;RezazadehSereshkehetal.,2019;Jinetal.,2020;Zuoetal.,2020).Providingauxiliarydegreesoffreedomimprovesthequalityoflifeofpeoplewithdisabilitiessignificantly.Brainsignalscanbetranslatedtodrivewheelchairs(Galánetal.,2008;Iturrateetal.,2009;Perdikisetal.,2017;ToninandMillán,2020).IntegrationofBCIwithavision-guidedautonomoussystemwasshowntoeffectivelyperformthegraspingtaskusingaprostheticarminatetraplegicpatient(Downeyetal.,2016).Animplantedmicroelectrodearrayhasbeenproposedtooperateathree-dimensionalneuroprostheticdevice(Tayloretal.,2002). 3.2.SignalAcquisition,SignalProcessing,andModeling AsignificantnumberofstudiesarenowinvolvedincombiningmultimodalsignalacquisitionmodalitiestoaugmentcurrentBCIsystems.Forexample,simultaneousEEGandfMRIyieldcomplementaryfeaturesbyexploitinggoodtemporalresolutionofEEGandgoodspatialresolutionoffMRI(Debeneretal.,2006).EnhancedmulticlasssensorimotortasksclassificationperformanceusinghybridEEGandfNIRSsignalsimplicatestheimportanceoffeaturesextractedfrombothhemodynamicandelectricalactivities(Buccinoetal.,2016).MEGisanotherpotentialtooltocombinewithEEG,asitcapturesradially/tangentiallydipolesourcesincortical-subcorticalnetworksandaddscomplementaryinformationtoEEGsignals(Kauhanenetal.,2006).Skepticismmightstillpresentaboutthedetectionofbrainactivitiesoriginatedfromsubcorticalareas;however,anincreasingnumberofstudiesarguethatEEGandMEGcouldcapturesubcorticalactivities(Andersenetal.,2019;Minetal.,2020;Piastraetal.,2020).ArecenttrendistocombinedifferentsignalacquisitionmodalitiestogethertoimproveBCIefficiency.Table4highlightsmultimodalandhybridBCIapplications. TABLE4 Table4.Asummaryofmultimodalandhybridbraincomputerinterface(BCI)studies. Thecombinationofsignalprocessingandmachinelearningapproachesplayscriticalroleintranslatinganybrainsignaltoacommandforacomputerorotherexternaldevices.Tables2–5highlightdifferentsignalprocessingandmachinelearningtechniques.Representingsignalsinthetime-frequency-spaceisnecessarytoobtainphysiologicalcorrelatesofBCIoutcomes(McFarlandetal.,2006;Bashashatietal.,2007).Fouriertransform(FT)andautoregressivemodelsareexamplesoftimedomainrepresentationsofbrainsignalswhileshorttimeFTandwavelettransformareexamplesoftime-frequencyrepresentations(McFarlandetal.,2006;Bashashatietal.,2007).Incaseofspatialfiltering,themostpopularfilteringapproachesarecommonspatialpattern,independentcomponentanalysisandtheLaplacianfilter.Adiverserangeofinversemodelsallowtodiscerntheactualsourcesprojectedonthree-dimensionalcortical-subcorticalnetworks(Wronkiewiczetal.,2015;Sahaetal.,2019a).Extractedfeaturescanbetranslatedusingvariouslinearandnon-linearclassificationalgorithms.Examplesoflinearandnon-linearclassifiermodelsarelineardiscriminantanalysisandnon-linearkernel-basedsupportvectormachines(Lotteetal.,2007,2018). TABLE5 Table5.Asummaryofbraincomputerinterface(BCI)studiesinvolvinginvasiveprocedures. Sincethefirstpublicationin2000,commonspatialpatternisstilloneofthemostpopularmethodstorepresentmultichannelEEGsignalsbycorrespondingspatialcontents(Ramoseretal.,2000).Asadata-drivenmethod,itrequiresasignificantnumberoftrainingsamplestomodelthefilteringparameters.Incaseofsmalltrainingtrials,regularizingthecovarianceestimationworksbetterthanthetraditionalalgorithm(LotteandGuan,2010).OthermodificationsinspatialfilteringincludeprojectingEEGbyusingsparserepresentationandfilterbankspectraldivisionofrawsignals(Arvanehetal.,2014).Generally,spatialfilteringisapplicableinsubject-specificBCIdevelopmentalthoughrecentstudieshaveproposedestimatingthefiltercoefficientsfromasubjectandappliedthatfiltertoanothersubject,whichcontributednotrainingsample(Sahaetal.,2017,2018,2019a).Otherpopulardata-drivenmethodsincludelineardiscriminantanalysis,supportvectormachineandprincipalcomponentanalysis(Lotteetal.,2007,2018).Withtheexceptionaladvancementsincomputationalfacilitiesinthelastdecade,deeplearning-basedBCIparadigmsbyallowingtheevaluationoflargedatasetscouldsoonbecomeatrendinthecommunity(Chiarellietal.,2018;Kwonetal.,2019;NagelandSpüler,2019). Ontheotherhand,independentcomponentanalysisisablindsourceseparationmethodrequiringnotraining.Theestimationofindependentcomponentsisbasedonstatisticalpropertiesofthesignals(BellandSejnowski,1995).However,modelingtheactualcorticalsourcesasdipolesinthecomplexbrainanatomyfromthescalpEEGrecordingsseekstosolvetheso-calledinverseproblem(Qinetal.,2004;Kamousietal.,2005;Wronkiewiczetal.,2015;Sahaetal.,2019a).Morerecentsourcelocalizationmethodssuchaswavelet-basedmaximumentropyonthemeanrepresentEEG/MEGsignalsasrelevanttime-frequencycontentsandfinallytransformthemintospatialrepresentations(Linaetal.,2012;Sahaetal.,2019a).Notably,differentinversemethodsandtoolboxesdemonstrateconsiderablevariabilityinlocalizedsources(Mahjooryetal.,2017).Evenitisnotverystraightforwardtoknowtheexactsources,whicharetobemodeledusingEEG/MEG.Forexample,thegroundtruthdefinedbyimplantedelectrodesmightnotbe100%reliablebecauseofsparse(spatial)sampling.InthecaseoffMRI,themeasurementofneuralactivityisindirect.Notwithstanding,inversemethodshaveshownpromisefordesigningvariousBCImodels(Qinetal.,2004;Kamousietal.,2005;Wronkiewiczetal.,2015;Sahaetal.,2019a). 3.3.Neurosensors:The-State-of-the-Art Deeperregionsofthebrain,e.g.,subcorticalandcerebellarregions,contributetovariousneuronalactivities(Mülleretal.,2002;Wardmanetal.,2014).InterpretingthegenesisofcorticalsourcesfromcellulartoscalplevelsandRSNsspannedthroughoutthethree-dimensionalbrainspacecanguideBCIdevelopment(Donoghue,2008).Sensorswithcustomizeddesignaredevelopedtoadvancebrainsignalacquisitionmodalities.Neurosensorscanbeconstructedindifferentformslikeelectrical,optical,chemicalandbiological(DeisserothandSchnitzer,2013).DryEEGelectrodesareconvenient,butassumedtoprovidelowersignal-to-noiseratiocomparedtoconventionalwetelectrodes.Wetelectrodesmaycauseinconveniencetousersastheyuseconductivegelandrequireproperskinpreparationforminimizingtheskin-electrodeimpedance(Liaoetal.,2012).However,astudyondryelectrodes-basedBCIsuggestedthatdryelectrodecouldbeusedtocollectgoodqualitysignalsbydesigningthecircuitscarefully(Chietal.,2011).Furtherstudiessupportdryelectrodeswithwirelesssystemsthatcouldoffercomparablesignalqualityasofwetelectrodes,butwithmoreconvenience(DiFlumerietal.,2019;Marinietal.,2019;Hinrichsetal.,2020).Whileutilizingtheadvantagesofbothdryandwetelectrodes,quasi-dryelectrodesexploitingthemechanicalpropertiesofpolymercancapturesignalsascomparabletocommercialAg/AgClelectrodes(Motaetal.,2013).ToincreasethespatialresolutionofEEG,Petrovetal.haveproposedanultra-densesensorarrayof700–800electrodes(Petrovetal.,2014).Thesignal-to-noiseratiowastwiceashighasforhigh-densityEEGthathasupto256gold-coatedelectrodes.Anauricleelectrodewithstretchableconnectorwasproposedthatnotonlycanincreaseportabilitybutalsocanofferacomfortablealternativeforlongtermrecordings(Nortonetal.,2015).Theelectrodeisflexiblewiththealterationsofelectricalandmechanicalpropertiesofskin. Invasivesensorsmustbebiocompatible.Anovelorganicelectrochemicaltransistor-basedsensorenablestocollectneuralsignalsdirectlyfromthebrainsurface(Khodagholyetal.,2013).Thissensorisbiocompatibleandmechanicallyflexible,andthetransistor-baseddesignamplifiescapturedsignalslocally,thusprovidingmuchbettersignal-to-noiseratiothanconventionalECoG.Toenhancethesignalquality,carbonnanotubecoatingcandecreasetheelectrodeimpedanceand,thus,increasethechargetransfer(Keeferetal.,2008).Anotherinvasivebiocompatiblesensor,designedforrecordingpreviouslyinaccessiblespectraoflargeneuronpopulations,includesdatatransmissionforuseinnaturalenvironments(Yinetal.,2014).Withtheoutstandingprogressofnanotechnology,nanowireFieldEffectTransistorandotherp/njunctiondeviceshavepotentialforneuro-sensingmodalitiesforintracellularrecordings,eveninthedeepbrainregions(Kruskaletal.,2015).Oxleyetal.haveproposedstent-electrodearray(stentrode)thatinvolvesminimalinvasiveness(Oxleyetal.,2016,2017).Usingcomputer-guidedcatheterangiography,thestentrodecanbeplacedwithinarteriesorveinslocatedinsidethebrainanatomy.Capturinghigh-fidelitycorticalsignals,thistechnologywillsignificantlyreducetheriskfactorsofcraniotomy.Afollow-upstudyhasrecentlydemonstratedsuccessfulimplantationofthestrentrodeinhumansforlong-termneuralsignalrecording(Oxleyetal.,2020).Theinformationtransferrateforstrentrode-basedBCIwascomparabletothelandmarkstudybyVansteenseletal.withimplantedelectrodes(Vansteenseletal.,2016).AnotherimplantedECoGrecordercalledasWIMAGINE(WirelessImplantableMulti-channelAcquisitionsystemforGenericInterfacewithNeurons)allowswirelessneuraldataaccess(Mestaisetal.,2014).TheWIMAGINEhasrecentlybeentestedforlong-termreliabilityofdataacquisitionandanyriskassociatedwithcraniotomy(Kruskaletal.,2015;Sauter-Starceetal.,2019). Besideslarge-scalerecordingmodalitieslikeEEGandMEG,verysmall-scalerecordingsofneuronalactivitiesarecrucialforunderstandingbraincircuits'functionsandintra-andinter-neuroninteractions.Representationofanycognitivetaskasfunctionsofbothsmall-scaleandlarge-scaleneuronalinteractionsiscrucialfortheadvancementofneuroengineeringandBCI.Inthisregard,ahigh-densityneurosensorarraymadefromsiliconprobescombinedwithoptogeneticsenablessingleunitrecordings(Buzsákietal.,2015).Yangetal.proposedanovelmulti-planetwo-photonmicroscopethatcanbeusedtocapturemulti-layerneuronalstructureandmechanismwithcellularresolution(Yangetal.,2016).Otherpotentialimagingmethodsforinvestigatingcellsignalingincludecalciumimaging(GrienbergerandKonnerth,2012)andadvancedmicroscopewithchronicallyimplantedlenses(Resendezetal.,2016).Designerreceptorexclusivelyactivatedbydesignerdrugs,providesachemogenetictooltounderstandcell-signalingincludingelectricalactivitiesinmolecularlyclusteredcellgroups(SternsonandRoth,2014;Roth,2016).Anewultrasonic-basedwirelesssystem,calledneuraldust,enablestherecordingofelectromyogramandelectroneurogramonthemillimeterscale(Seoetal.,2016). 3.4.AffectiveComputing,Gaming,Robotics,andMiscellaneousApplications Futurecomputersareassumedtohaveemotionalandperceptualcapabilities,whichcouldextendtheusenotonlytoassistinghumansbutalsotomakingdecisions(Picard,2000).Computersmightabletorecognizeandinterpretunderlyingaffectivestatesbasedonphysiologicalandbehavioralvariables.RecentstudiesdemonstratedBCIisapotentialtooltoinvestigateaffectivestates,expandingtheapplicationsintopsychology(PihoandTjahjadi,2018;Songetal.,2018;Huangetal.,2019).Huangetal.haveproposedanEEG-basedBCItodetectpositiveandnegativeemotionsinducedbyvideostimulus(Huangetal.,2019). IntegrationofartsintoBCIisreferredtoasartisticBCI(Andujaretal.,2015).Inthelate1960s,DavidRosenboombeganexperimentingwithwaystolinkbrainfunctionswithmusicalproduction,perceptionofmusicalformsandmusicalproprioception(Rosenboom,2014).OtherexamplesofartisticBCIincludeaffectivestatesdetection,playingvideogamesandcontrollingvirtual/augmentedrealityenvironment.StudieshavedemonstratedthatausercanfullyoperatevideogamesbySSVEP-BCI(vanVlietetal.,2012;FilizandArslan,2020).Otherstudieshaveproposedhowmultipleuserscanparticipateinacollaborativegame,inwhichjointdecisionmakingisrequiredtocontrolthegamingenvironment(NijholtandPoel,2016;Sekhavat,2020).Anotherstudypreviouslysuggestedtheaggregationofinformationfromtwointelligenceanalysts'brainsignalsmayleadtobetterdecisionmakingthanone'sbrainsignals(Stoica,2012).Theunderlyingcausecouldbeexplainedbyinter-individualdifferencesinhumancognitiveandperceptualskills(Kleinschmidtetal.,2012).Collaborationbetweenusersmightassistanindividual'sdecisionmakingbydiversityinclusion.Amodifiedsetupcouldinvestigatehowpeopleinteractindifferentsocialcontexts,extendingBCIapplicationsinsociology(Amaraletal.,2017). Virtual/augmentedreality(V/AR)technologiestogetherwithBCIcouldofferimmersiveexperiencesandhavemanypotentialapplicationsincludingartsandneurofeedback(Andujaretal.,2015;Tremmeletal.,2019;Putzeetal.,2020).Brainpaintingallowsausertodrawlinesinavirtualcanvasbybrainsignals,whichgivesanalternativecommunicationchannelforpeoplewithpareticmotorfunctions(Botreletal.,2015).McClintonetal.havedevelopedabrainpaintingapplicationusingVRenvironment(McClintonetal.,2019).AnotherworkhasevincedVR-BCItomeasurecognitiveworkloadthatcancontributetoneuroergonomics(Tremmeletal.,2019).StudieshavealsousedimmersiveVRasabetterneurofeedbackoptionascomparedtothecomputerscreenleadingtoincreasedBCIaccuracy(Luuetal.,2016;Školaetal.,2019;Vourvopoulosetal.,2019;Julianoetal.,2020).Vourvopoulosetal.haveintegratedtheprinciplesofVRandBCIintoaplatformcalledREINVENTformotorrehabilitation(Vourvopoulosetal.,2019).Likewise,BCIwithARcanbeusedtoremotelycontrolarobotforrehabilitatingchildrenwithattention-deficit/hyperactivitydisorder(Arpaiaetal.,2020). WhileBCI-drivenroboticcontrollerscanofferadvancedassistivetechnologyforpeoplewithmobilityconstraint,itmayalsoaugmenthumanergonomicperformanceforhealthysubjects(Millanetal.,2004;Gandhietal.,2014;Tidonietal.,2016;Perdikisetal.,2017;Spataroetal.,2017;YuanandLi,2018;Dengetal.,2019;Toninetal.,2019;ToninandMillán,2020).EEG-basedBCI-drivencontrollerofmobilerobotorwheelchairhasdemonstratedthepossibilityofthistechnologyinroboticsindustry(Millanetal.,2004;Tidonietal.,2016;Perdikisetal.,2017;YuanandLi,2018;Dengetal.,2019;Toninetal.,2019).BCIcanalsobeusedforcontrollinghumanoidrobotsremotelyusingEEG(Spataroetal.,2017),suitableinhazardousenvironments,forexamplebysendingarobotinacoalmineforexecutingataskthatispotentiallyunsafeforahuman.Inspace,BCIcanbeusedtomonitorastronauts'workingcapacityandtodriveanexoskeleton(Menonetal.,2009;deNegueruelaetal.,2011).Intheabsenceofgravity,workingbecomestediousandinconvenient.Furthermore,astronauts'workingtimeisprecious.BCI-drivensystemscouldbepracticalforimprovingastronauts'functionality,efficiencyandsafety(Summereretal.,2009;Farwelletal.,2014;Botreletal.,2015;Ortizetal.,2016;Wangetal.,2016a;Vourvopoulosetal.,2019;Singhetal.,2020). Recently,brain-to-braininterface(BBI)experimentsthatinvolvedecodingsender'scognitiveintentions,translatethemintocommandsforstimulatingreceiver'sbrain,havebeenexplored(Pais-Vieiraetal.,2013;Raoetal.,2014;Jiangetal.,2019).In2013,researchersimplementedadirectBBIsysteminwhichoneratwasabletosharesensorimotorinformationtoanotherrat(Pais-Vieiraetal.,2013).Intracorticalmicrostimulationwasusedtostimulatethereceiver'stargetbrainareas.Anearlyattempttodevelopsensorimotorrhythm-basedBBIbetweentwohumansubjectsusednon-invasiveEEGandtranscranialmagneticstimulationhasbeenproposedbyRaoetal.(2014).Othertotalnon-invasiveBBIexperimentshaveproposedsharingpseudo-randombinarystreamsencodedwordsbetweenhumansubjects(Grauetal.,2014)andplayingcollaborativegames(Stoccoetal.,2015).Figure2illustratesatimelineforcurrentadvancesofBCIindiverseapplications. FIGURE2 Figure2.Aschematicillustrationoftheevolutionofthebraincomputerinterface(BCI)applications:Cognitive&PerceptualLearning/Rehabilitation(McMillanetal.,1995);OrthosisControl(Pfurtschelleretal.,2000);MusicBCI(Rosenboom,2014);Robotics(Millanetal.,2004);WheelchairControl(Iturrateetal.,2009);DrowsinessDetection(Linetal.,2008);AffectiveComputing(Zanderetal.,2009);BrainRacers(Perdikisetal.,2017);MultiplayerGaming(NijholtandPoel,2016);Brain-to-BrainInterface(Raoetal.,2014). 4.EthicalConcernsandSocioeconomicContexts IrrespectiveofthescientificbreakthroughsinBCIfield,therearekeyfactorspertainingtosafety,ethics,privacyprotectionanddataconfidentiality,communityacceptanceandsocioeconomicaspectsthatshouldbeconsideredwithadequateprecautionstomaximizeusers'benefitsandsocialimpacts(IllesandBird,2006;BostromandSandberg,2009;Jebari,2013;McCullaghetal.,2014).ObtaininganethicallysoundinformedconsentfromaBCIwornpatientmaybechallengingforBCIresearchersduetodifficultyincommunicatingandthelackofalternatives.However,moreawarenessandattentiontoethicspoliciesarerecommendedtoimprovethechanceforpatientstogetadequateinformation. PhysicalandmentalsafetyofBCIusersisimportant.Invasiveproceduressuchasdeepbrainstimulationandintracorticalmicroelectrodearraymaycausepostoperativepsychologicalandneurologicalsideeffects(JotterandandGiordano,2011;Gilbert,2015;Maslenetal.,2015).Additionally,bleedingandinfectionsareinfrequentbutdooccurandmayrequireremovalorfurthermaintenanceoftheimplantedelectrodes.Guidelinesarerequiredtosafelyadvanceneurotechnologies(GoeringandYuste,2016),becauseBCIdevicescanalterbehaviorand,thus,introducepotentialthreatstoone'semotions,personalityandmemories;moregenerallyone'smind.Forhumanbrain-to-braininterfaceapplications(Raoetal.,2014;Stoccoetal.,2015),onemaydefineanupperboundforresearchdepthskeepinginmindthenecessityofethicalutilizationofthistechnology.Becausebothsenderandreceiverplaycomplicatedroles,morespecifically,sender'sintentionalmanipulativecontroloverneuralsignalsmightaltertheanticipatedoutcome.Alteringhumancognitiveandpossiblymoralcapacityraiseaseriousethicalquestionanditisnotpredictableifthecognitivechangesreversibleandefficacious(Nakazawaetal.,2016). Auser'sexpectationsofachievingextendedorauxiliarydegreeoffreedommaynotbefulfilled,andeventheunfamiliarriskfactorscandiminishtheaccomplishedadvantageofusingBCI(Clausen,2011;Schicktanzetal.,2015).CreatingbroadawarenessofBCItechnologyanditsprosandconswouldeducatepeople,whofearunnecessarytechnologicaldependency(Hobsonetal.,2017).However,successfulclinicaltrialsofsophisticateddevicessuchasstrentrodeorWIMAGINEareessentialtodemonstratepotentialadvantages,especiallyforpeoplesufferingfromanyformofcognitivedisability(Sauter-Starceetal.,2019;Oxleyetal.,2020).Inthecaseofhealthyusers,itshouldnotbetoodifficulttocreateacceptancetoabroadercommunitywhendryelectrodescouldofferthelong-termoperationofaBCIapplicationwithlittlemaintenanceeffort(DiFlumerietal.,2019;Marinietal.,2019;Hinrichsetal.,2020). ItiscriticaltointroduceasuitableactforlawfulutilizationofBCIandpreservationofprivacyandconfidentialityofstoreddata.Recentstudieshavedemonstrateddecodingofpasswordorrecognizingfacesutilizingconsumer-gradeBCIsuccessfully,promptingapotentialconcernofanyillegitimateaccesstousers'rawdataandtheirfurtherexploitation(Martinetal.,2016;Alomarietal.,2019).Forexample,affectivestatesdefineusers'moraljudgmentandemotionaltraits.Thus,itiscriticaltolimittheapplicationsofaffectiveBCIwhilepreservingsensitiveinformation(SteinertandFriedrich,2020).Necessaryprecursorinitiativesshouldproposeapplication-specificBCIframeworks,whichcanrestrictunauthorizedaccesstostoreddataorthesystem(IencaandHaselager,2016).Forexample,illicitaccesstoawirelessBCI-drivenlimbandmanipulativereprogrammingofacomputer-guidedneuro-stimulationhavedemonstratedtheimportanceofestablishingresilientsafeguardstoBCIuse(Denningetal.,2009).Agarwaletal.haveproposedcryptographicprotocolsasintegratedpartsofBCItopreservetheprivacyofauserbykeepingconfidentialinformationobscuretoothers(Agarwaletal.,2019).Withoutevaluatingsocioeconomic,ethicalandpolicyissues,thecommercializationofBCIwouldhindertheprogressinthisfield(EatonandIlles,2007). BycreatingacommonnetworkingplatformforBCIresearchersworldwide,theimmediatepropositionofacomprehensivelistofuniversalguidelinesiskeytosustainableadvancementsofthefield(VaadiaandBirbaumer,2009).Variousalliance-basedprojectsarerunningascommonplatformsforadvancingtheknowledgeofneuroscience,forexample,bystrengtheningeffortstofundneuroscienceresearchprojects(Grillneretal.,2016).TheEuropeanUnionalongwithitspartneruniversitieshaveinitiatedtheHumanBrainProject.Inaddition,theBrainInitiativehasbeenannouncedbytheWhiteHouse.Inouropinion,advancedunderstandingofbasicneuroscientificphenomenawilldeterminethestructure,efficacyandapplicationsoffuturisticBCI. 5.Conclusion NumerousgroundbreakingadvancesinneurosensorsandcomputationaltoolsheraldgreatpromiseformoresophisticatedanduserfriendlyBCIsystemsrequiringnoorlittlemaintenance.Inadditiontohi-fidelitysignalacquisition,significantprogressinsignalprocessingandmachinelearningtools,theircomplementaryroles,andhighcomputationpowerandincreasedmobilityofcomputershavesignificantlycontributedintheemergenceofBCItechnologies.ThefutureofBCItechnologywillrelygreatlyonaddressingthefollowingkeyaspects: •ElucidatingtheunderlyingpsychophysiologicalandneurologicalfactorsthatpotentiallyinfluenceBCIperformance. •Designinglessinvasivesensorswithreliablesignalacquisitionandresolution,whileconsideringportability,easymaintenance,andaffordability. •Modelingsession-to-sessionandsubject-to-subjectinformationtransferforthepropositionofmoregeneralizedBCImodelswithinsignificantornocalibrationrequirement. •Establishingbroadconsensusonethicalissuesandbeneficialsocioeconomicapplicationofthistechnology. AuthorContributions SSconceivedtheinitialidea,wrotethefirstdraft,andgeneratedallfiguresandtables.KM,KA,RM,GN,andSDparticipatedinthediscussionandcommentedonthedraft.AHKandMBprovidedfurtherinsightandhelpedSStofinalizethestructureandmaterials.Allauthorsreadandapprovedthefinalpaper. ConflictofInterest Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments Thismanuscripthasbeenreleasedasapre-printathttps://arxiv.org/(Sahaetal.,2019b).AuthorswouldliketothankProf.MoritzGrosse-Wentrupforprovidinghisvaluablefeedback.Thisworkwaspartiallysupportedbyagrant(AwardNo.RC2-2018-022(HEIC)andKKJRC-2019-Health2)fromKhalifaUniversity,AbuDhabi,UAE. References Abrams,D.A.,Ryali,S.,Chen,T.,Chordia,P.,Khouzam,A.,Levitin,D.J.,etal.(2013).Inter-subjectsynchronizationofbrainresponsesduringnaturalmusiclistening.Eur.J.Neurosci.37,1458–1469.doi:10.1111/ejn.12173 PubMedAbstract|CrossRefFullText|GoogleScholar Abu-Alqumsan,M.,andPeer,A.(2016).Advancingthedetectionofsteady-statevisualevokedpotentialsinbrain-computerinterfaces.J.NeuralEng.13:036005.doi:10.1088/1741-2560/13/3/036005 PubMedAbstract|CrossRefFullText|GoogleScholar Acqualagna,L.,Botrel,L.,Vidaurre,C.,Kübler,A.,andBlankertz,B.(2016).Large-scaleassessmentofafullyautomaticco-adaptivemotorimagery-basedbraincomputerinterface.PLoSONE11:e0148886.doi:10.1371/journal.pone.0148886 PubMedAbstract|CrossRefFullText|GoogleScholar Agarwal,A.,Dowsley,R.,McKinney,N.D.,Wu,D.,Lin,C.-T.,DeCock,M.,etal.(2019).Protectingprivacyofusersinbrain-computerinterfaceapplications.IEEETrans.NeuralSyst.Rehabil.Eng.27,1546–1555.doi:10.1109/TNSRE.2019.2926965 PubMedAbstract|CrossRefFullText|GoogleScholar Ahn,M.,andJun,S.C.(2015).Performancevariationinmotorimagerybrain-computerinterface:abriefreview.J.Neurosci.Methods243,103–110.doi:10.1016/j.jneumeth.2015.01.033 PubMedAbstract|CrossRefFullText|GoogleScholar Alcaide-Aguirre,R.,Warschausky,S.,Brown,D.,Aref,A.,andHuggins,J.(2017).Asynchronousbrain-computerinterfaceforcognitiveassessmentinpeoplewithcerebralpalsy.J.NeuralEng.14:066001.doi:10.1088/1741-2552/aa7fc4 PubMedAbstract|CrossRefFullText|GoogleScholar Allison,B.Z.,Brunner,C.,Kaiser,V.,Müller-Putz,G.R.,Neuper,C.,andPfurtscheller,G.(2010).Towardahybridbrain-computerinterfacebasedonimaginedmovementandvisualattention.J.NeuralEng.7:026007.doi:10.1088/1741-2560/7/2/026007 PubMedAbstract|CrossRefFullText|GoogleScholar Alomari,R.,Martin,M.V.,MacDonald,S.,Maraj,A.,Liscano,R.,andBellman,C.(2019).Insideout-astudyofusers'perceptionsofpasswordmemorabilityandrecall.J.Inform.SecurityAppl.47,223–234.doi:10.1016/j.jisa.2019.05.009 CrossRefFullText|GoogleScholar Amano,K.,Shibata,K.,Kawato,M.,Sasaki,Y.,andWatanabe,T.(2016).LearningtoassociateorientationwithcolorinearlyvisualareasbyassociativedecodedfMRIneurofeedback.Curr.Biol.26,1861–1866.doi:10.1016/j.cub.2016.05.014 PubMedAbstract|CrossRefFullText|GoogleScholar Amaral,C.P.,Simões,M.A.,Mouga,S.,Andrade,J.,andCastelo-Branco,M.(2017).Anovelbraincomputerinterfaceforclassificationofsocialjointattentioninautismandcomparisonof3experimentalsetups:afeasibilitystudy.J.Neurosci.Methods290,105–115.doi:10.1016/j.jneumeth.2017.07.029 PubMedAbstract|CrossRefFullText|GoogleScholar Andersen,L.M.,Jerbi,K.,andDalal,S.S.(2019).Canelectro-andmagnetoencephalographydetectsignalsfromthehumancerebellum?PeerJ7:e27901.doi:10.7287/peerj.preprints.27901 CrossRefFullText|GoogleScholar Andersen,L.M.,Jerbi,K.,andDalal,S.S.(2020).CanEEGandMEGdetectsignalsfromthehumancerebellum?Neuroimage215:116817.doi:10.1016/j.neuroimage.2020.116817 PubMedAbstract|CrossRefFullText|GoogleScholar Andujar,M.,Crawford,C.S.,Nijholt,A.,Jackson,F.,andGilbert,J.E.(2015).Artisticbrain-computerinterfaces:theexpressionandstimulationoftheuser'saffectivestate.BrainComput.Interfaces2,60–69.doi:10.1080/2326263X.2015.1104613 CrossRefFullText|GoogleScholar Aricó,P.,Borghini,G.,DiFlumeri,G.,Colosimo,A.,Bonelli,S.,Golfetti,A.,etal.(2016).AdaptiveautomationtriggeredbyEEG-basedmentalworkloadindex:apassivebrain-computerinterfaceapplicationinrealisticairtrafficcontrolenvironment.Front.Hum.Neurosci.10:539.doi:10.3389/fnhum.2016.00539 PubMedAbstract|CrossRefFullText|GoogleScholar Arpaia,P.,Duraccio,L.,Moccaldi,N.,andRossi,S.(2020).Wearablebrain-computerinterfaceinstrumentationforrobot-basedrehabilitationbyaugmentedreality.IEEETrans.Instrument.Meas.69,6362–6371.doi:10.1109/TIM.2020.2970846 CrossRefFullText|GoogleScholar Arvaneh,M.,Guan,C.,Ang,K.K.,andQuek,C.(2014).Mutualinformation-basedoptimizationofsparsespatio-spectralfiltersinbrain-computerinterface.NeuralComput.Appl.25,625–634.doi:10.1007/s00521-013-1523-7 CrossRefFullText|GoogleScholar Barachant,A.,Bonnet,S.,Congedo,M.,andJutten,C.(2011).Multiclassbrain-computerinterfaceclassificationbyriemanniangeometry.IEEETrans.Biomed.Eng.59,920–928.doi:10.1109/TBME.2011.2172210 PubMedAbstract|CrossRefFullText|GoogleScholar Bashashati,A.,Fatourechi,M.,Ward,R.K.,andBirch,G.E.(2007).Asurveyofsignalprocessingalgorithmsinbrain-computerinterfacesbasedonelectricalbrainsignals.J.NeuralEng.4:R32.doi:10.1088/1741-2560/4/2/R03 PubMedAbstract|CrossRefFullText|GoogleScholar Baxter,B.S.,Edelman,B.J.,Sohrabpour,A.,andHe,B.(2017).Anodaltranscranialdirectcurrentstimulationincreasesbilateraldirectedbrainconnectivityduringmotor-imagerybasedbrain-computerinterfacecontrol.Front.Neurosci.11:691.doi:10.3389/fnins.2017.00691 PubMedAbstract|CrossRefFullText|GoogleScholar Bell,A.J.,andSejnowski,T.J.(1995).Aninformation-maximizationapproachtoblindseparationandblinddeconvolution.NeuralComput.7,1129–1159.doi:10.1162/neco.1995.7.6.1129 PubMedAbstract|CrossRefFullText|GoogleScholar Benabid,A.L.,Costecalde,T.,Eliseyev,A.,Charvet,G.,Verney,A.,Karakas,S.,etal.(2019).Anexoskeletoncontrolledbyanepiduralwirelessbrain-machineinterfaceinatetraplegicpatient:aproof-of-conceptdemonstration.LancetNeurol.18,1112–1122.doi:10.1016/S1474-4422(19)30321-7 PubMedAbstract|CrossRefFullText|GoogleScholar Berger,H.(1929).Überdaselektroenkephalogrammdesmenschen.Arch.Psychiatr.Nervenkrankheiten87,527–570.doi:10.1007/BF01797193 CrossRefFullText|GoogleScholar Bhattacharyya,S.,Clerc,M.,andHayashibe,M.(2019).Augmentingmotorimagerylearningforbrain-computerinterfacingusingelectricalstimulationasfeedback.IEEETrans.Med.Robot.Bionics1,247–255.doi:10.1109/TMRB.2019.2949854 CrossRefFullText|GoogleScholar Birbaumer,N.,andCohen,L.G.(2007).Brain-computerinterfaces:communicationandrestorationofmovementinparalysis.J.Physiol.579,621–636.doi:10.1113/jphysiol.2006.125633 PubMedAbstract|CrossRefFullText|GoogleScholar Birbaumer,N.,Ghanayim,N.,Hinterberger,T.,Iversen,I.,Kotchoubey,B.,Kübler,A.,etal.(1999).Aspellingdevicefortheparalysed.Nature398,297–298.doi:10.1038/18581 CrossRefFullText|GoogleScholar Blankertz,B.,Sanelli,C.,Halder,S.,Hammer,E.,Kübler,A.,Müller,K.-R.,etal.(2009).PredictingBCIperformancetostudyBCIilliteracy.BMCNeurosci.10(Suppl.1):P84.doi:10.1186/1471-2202-10-S1-P84 PubMedAbstract|CrossRefFullText|GoogleScholar Bockbrader,M.,Annetta,N.,Friedenberg,D.,Schwemmer,M.,Skomrock,N.,Colachis,I.V.,etal.(2019).Clinicallysignificantgainsinskillfulgraspcoordinationbyanindividualwithtetraplegiausinganimplantedbrain-computerinterfacewithforearmtranscutaneousmusclestimulation.Arch.Phys.Med.Rehabil.100,1201–1217.doi:10.1016/j.apmr.2018.07.445 PubMedAbstract|CrossRefFullText|GoogleScholar Bostrom,N.,andSandberg,A.(2009).Cognitiveenhancement:methods,ethics,regulatorychallenges.Sci.Eng.Ethics15,311–341.doi:10.1007/s11948-009-9142-5 PubMedAbstract|CrossRefFullText|GoogleScholar Botrel,L.,Holz,E.,andKübler,A.(2015).Brainpaintingv2:evaluationofp300-basedbrain-computerinterfaceforcreativeexpressionbyanend-userfollowingtheuser-centereddesign.BrainComput.Interfaces2,135–149.doi:10.1080/2326263X.2015.1100038 CrossRefFullText|GoogleScholar Brickwedde,M.,Krüger,M.C.,andDinse,H.R.(2019).Somatosensoryalphaoscillationsgateperceptuallearningefficiency.Nat.Commun.10,1–9.doi:10.1038/s41467-018-08012-0 PubMedAbstract|CrossRefFullText|GoogleScholar Brown,R.E.,andMilner,P.M.(2003).ThelegacyofDonaldO.Hebb:morethantheHebbsynapse.Nat.Rev.Neurosci.4,1013–1019.doi:10.1038/nrn1257 PubMedAbstract|CrossRefFullText|GoogleScholar Brunner,C.,Birbaumer,N.,Blankertz,B.,Guger,C.,Kübler,A.,Mattia,D.,etal.(2015).BNCIhorizon2020:towardsaroadmapfortheBCIcommunity.BrainComput.Interfaces2,1–10.doi:10.1080/2326263X.2015.1008956 CrossRefFullText|GoogleScholar Buccino,A.P.,Keles,H.O.,andOmurtag,A.(2016).HybridEEG-fNIRSasynchronousbrain-computerinterfaceformultiplemotortasks.PLoSONE11:e0146610.doi:10.1371/journal.pone.0146610 PubMedAbstract|CrossRefFullText|GoogleScholar Buzsáki,G.,Stark,E.,Berényi,A.,Khodagholy,D.,Kipke,D.R.,Yoon,E.,etal.(2015).Toolsforprobinglocalcircuits:high-densitysiliconprobescombinedwithoptogenetics.Neuron86,92–105.doi:10.1016/j.neuron.2015.01.028 PubMedAbstract|CrossRefFullText|GoogleScholar Calhoun,V.D.,andAdali,T.(2016).Time-varyingbrainconnectivityinfMRIdata:whole-braindata-drivenapproachesforcapturingandcharacterizingdynamicstates.IEEESignalProcess.Mag.33,52–66.doi:10.1109/MSP.2015.2478915 CrossRefFullText|GoogleScholar Cecotti,H.(2020).Adaptivetimesegmentanalysisforsteady-statevisualevokedpotentialbasedbrain-computerinterfaces.IEEETrans.NeuralSyst.Rehabil.Eng.28,552–560.doi:10.1109/TNSRE.2020.2968307 PubMedAbstract|CrossRefFullText|GoogleScholar Chen,X.,Wang,Y.,Nakanishi,M.,Gao,X.,Jung,T.-P.,andGao,S.(2015).High-speedspellingwithanoninvasivebrain-computerinterface.Proc.Natl.Acad.Sci.U.S.A.112,E6058–E6067.doi:10.1073/pnas.1508080112 PubMedAbstract|CrossRefFullText|GoogleScholar Chi,Y.M.,Wang,Y.-T.,Wang,Y.,Maier,C.,Jung,T.-P.,andCauwenberghs,G.(2011).DryandnoncontactEEGsensorsformobilebrain-computerinterfaces.IEEETrans.NeuralSyst.Rehabil.Eng.20,228–235.doi:10.1109/TNSRE.2011.2174652 PubMedAbstract|CrossRefFullText|GoogleScholar Chiarelli,A.M.,Croce,P.,Merla,A.,andZappasodi,F.(2018).DeeplearningforhybridEEG-fNIRSbrain-computerinterface:applicationtomotorimageryclassification.J.NeuralEng.15:036028.doi:10.1088/1741-2552/aaaf82 PubMedAbstract|CrossRefFullText|GoogleScholar Choi,B.,andJo,S.(2013).Alow-costEEGsystem-basedhybridbrain-computerinterfaceforhumanoidrobotnavigationandrECOGnition.PLoSONE8:e74583.doi:10.1371/journal.pone.0074583 PubMedAbstract|CrossRefFullText|GoogleScholar Clausen,J.(2011).Conceptualandethicalissueswithbrain-hardwareinterfaces.Curr.Opin.Psychiatry24,495–501.doi:10.1097/YCO.0b013e32834bb8ca PubMedAbstract|CrossRefFullText|GoogleScholar Combaz,A.,andVanHulle,M.M.(2015).Simultaneousdetectionofp300andsteady-statevisuallyevokedpotentialsforhybridbrain-computerinterface.PLoSONE10:e0121481.doi:10.1371/journal.pone.0121481 PubMedAbstract|CrossRefFullText|GoogleScholar Congedo,M.,Barachant,A.,andAndreev,A.(2013).Anewgenerationofbrain-computerinterfacebasedonriemanniangeometry.arXivpreprintarXiv:1310.8115. GoogleScholar Congedo,M.,Barachant,A.,andBhatia,R.(2017).RiemanniangeometryforEEG-basedbrain-computerinterfaces;aprimerandareview.BrainComput.Interfaces4,155–174.doi:10.1080/2326263X.2017.1297192 CrossRefFullText|GoogleScholar Corsi,M.-C.,Chavez,M.,Schwartz,D.,Hugueville,L.,Khambhati,A.N.,Bassett,D.S.,etal.(2019).IntegratingEEGandMEGsignalstoimprovemotorimageryclassificationinbrain-computerinterface.Int.J.NeuralSyst.29:1850014.doi:10.1142/S0129065718500144 PubMedAbstract|CrossRefFullText|GoogleScholar daSilva,F.L.(2013).EEGandMEG:relevancetoneuroscience.Neuron80,1112–1128.doi:10.1016/j.neuron.2013.10.017 PubMedAbstract|CrossRefFullText|GoogleScholar Darvishi,S.,Gharabaghi,A.,Boulay,C.B.,Ridding,M.C.,Abbott,D.,andBaumert,M.(2017).Proprioceptivefeedbackfacilitatesmotorimagery-relatedoperantlearningofsensorimotorβ-bandmodulation.Front.Neurosci.11:60.doi:10.3389/fnins.2017.00060 PubMedAbstract|CrossRefFullText|GoogleScholar DeMarchis,C.,Monteiro,T.S.,Simon-Martinez,C.,Conforto,S.,andGharabaghi,A.(2016).Multi-contactfunctionalelectricalstimulationforhandopening:electrophysiologicallydrivenidentificationoftheoptimalstimulationsite.J.Neuroeng.Rehabil.13,1–9.doi:10.1186/s12984-016-0129-6 PubMedAbstract|CrossRefFullText|GoogleScholar deNegueruela,C.,Broschart,M.,Menon,C.,andMillán,J.d.R.(2011).Brain-computerinterfacesforspaceapplications.Pers.Ubiquit.Comput.15,527–537.doi:10.1007/s00779-010-0322-8 CrossRefFullText|GoogleScholar Debener,S.,Ullsperger,M.,Siegel,M.,andEngel,A.K.(2006).Single-trialEEG-fMRIrevealsthedynamicsofcognitivefunction.TrendsCogn.Sci.10,558–563.doi:10.1016/j.tics.2006.09.010 PubMedAbstract|CrossRefFullText|GoogleScholar Deisseroth,K.,andSchnitzer,M.J.(2013).Engineeringapproachestoilluminatingbrainstructureanddynamics.Neuron80,568–577.doi:10.1016/j.neuron.2013.10.032 PubMedAbstract|CrossRefFullText|GoogleScholar Deng,X.,Yu,Z.L.,Lin,C.,Gu,Z.,andLi,Y.(2019).Abayesiansharedcontrolapproachforwheelchairrobotwithbrainmachineinterface.IEEETrans.NeuralSyst.Rehabil.Eng.28,328–338.doi:10.1109/TNSRE.2019.2958076 PubMedAbstract|CrossRefFullText|GoogleScholar Denning,T.,Matsuoka,Y.,andKohno,T.(2009).Neurosecurity:securityandprivacyforneuraldevices.Neurosurg.Focus27:E7.doi:10.3171/2009.4.FOCUS0985 PubMedAbstract|CrossRefFullText|GoogleScholar DiFlumeri,G.,Aricó,P.,Borghini,G.,Sciaraffa,N.,DiFlorio,A.,andBabiloni,F.(2019).Thedryrevolution:evaluationofthreedifferentEEGdryelectrodetypesintermsofsignalspectralfeatures,mentalstatesclassificationandusability.Sensors19:1365.doi:10.3390/s19061365 PubMedAbstract|CrossRefFullText|GoogleScholar Dobkin,B.H.(2007).Brain-computerinterfacetechnologyasatooltoaugmentplasticityandoutcomesforneurologicalrehabilitation.J.Physiol.579,637–642.doi:10.1113/jphysiol.2006.123067 PubMedAbstract|CrossRefFullText|GoogleScholar Donoghue,J.P.(2008).Bridgingthebraintotheworld:aperspectiveonneuralinterfacesystems.Neuron60,511–521.doi:10.1016/j.neuron.2008.10.037 PubMedAbstract|CrossRefFullText|GoogleScholar Downey,J.E.,Weiss,J.M.,Muelling,K.,Venkatraman,A.,Valois,J.-S.,Hebert,M.,etal.(2016).Blendingofbrain-machineinterfaceandvision-guidedautonomousroboticsimprovesneuroprostheticarmperformanceduringgrasping.J.Neuroeng.Rehabil.13,1–12.doi:10.1186/s12984-016-0134-9 PubMedAbstract|CrossRefFullText|GoogleScholar Eaton,M.L.,andIlles,J.(2007).Commercializingcognitiveneurotechnology–theethicalterrain.Nat.Biotechnol.25,393–397.doi:10.1038/nbt0407-393 PubMedAbstract|CrossRefFullText|GoogleScholar Edelman,B.J.,Baxter,B.,andHe,B.(2015).EEGsourceimagingenhancesthedecodingofcomplexright-handmotorimagerytasks.IEEETrans.Biomed.Eng.63,4–14.doi:10.1109/TBME.2015.2467312 PubMedAbstract|CrossRefFullText|GoogleScholar Faress,A.,andChau,T.(2013).Towardsamultimodalbrain-computerinterface:combiningfNIRSandftcdmeasurementstoenablehigherclassificationaccuracy.Neuroimage77,186–194.doi:10.1016/j.neuroimage.2013.03.028 PubMedAbstract|CrossRefFullText|GoogleScholar Farwell,L.A.,andDonchin,E.(1988).Talkingoffthetopofyourhead:towardamentalprosthesisutilizingevent-relatedbrainpotentials.Electroencephalogr.Clin.Neurophysiol.70,510–523.doi:10.1016/0013-4694(88)90149-6 PubMedAbstract|CrossRefFullText|GoogleScholar Farwell,L.A.,Richardson,D.C.,Richardson,G.M.,andFuredy,J.J.(2014).Brainfingerprintingclassificationconcealedinformationtestdetectsusnavymilitarymedicalinformationwithp300.Front.Neurosci.8:410.doi:10.3389/fnins.2014.00410 PubMedAbstract|CrossRefFullText|GoogleScholar Fazli,S.,Mehnert,J.,Steinbrink,J.,Curio,G.,Villringer,A.,Müller,K.-R.,etal.(2012).EnhancedperformancebyahybridNIRS-EEGbraincomputerinterface.Neuroimage59,519–529.doi:10.1016/j.neuroimage.2011.07.084 PubMedAbstract|CrossRefFullText|GoogleScholar Filiz,E.,andArslan,R.B.(2020).“Designandimplementationofsteadystatevisualevokedpotentialbasedbraincomputerinterfacevideogame,”in2020IEEE20thMediterraneanElectrotechnicalConference(MELECON)(Palermo:IEEE),335–338.doi:10.1109/MELECON48756.2020.9140710 CrossRefFullText|GoogleScholar Friehs,G.,Penn,R.D.,Park,M.C.,Goldman,M.,Zerris,V.A.,Hochberg,L.R.,etal.(2006).Initialsurgicalexperiencewithanintracorticalmicroelectrodearrayforbrain-computerinterfaceapplications:881.Neurosurgery59:481.doi:10.1227/00006123-200608000-00119 CrossRefFullText|GoogleScholar Fukuma,R.,Yanagisawa,T.,Saitoh,Y.,Hosomi,K.,Kishima,H.,Shimizu,T.,etal.(2016).Real-timecontrolofaneuroprosthetichandbymagnetoencephalographicsignalsfromparalysedpatients.Sci.Rep.6,1–14.doi:10.1038/srep21781 PubMedAbstract|CrossRefFullText|GoogleScholar Galán,F.,Nuttin,M.,Lew,E.,Ferrez,P.W.,Vanacker,G.,Philips,J.,etal.(2008).Abrain-actuatedwheelchair:asynchronousandnon-invasivebrain-computerinterfacesforcontinuouscontrolofrobots.Clin.Neurophysiol.119,2159–2169.doi:10.1016/j.clinph.2008.06.001 PubMedAbstract|CrossRefFullText|GoogleScholar Gandhi,V.,Prasad,G.,Coyle,D.,Behera,L.,andMcGinnity,T.M.(2014).EEG-basedmobilerobotcontrolthroughanadaptivebrain-robotinterface.IEEETrans.Syst.ManCybernet.Syst.44,1278–1285.doi:10.1109/TSMC.2014.2313317 CrossRefFullText|GoogleScholar Gao,Z.,Wang,X.,Yang,Y.,Mu,C.,Cai,Q.,Dang,W.,etal.(2019).EEG-basedspatio-temporalconvolutionalneuralnetworkfordriverfatigueevaluation.IEEETrans.NeuralNetw.Learn.Syst.30,2755–2763.doi:10.1109/TNNLS.2018.2886414 PubMedAbstract|CrossRefFullText|GoogleScholar Ge,S.,Yang,Q.,Wang,R.,Lin,P.,Gao,J.,Leng,Y.,etal.(2017).Abrain-computerinterfacebasedonafew-channelEEG-fNIRSbimodalsystem.IEEEAccess5,208–218.doi:10.1109/ACCESS.2016.2637409 CrossRefFullText|GoogleScholar Gilbert,F.(2015).Self-estrangementanddeepbrainstimulation:ethicalissuesrelatedtoforcedexplantation.Neuroethics8,107–114.doi:10.1007/s12152-014-9224-1 CrossRefFullText|GoogleScholar Gilja,V.,Chestek,C.A.,Diester,I.,Henderson,J.M.,Deisseroth,K.,andShenoy,K.V.(2011).Challengesandopportunitiesfornext-generationintracorticallybasedneuralprostheses.IEEETrans.Biomed.Eng.58,1891–1899.doi:10.1109/TBME.2011.2107553 PubMedAbstract|CrossRefFullText|GoogleScholar Goering,S.,andYuste,R.(2016).Onthenecessityofethicalguidelinesfornovelneurotechnologies.Cell167,882–885.doi:10.1016/j.cell.2016.10.029 PubMedAbstract|CrossRefFullText|GoogleScholar Gonçalves,S.I.,DeMunck,J.C.,Pouwels,P.J.,Schoonhoven,R.,Kuijer,J.P.,Maurits,N.M.,etal.(2006).CorrelatingthealpharhythmtoboldusingsimultaneousEEG/fMRI:inter-subjectvariability.Neuroimage30,203–213.doi:10.1016/j.neuroimage.2005.09.062 PubMedAbstract|CrossRefFullText|GoogleScholar Grau,C.,Ginhoux,R.,Riera,A.,Nguyen,T.L.,Chauvat,H.,Berg,M.,etal.(2014).Consciousbrain-to-braincommunicationinhumansusingnon-invasivetechnologies.PLoSONE9:e105225.doi:10.1371/journal.pone.0105225 PubMedAbstract|CrossRefFullText|GoogleScholar Grienberger,C.,andKonnerth,A.(2012).Imagingcalciuminneurons.Neuron73,862–885.doi:10.1016/j.neuron.2012.02.011 CrossRefFullText|GoogleScholar Grillner,S.,Ip,N.,Koch,C.,Koroshetz,W.,Okano,H.,Polachek,M.,etal.(2016).Worldwideinitiativestoadvancebrainresearch.Nat.Neurosci.19,1118–1122.doi:10.1038/nn.4371 PubMedAbstract|CrossRefFullText|GoogleScholar Grosse-Wentrup,M.,Mattia,D.,andOweiss,K.(2011).Usingbrain-computerinterfacestoinduceneuralplasticityandrestorefunction.J.NeuralEng.8:025004.doi:10.1088/1741-2560/8/2/025004 PubMedAbstract|CrossRefFullText|GoogleScholar Guy,V.,Soriani,M.-H.,Bruno,M.,Papadopoulo,T.,Desnuelle,C.,andClerc,M.(2018).Braincomputerinterfacewiththep300speller:usabilityfordisabledpeoplewithamyotrophiclateralsclerosis.Ann.Phys.Rehabil.Med.61,5–11.doi:10.1016/j.rehab.2017.09.004 PubMedAbstract|CrossRefFullText|GoogleScholar Halder,S.,Leinfelder,T.,Schulz,S.M.,andKübler,A.(2019).Neuralmechanismsoftraininganauditoryevent-relatedpotentialtaskinabrain-computerinterfacecontext.Hum.BrainMapp.40,2399–2412.doi:10.1002/hbm.24531 PubMedAbstract|CrossRefFullText|GoogleScholar Hammer,E.M.,Halder,S.,Blankertz,B.,Sannelli,C.,Dickhaus,T.,Kleih,S.,etal.(2012).PsychologicalpredictorsofSMR-BCIperformance.Biol.Psychol.89,80–86.doi:10.1016/j.biopsycho.2011.09.006 PubMedAbstract|CrossRefFullText|GoogleScholar Han,C.-H.,Müller,K.-R.,andHwang,H.-J.(2020).Brain-switchesforasynchronousbrain-computerinterfaces:asystematicreview.Electronics9:422.doi:10.3390/electronics9030422 CrossRefFullText|GoogleScholar Hasson,U.,Nir,Y.,Levy,I.,Fuhrmann,G.,andMalach,R.(2004).Intersubjectsynchronizationofcorticalactivityduringnaturalvision.Science303,1634–1640.doi:10.1126/science.1089506 PubMedAbstract|CrossRefFullText|GoogleScholar He,B.,Yang,L.,Wilke,C.,andYuan,H.(2011).Electrophysiologicalimagingofbrainactivityandconnectivity-challengesandopportunities.IEEETrans.Biomed.Eng.58,1918–1931.doi:10.1109/TBME.2011.2139210 PubMedAbstract|CrossRefFullText|GoogleScholar He,H.,andWu,D.(2019).Transferlearningforbrain-computerinterfaces:aEuclideanspacedataalignmentapproach.IEEETrans.Biomed.Eng.67,399–410.doi:10.1109/TBME.2019.2913914 PubMedAbstract|CrossRefFullText|GoogleScholar He,H.,andWu,D.(2020).Differentsetdomainadaptationforbrain-computerinterfaces:alabelalignmentapproach.IEEETrans.NeuralSyst.Rehabil.Eng.28,1091–1108.doi:10.1109/TNSRE.2020.2980299 PubMedAbstract|CrossRefFullText|GoogleScholar Hinrichs,H.,Scholz,M.,Baum,A.K.,Kam,J.W.,Knight,R.T.,andHeinze,H.-J.(2020).ComparisonbetweenawirelessdryelectrodeEEGsystemwithaconventionalwiredwetelectrodeEEGsystemforclinicalapplications.Sci.Rep.10,1–14.doi:10.1038/s41598-020-62154-0 PubMedAbstract|CrossRefFullText|GoogleScholar Hobson,E.V.,Fazal,S.,Shaw,P.J.,andMcDermott,C.J.(2017).“Anythingthatmakeslife'sjourneybetter.”Exploringtheuseofdigitaltechnologybypeoplelivingwithmotorneuronedisease.AmyotrophicLateralSclerosisFrontotemporalDegeneration18,378–387.doi:10.1080/21678421.2017.1288253 PubMedAbstract|CrossRefFullText|GoogleScholar Hochberg,L.R.(2013).Intracorticalbrain-computerinterfacesfortherestorationofcommunicationandmobility.Biophys.J.104:376.doi:10.1016/j.bpj.2012.11.2094 CrossRefFullText|GoogleScholar Honey,C.J.,Sporns,O.,Cammoun,L.,Gigandet,X.,Thiran,J.-P.,Meuli,R.,etal.(2009).Predictinghumanresting-statefunctionalconnectivityfromstructuralconnectivity.Proc.Natl.Acad.Sci.U.S.A.106,2035–2040.doi:10.1073/pnas.0811168106 PubMedAbstract|CrossRefFullText|GoogleScholar Honey,C.J.,Thivierge,J.-P.,andSporns,O.(2010).Canstructurepredictfunctioninthehumanbrain?Neuroimage52,766–776.doi:10.1016/j.neuroimage.2010.01.071 PubMedAbstract|CrossRefFullText|GoogleScholar Hong,X.,Lu,Z.K.,Teh,I.,Nasrallah,F.A.,Teo,W.P.,Ang,K.K.,etal.(2017).BrainplasticityfollowingMI-BCItrainingcombinedwithtdcsinarandomizedtrialinchronicsubcorticalstrokesubjects:apreliminarystudy.Sci.Rep.7,1–12.doi:10.1038/s41598-017-08928-5 PubMedAbstract|CrossRefFullText|GoogleScholar Horki,P.,Solis-Escalante,T.,Neuper,C.,andMüller-Putz,G.(2011).CombinedmotorimageryandssvepbasedBCIcontrolofa2DOFartificialupperlimb.Med.Biol.Eng.Comput.49,567–577.doi:10.1007/s11517-011-0750-2 PubMedAbstract|CrossRefFullText|GoogleScholar Huang,H.,Xie,Q.,Pan,J.,He,Y.,Wen,Z.,Yu,R.,etal.(2019).AnEEG-basedbraincomputerinterfaceforemotionrECOGnitionanditsapplicationinpatientswithdisorderofconsciousness.IEEETrans.Affect.Comput.doi:10.1109/TAFFC.2019.2901456 CrossRefFullText|GoogleScholar Ienca,M.,andHaselager,P.(2016).Hackingthebrain:brain-computerinterfacingtechnologyandtheethicsofneurosecurity.EthicsInform.Technol.18,117–129.doi:10.1007/s10676-016-9398-9 CrossRefFullText|GoogleScholar Illes,J.,andBird,S.J.(2006).Neuroethics:amoderncontextforethicsinneuroscience.TrendsNeurosci.29,511–517.doi:10.1016/j.tins.2006.07.002 PubMedAbstract|CrossRefFullText|GoogleScholar Iturrate,I.,Antelis,J.M.,Kubler,A.,andMinguez,J.(2009).Anoninvasivebrain-actuatedwheelchairbasedonap300neurophysiologicalprotocolandautomatednavigation.IEEETrans.Robot.25,614–627.doi:10.1109/TRO.2009.2020347 CrossRefFullText|GoogleScholar Jayaram,V.,Alamgir,M.,Altun,Y.,Scholkopf,B.,andGrosse-Wentrup,M.(2016).Transferlearninginbrain-computerinterfaces.IEEEComput.Intell.Mag.11,20–31.doi:10.1109/MCI.2015.2501545 CrossRefFullText|GoogleScholar Jebari,K.(2013).Brainmachineinterfaceandhumanenhancement-anethicalreview.Neuroethics6,617–625.doi:10.1007/s12152-012-9176-2 CrossRefFullText|GoogleScholar Jensen,O.,Bahramisharif,A.,Oostenveld,R.,Klanke,S.,Hadjipapas,A.,Okazaki,Y.O.,etal.(2011).Usingbrain-computerinterfacesandbrain-statedependentstimulationastoolsincognitiveneuroscience.Front.Psychol.2:100.doi:10.3389/fpsyg.2011.00100 PubMedAbstract|CrossRefFullText|GoogleScholar Jiang,L.,Stocco,A.,Losey,D.M.,Abernethy,J.A.,Prat,C.S.,andRao,R.P.(2019).Brainnet:amulti-personbrain-to-braininterfacefordirectcollaborationbetweenbrains.Sci.Rep.9,1–11.doi:10.1038/s41598-019-41895-7 PubMedAbstract|CrossRefFullText|GoogleScholar Jin,J.,Chen,Z.,Xu,R.,Miao,Y.,yuWang,X.,andJung,T.-P.(2020).Developinganoveltactilep300brain-computerinterfacewithacheeks-stimparadigm.IEEETrans.Biomed.Eng.67,2585–2593.doi:10.1109/TBME.2020.2965178 PubMedAbstract|CrossRefFullText|GoogleScholar Johnson,N.,Carey,J.,Edelman,B.,Doud,A.,Grande,A.,Lakshminarayan,K.,etal.(2018).Combinedrtmsandvirtualrealitybrain-computerinterfacetrainingformotorrecoveryafterstroke.J.NeuralEng.15:016009.doi:10.1088/1741-2552/aa8ce3 PubMedAbstract|CrossRefFullText|GoogleScholar Jones,S.R.,andSliva,D.D.(2020).Isalphaasymmetryabyproductorcauseofspatialattention?Newevidencealphaneurofeedbackcontrolsmeasuresofspatialattention.Neuron105,404–406.doi:10.1016/j.neuron.2019.12.033 PubMedAbstract|CrossRefFullText|GoogleScholar Jotterand,F.,andGiordano,J.(2011).Transcranialmagneticstimulation,deepbrainstimulationandpersonalidentity:ethicalquestions,andneuroethicalapproachesformedicalpractice.Int.Rev.Psychiatry23,476–485.doi:10.3109/09540261.2011.616189 PubMedAbstract|CrossRefFullText|GoogleScholar Juliano,J.M.,Spicer,R.P.,Vourvopoulos,A.,Lefebvre,S.,Jann,K.,Ard,T.,etal.(2020).Embodimentisrelatedtobetterperformanceonabrain-computerinterfaceinimmersivevirtualreality:apilotstudy.Sensors20:1204.doi:10.3390/s20041204 PubMedAbstract|CrossRefFullText|GoogleScholar Kaas,A.L.,Goebel,R.,Valente,G.,andSorger,B.(2019).Topographicsomatosensoryimageryforreal-timefMRIbrain-computerinterfacing.Front.Hum.Neurosci.13:427.doi:10.3389/fnhum.2019.00427 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiju,T.,Yokota,M.,Watanabe,K.,Inoue,M.,Ando,H.,Takahashi,K.,etal.(2017).HighspatiotemporalresolutionECOGrecordingofsomatosensoryevokedpotentialswithflexiblemicro-electrodearrays.Front.NeuralCirc.11:20.doi:10.3389/fncir.2017.00020 PubMedAbstract|CrossRefFullText|GoogleScholar Kamousi,B.,Liu,Z.,andHe,B.(2005).Classificationofmotorimagerytasksforbrain-computerinterfaceapplicationsbymeansoftwoequivalentdipolesanalysis.IEEETrans.NeuralSyst.Rehabil.Eng.13,166–171.doi:10.1109/TNSRE.2005.847386 PubMedAbstract|CrossRefFullText|GoogleScholar Kasahara,K.,DaSalla,C.S.,Honda,M.,andHanakawa,T.(2015).Neuroanatomicalcorrelatesofbrain-computerinterfaceperformance.Neuroimage110,95–100.doi:10.1016/j.neuroimage.2015.01.055 PubMedAbstract|CrossRefFullText|GoogleScholar Käthner,I.,Wriessnegger,S.C.,Müller-Putz,G.R.,Kübler,A.,andHalder,S.(2014).Effectsofmentalworkloadandfatigueonthep300,alphaandthetabandpowerduringoperationofanERP(p300)brain-computerinterface.Biol.Psychol.102,118–129.doi:10.1016/j.biopsycho.2014.07.014 PubMedAbstract|CrossRefFullText|GoogleScholar Kaufmann,T.,Vögele,C.,Sütterlin,S.,Lukito,S.,andKübler,A.(2012).Effectsofrestingheartratevariabilityonperformanceinthep300brain-computerinterface.Int.J.Psychophysiol.83,336–341.doi:10.1016/j.ijpsycho.2011.11.018 PubMedAbstract|CrossRefFullText|GoogleScholar Kauhanen,L.,Nykopp,T.,Lehtonen,J.,Jylanki,P.,Heikkonen,J.,Rantanen,P.,etal.(2006).EEGandMEGbrain-computerinterfacefortetraplegicpatients.IEEETrans.NeuralSyst.Rehabil.Eng.14,190–193.doi:10.1109/TNSRE.2006.875546 PubMedAbstract|CrossRefFullText|GoogleScholar Keefer,E.W.,Botterman,B.R.,Romero,M.I.,Rossi,A.F.,andGross,G.W.(2008).Carbonnanotubecoatingimprovesneuronalrecordings.Nat.Nanotechnol.3,434–439.doi:10.1038/nnano.2008.174 PubMedAbstract|CrossRefFullText|GoogleScholar Khalaf,A.,Sejdic,E.,andAkcakaya,M.(2019).AnovelmotorimageryhybridbraincomputerinterfaceusingEEGandfunctionaltranscranialdopplerultrasound.J.Neurosci.Methods313,44–53.doi:10.1016/j.jneumeth.2018.11.017 PubMedAbstract|CrossRefFullText|GoogleScholar Khodagholy,D.,Doublet,T.,Quilichini,P.,Gurfinkel,M.,Leleux,P.,Ghestem,A.,etal.(2013).Invivorecordingsofbrainactivityusingorganictransistors.Nat.Commun.4,1–7.doi:10.1038/ncomms2573 PubMedAbstract|CrossRefFullText|GoogleScholar Kleih,S.C.,andKübler,A.(2013).Empathy,motivation,andp300BCIperformance.Front.Hum.Neurosci.7:642.doi:10.3389/fnhum.2013.00642 PubMedAbstract|CrossRefFullText|GoogleScholar Kleinschmidt,A.,Sterzer,P.,andRees,G.(2012).Variabilityofperceptualmultistability:frombrainstatetoindividualtrait.Philos.Trans.R.Soc.BBiol.Sci.367,988–1000.doi:10.1098/rstb.2011.0367 PubMedAbstract|CrossRefFullText|GoogleScholar Krusienski,D.J.,Grosse-Wentrup,M.,Galán,F.,Coyle,D.,Miller,K.J.,Forney,E.,etal.(2011).Criticalissuesinstate-of-the-artbrain-computerinterfacesignalprocessing.J.NeuralEng.8:025002.doi:10.1088/1741-2560/8/2/025002 PubMedAbstract|CrossRefFullText|GoogleScholar Kruskal,P.B.,Jiang,Z.,Gao,T.,andLieber,C.M.(2015).Beyondthepatchclamp:nanotechnologiesforintracellularrecording.Neuron86,21–24.doi:10.1016/j.neuron.2015.01.004 PubMedAbstract|CrossRefFullText|GoogleScholar Kwon,O.-Y.,Lee,M.-H.,Guan,C.,andLee,S.-W.(2019).Subject-independentbrain-computerinterfacesbasedondeepconvolutionalneuralnetworks.IEEETrans.NeuralNetw.Learn.Syst.31,3839–3852.doi:10.1109/TNNLS.2019.2946869 PubMedAbstract|CrossRefFullText|GoogleScholar LaFleur,K.,Cassady,K.,Doud,A.,Shades,K.,Rogin,E.,andHe,B.(2013).Quadcoptercontrolinthree-dimensionalspaceusinganoninvasivemotorimagery-basedbrain-computerinterface.J.NeuralEng.10:046003.doi:10.1088/1741-2560/10/4/046003 PubMedAbstract|CrossRefFullText|GoogleScholar Lajoie,G.,Krouchev,N.I.,Kalaska,J.F.,Fairhall,A.L.,andFetz,E.E.(2017).Correlation-basedmodelofartificiallyinducedplasticityinmotorcortexbyabidirectionalbrain-computerinterface.PLoSComput.Biol.13:e1005343.doi:10.1371/journal.pcbi.1005343 PubMedAbstract|CrossRefFullText|GoogleScholar Leamy,D.J.,Kocijan,J.,Domijan,K.,Duffin,J.,Roche,R.A.,Commins,S.,etal.(2014).AnexplorationofEEGfeaturesduringrecoveryfollowingstroke-implicationsforBCI-mediatedneurorehabilitationtherapy.J.Neuroeng.Rehabil.11:9.doi:10.1186/1743-0003-11-9 PubMedAbstract|CrossRefFullText|GoogleScholar Lebedev,M.A.,andNicolelis,M.A.(2017).Brain-machineinterfaces:frombasicsciencetoneuroprosthesesandneurorehabilitation.Physiol.Rev.97,767–837.doi:10.1152/physrev.00027.2016 PubMedAbstract|CrossRefFullText|GoogleScholar Lécuyer,A.,Lotte,F.,Reilly,R.B.,Leeb,R.,Hirose,M.,andSlater,M.(2008).Brain-computerinterfaces,virtualreality,andvideogames.Computer41,66–72.doi:10.1109/MC.2008.410 CrossRefFullText|GoogleScholar Liao,L.-D.,Lin,C.-T.,McDowell,K.,Wickenden,A.E.,Gramann,K.,Jung,T.-P.,etal.(2012).Biosensortechnologiesforaugmentedbrain-computerinterfacesinthenextdecades.Proc.IEEE100,1553–1566.doi:10.1109/JPROC.2012.2184829 CrossRefFullText|GoogleScholar Lin,C.-T.,Chen,Y.-C.,Huang,T.-Y.,Chiu,T.-T.,Ko,L.-W.,Liang,S.-F.,etal.(2008).Developmentofwirelessbraincomputerinterfacewithembeddedmultitaskschedulinganditsapplicationonreal-timedriver'sdrowsinessdetectionandwarning.IEEETrans.Biomed.Eng.55,1582–1591.doi:10.1109/TBME.2008.918566 PubMedAbstract|CrossRefFullText|GoogleScholar Lina,J.-M.,Chowdhury,R.,Lemay,E.,Kobayashi,E.,andGrova,C.(2012).Wavelet-basedlocalizationofoscillatorysourcesfrommagnetoencephalographydata.IEEETrans.Biomed.Eng.61,2350–2364.doi:10.1109/TBME.2012.2189883 PubMedAbstract|CrossRefFullText|GoogleScholar Lotte,F.,Bougrain,L.,Cichocki,A.,Clerc,M.,Congedo,M.,Rakotomamonjy,A.,etal.(2018).AreviewofclassificationalgorithmsforEEG-basedbrain-computerinterfaces:a10yearupdate.J.NeuralEng.15:031005.doi:10.1088/1741-2552/aab2f2 PubMedAbstract|CrossRefFullText|GoogleScholar Lotte,F.,Congedo,M.,Lécuyer,A.,Lamarche,F.,andArnaldi,B.(2007).AreviewofclassificationalgorithmsforEEG-basedbrain-computerinterfaces.J.NeuralEng.4:R1.doi:10.1088/1741-2560/4/2/R01 PubMedAbstract|CrossRefFullText|GoogleScholar Lotte,F.,andGuan,C.(2010).RegularizingcommonspatialpatternstoimproveBCIdesigns:unifiedtheoryandnewalgorithms.IEEETrans.Biomed.Eng.58,355–362.doi:10.1109/TBME.2010.2082539 PubMedAbstract|CrossRefFullText|GoogleScholar Lu,J.,Mamun,K.A.,andChau,T.(2015).Patternclassificationtooptimizetheperformanceoftranscranialdopplerultrasonography-basedbrainmachineinterface.PatternRecogn.Lett.66,135–143.doi:10.1016/j.patrec.2015.07.020 CrossRefFullText|GoogleScholar Luu,T.P.,He,Y.,Brown,S.,Nakagome,S.,andContreras-Vidal,J.L.(2016).Gaitadaptationtovisualkinematicperturbationsusingareal-timeclosed-loopbrain-computerinterfacetoavirtualrealityavatar.J.NeuralEng.13:036006.doi:10.1088/1741-2560/13/3/036006 PubMedAbstract|CrossRefFullText|GoogleScholar Lystad,R.P.,andPollard,H.(2009).Functionalneuroimaging:abriefoverviewandfeasibilityforuseinchiropracticresearch.J.Can.Chiropract.Assoc.53:59. PubMedAbstract|GoogleScholar Mahjoory,K.,Nikulin,V.V.,Botrel,L.,Linkenkaer-Hansen,K.,Fato,M.M.,andHaufe,S.(2017).ConsistencyofEEGsourcelocalizationandconnectivityestimates.Neuroimage152,590–601.doi:10.1016/j.neuroimage.2017.02.076 PubMedAbstract|CrossRefFullText|GoogleScholar Mak,J.N.,andWolpaw,J.R.(2009).Clinicalapplicationsofbrain-computerinterfaces:currentstateandfutureprospects.IEEERev.Biomed.Eng.2,187–199.doi:10.1109/RBME.2009.2035356 PubMedAbstract|CrossRefFullText|GoogleScholar Mantini,D.,Perrucci,M.G.,DelGratta,C.,Romani,G.L.,andCorbetta,M.(2007).Electrophysiologicalsignaturesofrestingstatenetworksinthehumanbrain.Proc.Natl.Acad.Sci.U.S.A.104,13170–13175.doi:10.1073/pnas.0700668104 PubMedAbstract|CrossRefFullText|GoogleScholar Marathe,A.R.,Lawhern,V.J.,Wu,D.,Slayback,D.,andLance,B.J.(2015).Improvedneuralsignalclassificationinarapidserialvisualpresentationtaskusingactivelearning.IEEETrans.NeuralSyst.Rehabil.Eng.24,333–343.doi:10.1109/TNSRE.2015.2502323 PubMedAbstract|CrossRefFullText|GoogleScholar Marchesotti,S.,Bassolino,M.,Serino,A.,Bleuler,H.,andBlanke,O.(2016).Quantifyingtheroleofmotorimageryinbrain-machineinterfaces.Sci.Rep.6:24076.doi:10.1038/srep24076 PubMedAbstract|CrossRefFullText|GoogleScholar Marchesotti,S.,Martuzzi,R.,Schurger,A.,Blefari,M.L.,delMillán,J.R.,Bleuler,H.,etal.(2017).Corticalandsubcorticalmechanismsofbrain-machineinterfaces.Hum.BrainMapp.38,2971–2989.doi:10.1002/hbm.23566 PubMedAbstract|CrossRefFullText|GoogleScholar Marini,F.,Lee,C.,Wagner,J.,Makeig,S.,andGola,M.(2019).Acomparativeevaluationofsignalqualitybetweenaresearch-gradeandawirelessdry-electrodemobileEEGsystem.J.NeuralEng.16:054001.doi:10.1088/1741-2552/ab21f2 PubMedAbstract|CrossRefFullText|GoogleScholar Martin,M.V.,Cho,V.,andAversano,G.(2016).DetectionofsubconsciousfacerECOGnitionusingconsumer-gradebrain-computerinterfaces.ACMTrans.Appl.Percept.14,1–20.doi:10.1145/2955097 CrossRefFullText|GoogleScholar Maslen,H.,Pugh,J.,andSavulescu,J.(2015).Theethicsofdeepbrainstimulationforthetreatmentofanorexianervosa.Neuroethics8,215–230.doi:10.1007/s12152-015-9240-9 PubMedAbstract|CrossRefFullText|GoogleScholar Matthews,F.,Pearlmutter,B.A.,Wards,T.E.,Soraghan,C.,andMarkham,C.(2007).Hemodynamicsforbrain-computerinterfaces.IEEESignalProcess.Mag.25,87–94.doi:10.1109/MSP.2008.4408445 CrossRefFullText|GoogleScholar McCane,L.M.,Heckman,S.M.,McFarland,D.J.,Townsend,G.,Mak,J.N.,Sellers,E.W.,etal.(2015).P300-basedbrain-computerinterface(BCI)event-relatedpotentials(ERPs):peoplewithamyotrophiclateralsclerosis(ALS)vs.age-matchedcontrols.Clin.Neurophysiol.126,2124–2131.doi:10.1016/j.clinph.2015.01.013 PubMedAbstract|CrossRefFullText|GoogleScholar McClinton,W.,Garcia,S.,andAndujar,M.(2019).“Animmersivebrainpainting:theeffectsofbrainpaintinginavirtualrealityenvironment,”inInternationalConferenceonHuman-ComputerInteraction(Copenhagen:Springer),436–445.doi:10.1007/978-3-030-22419-6_31 CrossRefFullText|GoogleScholar McCullagh,P.,Lightbody,G.,Zygierewicz,J.,andKernohan,W.G.(2014).Ethicalchallengesassociatedwiththedevelopmentanddeploymentofbraincomputerinterfacetechnology.Neuroethics7,109–122.doi:10.1007/s12152-013-9188-6 CrossRefFullText|GoogleScholar McFarland,D.J.,Anderson,C.W.,Muller,K.-R.,Schlogl,A.,andKrusienski,D.J.(2006).Bcimeeting2005-workshoponBCIsignalprocessing:featureextractionandtranslation.IEEETrans.NeuralSyst.Rehabil.Eng.14,135–138.doi:10.1109/TNSRE.2006.875637 PubMedAbstract|CrossRefFullText|GoogleScholar McMillan,G.R.,Calhoun,G.,Middendorf,M.,Schnurer,J.,Ingle,D.,andNasman,V.(1995).“Directbraininterfaceutilizingself-regulationofsteady-statevisualevokedresponse(SSVER),”inProc.RESNA95AnnualConf.(Vancouver,BC),693–695. GoogleScholar Megan,T.D.,Cohen,J.D.,Lee,R.F.,Norman,K.A.,andTurk-Browne,N.B.(2015).Closed-looptrainingofattentionwithreal-timebrainimaging.Nat.Neurosci.18,470–475.doi:10.1038/nn.3940 PubMedAbstract|CrossRefFullText|GoogleScholar Mellinger,J.,Schalk,G.,Braun,C.,Preissl,H.,Rosenstiel,W.,Birbaumer,N.,etal.(2007).AnMEG-basedbrain-computerinterface(BCI).Neuroimage36,581–593.doi:10.1016/j.neuroimage.2007.03.019 CrossRefFullText|GoogleScholar Menon,C.,DeNegueruela,C.,Millán,J.d.R.,Tonet,O.,Carpi,F.,Broschart,M.,etal.(2009).Prospectsofbrain-machineinterfacesforspacesystemcontrol.ActaAstronaut.64,448–456.doi:10.1016/j.actaastro.2008.09.008 CrossRefFullText|GoogleScholar Mestais,C.S.,Charvet,G.,Sauter-Starace,F.,Foerster,M.,Ratel,D.,andBenabid,A.L.(2014).Wimagine:wireless64-channelECOGrecordingimplantforlongtermclinicalapplications.IEEETrans.NeuralSyst.Rehabil.Eng.23,10–21.doi:10.1109/TNSRE.2014.2333541 CrossRefFullText|GoogleScholar Milan,J.D.R.,andCarmena,J.M.(2010).Invasiveornoninvasive:understandingbrain-machineinterfacetechnology[conversationsinBME].IEEEEng.Med.Biol.Mag.29,16–22.doi:10.1109/MEMB.2009.935475 CrossRefFullText|GoogleScholar Millan,J.R.,Renkens,F.,Mourino,J.,andGerstner,W.(2004).Noninvasivebrain-actuatedcontrolofamobilerobotbyhumanEEG.IEEETrans.Biomed.Eng.51,1026–1033.doi:10.1109/TBME.2004.827086 PubMedAbstract|CrossRefFullText|GoogleScholar Min,B.-K.,Hämäläinen,M.S.,andPantazis,D.(2020).Newcognitiveneurotechnologyfacilitatesstudiesofcortical-subcorticalinteractions.TrendsBiotechnol.38,952–962.doi:10.1016/j.tibtech.2020.03.003 PubMedAbstract|CrossRefFullText|GoogleScholar Min,B.-K.,Marzelli,M.J.,andYoo,S.-S.(2010).Neuroimaging-basedapproachesinthebrain-computerinterface.TrendsBiotechnol.28,552–560.doi:10.1016/j.tibtech.2010.08.002 PubMedAbstract|CrossRefFullText|GoogleScholar Mota,A.R.,Duarte,L.,Rodrigues,D.,Martins,A.,Machado,A.,Vaz,F.,etal.(2013).Developmentofaquasi-dryelectrodeforEEGrecording.SensorsActuatAPhys.199,310–317.doi:10.1016/j.sna.2013.06.013 CrossRefFullText|GoogleScholar Mudgal,S.K.,Sharma,S.S.K.,Chaturvedi,I.,andSharma,A.(2020).Braincomputerinterfaceadvancementinneurosciences:applicationsandissues.Interdiscipl.Neurosurg.20:100694.doi:10.1016/j.inat.2020.100694 CrossRefFullText|GoogleScholar Müller,J.L.,Röder,C.H.,Schuierer,G.,andKlein,H.(2002).Motor-inducedbrainactivationincortical,subcorticalandcerebellarregionsinschizophrenicinpatients.AwholebrainfMRIfingertappingstudy.Prog.Neuropsychopharmacol.Biol.Psychiatry26,421–426.doi:10.1016/S0278-5846(01)00271-8 PubMedAbstract|CrossRefFullText|GoogleScholar Muller-Putz,G.R.,Scherer,R.,Neuper,C.,andPfurtscheller,G.(2006).Steady-statesomatosensoryevokedpotentials:suitablebrainsignalsforbrain-computerinterfaces?IEEETrans.NeuralSyst.Rehabil.Eng.14,30–37.doi:10.1109/TNSRE.2005.863842 PubMedAbstract|CrossRefFullText|GoogleScholar Murovec,N.,Heilinger,A.,Xu,R.,Ortner,R.,Spataro,R.,LaBella,V.,etal.(2020).Effectsofavibro-tactilep300basedbrain-computerinterfaceonthecomarecoveryscale-revisedinpatientswithdisordersofconsciousness.Front.Neurosci.14:294.doi:10.3389/fnins.2020.00294 PubMedAbstract|CrossRefFullText|GoogleScholar Nagel,S.,andSpüler,M.(2019).World'sfastestbrain-computerinterface:combiningEEG2codewithdeeplearning.PLoSONE14:e0221909.doi:10.1371/journal.pone.0221909 PubMedAbstract|CrossRefFullText|GoogleScholar Nakazawa,E.,Yamamoto,K.,Tachibana,K.,Toda,S.,Takimoto,Y.,andAkabayashi,A.(2016).Ethicsofdecodedneurofeedbackinclinicalresearch,treatment,andmoralenhancement.AJOBNeurosci.7,110–117.doi:10.1080/21507740.2016.1172134 CrossRefFullText|GoogleScholar Naseer,N.,andHong,K.-S.(2015).fNIRS-basedbrain-computerinterfaces:areview.Front.Hum.Neurosci.9:3.doi:10.3389/fnhum.2015.00003 CrossRefFullText|GoogleScholar Nicolas-Alonso,L.F.,andGomez-Gil,J.(2012).Braincomputerinterfaces,areview.Sensors12,1211–1279.doi:10.3390/s120201211 CrossRefFullText|GoogleScholar Nicolelis,M.A.,andLebedev,M.A.(2009).Principlesofneuralensemblephysiologyunderlyingtheoperationofbrain-machineinterfaces.Nat.Rev.Neurosci.10,530–540.doi:10.1038/nrn2653 PubMedAbstract|CrossRefFullText|GoogleScholar Nijboer,F.,Birbaumer,N.,andKubler,A.(2010).Theinfluenceofpsychologicalstateandmotivationonbrain-computerinterfaceperformanceinpatientswithamyotrophiclateralsclerosis-Alongitudinalstudy.Front.Neurosci.4:55.doi:10.3389/fnins.2010.00055 PubMedAbstract|CrossRefFullText|GoogleScholar Nijholt,A.,andPoel,M.(2016).“Multi-brainBCI:Characteristicsandsocialinteractions,”inInternationalConferenceonAugmentedCognition(LasVegas,NV:Springer),79–90.doi:10.1007/978-3-319-39955-3_8 CrossRefFullText|GoogleScholar Norton,J.J.,Lee,D.S.,Lee,J.W.,Lee,W.,Kwon,O.,Won,P.,etal.(2015).Soft,curvedelectrodesystemscapableofintegrationontheauricleasapersistentbrain-computerinterface.Proc.Natl.Acad.Sci.U.S.A.112,3920–3925.doi:10.1073/pnas.1424875112 PubMedAbstract|CrossRefFullText|GoogleScholar Orsborn,A.L.,Moorman,H.G.,Overduin,S.A.,Shanechi,M.M.,Dimitrov,D.F.,andCarmena,J.M.(2014).Closed-loopdecoderadaptationshapesneuralplasticityforskillfulneuroprostheticcontrol.Neuron82,1380–1393.doi:10.1016/j.neuron.2014.04.048 PubMedAbstract|CrossRefFullText|GoogleScholar Ortiz,F.,González,J.,Montes,A.,González,N.,andPeña,A.(2016).Inductionofemotionalstatesinpeoplewithdisabilitiesthroughfilmclipsusingbraincomputerinterfaces.IEEELatinAm.Trans.14,563–568.doi:10.1109/TLA.2016.7437193 CrossRefFullText|GoogleScholar Oxley,T.J.,Opie,N.L.,John,S.E.,Rind,G.S.,Ronayne,S.M.,Burkitt,A.N.,etal.(2017).“Aminimallyinvasiveendovascularstent-electrodearrayforchronicrecordingsofcorticalneuralactivity,”inBrain-ComputerInterfaceResearch,edsC.Guger,B.Allison,andM.Lebedev(Cham:Springer),55–63.doi:10.1007/978-3-319-64373-1_6 PubMedAbstract|CrossRefFullText|GoogleScholar Oxley,T.J.,Opie,N.L.,John,S.E.,Rind,G.S.,Ronayne,S.M.,Wheeler,T.L.,etal.(2016).Minimallyinvasiveendovascularstent-electrodearrayforhigh-fidelity,chronicrecordingsofcorticalneuralactivity.Nat.Biotechnol.34,320–327.doi:10.1038/nbt.3428 PubMedAbstract|CrossRefFullText|GoogleScholar Oxley,T.J.,Yoo,P.E.,Rind,G.S.,Ronayne,S.M.,Lee,C.S.,Bird,C.,etal.(2020).Motorneuroprosthesisimplantedwithneurointerventionalsurgeryimprovescapacityforactivitiesofdailylivingtasksinsevereparalysis:firstin-humanexperience.J.NeuroIntervent.Surg.doi:10.1136/neurintsurg-2020-016862 PubMedAbstract|CrossRefFullText|GoogleScholar Pahwa,M.,Kusner,M.,Hacker,C.D.,Bundy,D.T.,Weinberger,K.Q.,andLeuthardt,E.C.(2015).Optimizingthedetectionofwakefulandsleep-likestatesforfutureelectrocorticographicbraincomputerinterfaceapplications.PLoSONE10:e0142947.doi:10.1371/journal.pone.0142947 PubMedAbstract|CrossRefFullText|GoogleScholar Pais-Vieira,M.,Lebedev,M.,Kunicki,C.,Wang,J.,andNicolelis,M.A.(2013).Abrain-to-braininterfaceforreal-timesharingofsensorimotorinformation.Sci.Rep.3:1319.doi:10.1038/srep01319 PubMedAbstract|CrossRefFullText|GoogleScholar Pandarinath,C.,Nuyujukian,P.,Blabe,C.H.,Sorice,B.L.,Saab,J.,Willett,F.R.,etal.(2017).Highperformancecommunicationbypeoplewithparalysisusinganintracorticalbrain-computerinterface.eLife6:e18554.doi:10.7554/eLife.18554 PubMedAbstract|CrossRefFullText|GoogleScholar Park,W.,Kwon,G.H.,Kim,Y.-H.,Lee,J.-H.,andKim,L.(2016).EEGresponsevarieswithlesionlocationinpatientswithchronicstroke.J.Neuroeng.Rehabil.13,1–10.doi:10.1186/s12984-016-0120-2 PubMedAbstract|CrossRefFullText|GoogleScholar Perdikis,S.,Tonin,L.,andMillan,J.d.R.(2017).Brainracers.IEEESpectrum54,44–51.doi:10.1109/MSPEC.2017.8012239 CrossRefFullText|GoogleScholar Petrov,Y.,Nador,J.,Hughes,C.,Tran,S.,Yavuzcetin,O.,andSridhar,S.(2014).Ultra-denseEEGsamplingresultsintwo-foldincreaseoffunctionalbraininformation.Neuroimage90,140–145.doi:10.1016/j.neuroimage.2013.12.041 PubMedAbstract|CrossRefFullText|GoogleScholar Pfurtscheller,G.,Guger,C.,Müller,G.,Krausz,G.,andNeuper,C.(2000).Brainoscillationscontrolhandorthosisinatetraplegic.Neurosci.Lett.292,211–214.doi:10.1016/S0304-3940(00)01471-3 PubMedAbstract|CrossRefFullText|GoogleScholar Pfurtscheller,G.,Solis-Escalante,T.,Ortner,R.,Linortner,P.,andMuller-Putz,G.R.(2010).Self-pacedoperationofanssvep-basedorthosiswithandwithoutanimagery-based“brainswitch:”afeasibilitystudytowardsahybridBCI.IEEETrans.NeuralSyst.Rehabil.Eng.18,409–414.doi:10.1109/TNSRE.2010.2040837 PubMedAbstract|CrossRefFullText|GoogleScholar Piastra,M.C.,Nüßing,A.,Vorwerk,J.,Clerc,M.,Engwer,C.,andWolters,C.H.(2020).Acomprehensivestudyonelectroencephalographyandmagnetoencephalographysensitivitytocorticalandsubcorticalsources.Hum.BrainMapp.doi:10.1002/hbm.25272 PubMedAbstract|CrossRefFullText|GoogleScholar Picard,R.W.(2000).AffectiveComputing.Cambridge,MA;London:MITPress.doi:10.7551/mitpress/1140.001.0001 CrossRefFullText|GoogleScholar Piho,L.,andTjahjadi,T.(2018).AmutualinformationbasedadaptivewindowingofinformativeEEGforemotionrecognition.IEEETrans.Affect.Comput.11,722–735.doi:10.1109/TAFFC.2018.2840973 CrossRefFullText|GoogleScholar Putze,F.,Vourvopoulos,A.,Lécuyer,A.,Krusienski,D.,iBadia,S.B.,Mullen,T.,etal.(2020).Brain-computerinterfacesandaugmented/virtualreality.Front.Hum.Neurosci.14:144.doi:10.3389/fnhum.2020.00144 PubMedAbstract|CrossRefFullText|GoogleScholar Qin,L.,Ding,L.,andHe,B.(2004).Motorimageryclassificationbymeansofsourceanalysisforbrain-computerinterfaceapplications.J.NeuralEng.1:135.doi:10.1088/1741-2560/1/3/002 PubMedAbstract|CrossRefFullText|GoogleScholar Ramoser,H.,Muller-Gerking,J.,andPfurtscheller,G.(2000).OptimalspatialfilteringofsingletrialEEGduringimaginedhandmovement.IEEETrans.Rehabil.Eng.8,441–446.doi:10.1109/86.895946 PubMedAbstract|CrossRefFullText|GoogleScholar Ramos-Murguialday,A.,Broetz,D.,Rea,M.,Läer,L.,Yilmaz,Ö.,Brasil,F.L.,etal.(2013).Brain-machineinterfaceinchronicstrokerehabilitation:acontrolledstudy.Ann.Neurol.74,100–108.doi:10.1002/ana.23879 PubMedAbstract|CrossRefFullText|GoogleScholar Rao,R.P.,Stocco,A.,Bryan,M.,Sarma,D.,Youngquist,T.M.,Wu,J.,etal.(2014).Adirectbrain-to-braininterfaceinhumans.PLoSONE9:e111332.doi:10.1371/journal.pone.0111332 PubMedAbstract|CrossRefFullText|GoogleScholar Rashid,M.,Sulaiman,N.P.P,AbdulMajeed,A.,Musa,R.M.,AbNasir,A.F.,etal.(2020).Currentstatus,challenges,andpossiblesolutionsofEEG-basedbrain-computerinterface:acomprehensivereview.Front.Neurorobot.14:25.doi:10.3389/fnbot.2020.00025 PubMedAbstract|CrossRefFullText|GoogleScholar Ray,A.M.,Sitaram,R.,Rana,M.,Pasqualotto,E.,Buyukturkoglu,K.,Guan,C.,etal.(2015).Asubject-independentpattern-basedbrain-computerinterface.Front.Behav.Neurosci.9:269.doi:10.3389/fnbeh.2015.00269 PubMedAbstract|CrossRefFullText|GoogleScholar Resendez,S.L.,Jennings,J.H.,Ung,R.L.,Namboodiri,V.M.K.,Zhou,Z.C.,Otis,J.M.,etal.(2016).Visualizationofcortical,subcorticalanddeepbrainneuralcircuitdynamicsduringnaturalisticmammalianbehaviorwithhead-mountedmicroscopesandchronicallyimplantedlenses.Nat.Protoc.11:566.doi:10.1038/nprot.2016.021 PubMedAbstract|CrossRefFullText|GoogleScholar RezazadehSereshkeh,A.,Yousefi,R.,Wong,A.T.,Rudzicz,F.,andChau,T.(2019).DevelopmentofaternaryhybridfNIRS-EEGbrain-computerinterfacebasedonimaginedspeech.BrainComput.Interfaces6,128–140.doi:10.1080/2326263X.2019.1698928 CrossRefFullText|GoogleScholar Romero-Laiseca,M.A.,Delisle-Rodriguez,D.,Cardoso,V.,Gurve,D.,Loterio,F.,Nascimento,J.H.P.,etal.(2020).Alow-costlower-limbbrain-machineinterfacetriggeredbypedalingmotorimageryforpost-strokepatientsrehabilitation.IEEETrans.NeuralSyst.Rehabil.Eng.28,988–996.doi:10.1109/TNSRE.2020.2974056 PubMedAbstract|CrossRefFullText|GoogleScholar Rosenboom,D.(2014).Activeimaginativelistening–Aneuromusicalcritique.Front.Neurosci.8:251.doi:10.3389/fnins.2014.00251 PubMedAbstract|CrossRefFullText|GoogleScholar Rosenfeld,J.V.,andWong,Y.T.(2017).Neurobionicsandthebrain-computerinterface:currentapplicationsandfuturehorizons.Med.J.Australia206,363–368.doi:10.5694/mja16.01011 PubMedAbstract|CrossRefFullText|GoogleScholar Roth,B.L.(2016).Dreaddsforneuroscientists.Neuron89,683–694.doi:10.1016/j.neuron.2016.01.040 CrossRefFullText|GoogleScholar Saeedi,S.,Chavarriaga,R.,andMillán,J.d.R.(2016).Long-termstablecontrolofmotor-imageryBCIbyalocked-inuserthroughadaptiveassistance.IEEETrans.NeuralSyst.Rehabil.Eng.25,380–391.doi:10.1109/TNSRE.2016.2645681 PubMedAbstract|CrossRefFullText|GoogleScholar Saha,S.,Ahmed,K.I.,Mostafa,R.,Khandoker,A.H.,andHadjileontiadis,L.(2017).Enhancedinter-subjectbraincomputerinterfacewithassociativesensorimotoroscillations.HealthcareTechnol.Lett.4,39–43.doi:10.1049/htl.2016.0073 PubMedAbstract|CrossRefFullText|GoogleScholar Saha,S.,Ahmed,K.I.U.,Mostafa,R.,Hadjileontiadis,L.,andKhandoker,A.(2018).EvidenceofvariabilitiesinEEGdynamicsduringmotorimagery-basedmulticlassbrain-computerinterface.IEEETrans.NeuralSyst.Rehabil.Eng.26,371–382.doi:10.1109/TNSRE.2017.2778178 PubMedAbstract|CrossRefFullText|GoogleScholar Saha,S.,andBaumert,M.(2020).Intra-andinter-subjectvariabilityinEEG-basedsensorimotorbraincomputerinterface:areview.Front.Comput.Neurosci.13:87.doi:10.3389/fncom.2019.00087 PubMedAbstract|CrossRefFullText|GoogleScholar Saha,S.,Hossain,M.,Ahmed,K.I.U.,Mostafa,R.,Hadjileontiadis,L.J.,Khandoker,A.H.,etal.(2019a).Waveletentropy-basedinter-subjectassociativecorticalsourcelocalizationforsensorimotorBCI.Front.Neuroinform.13:47.doi:10.3389/fninf.2019.00047 PubMedAbstract|CrossRefFullText|GoogleScholar Saha,S.,Mamun,K.A.,Ahmed,K.,Mostafa,R.,Naik,G.R.,Khandoker,A.,etal.(2019b).Progressinbraincomputerinterfaces:challengesandtrends.arXivpreprintarXiv:1901.03442. PubMedAbstract|GoogleScholar Samek,W.,Meinecke,F.C.,andMüller,K.-R.(2013).Transferringsubspacesbetweensubjectsinbrain-computerinterfacing.IEEETrans.Biomed.Eng.60,2289–2298.doi:10.1109/TBME.2013.2253608 PubMedAbstract|CrossRefFullText|GoogleScholar Sand,D.,Peremen,Z.,Haor,D.,Arkadir,D.,Bergman,H.,andGeva,A.(2017).OptimizationofdeepbrainstimulationinstnamongpatientswithParkinson'sdiseaseusinganovelEEG-basedtool.BrainStimulat.10:510.doi:10.1016/j.brs.2017.01.490 CrossRefFullText|GoogleScholar Sannelli,C.,Vidaurre,C.,Müller,K.-R.,andBlankertz,B.(2016).EnsemblesofadaptivespatialfiltersincreaseBCIperformance:anonlineevaluation.J.NeuralEng.13:046003.doi:10.1088/1741-2560/13/4/046003 PubMedAbstract|CrossRefFullText|GoogleScholar Sauter-Starce,F.,Ratel,D.,Cretallaz,C.,Foerster,M.,Lambert,A.,Gaude,C.,etal.(2019).Long-termsheepimplantationofwimagine®,awireless64-channelselectrocorticogramrecorder.Front.Neurosci.13:847.doi:10.3389/fnins.2019.00847 CrossRefFullText|GoogleScholar Schalk,G.(2010).Canelectrocorticography(ECOG)supportrobustandpowerfulbrain-computerinterfaces?Front.Neuroeng.3:9.doi:10.3389/fneng.2010.00009 PubMedAbstract|CrossRefFullText|GoogleScholar Schaworonkow,N.,Triesch,J.,Ziemann,U.,andZrenner,C.(2019).EEG-triggeredtmsrevealsstrongerbrainstate-dependentmodulationofmotorevokedpotentialsatweakerstimulationintensities.BrainStimulat.12,110–118.doi:10.1016/j.brs.2018.09.009 PubMedAbstract|CrossRefFullText|GoogleScholar Schicktanz,S.,Amelung,T.,andRieger,J.W.(2015).Qualitativeassessmentofpatients'attitudesandexpectationstowardBCIsandimplicationsforfuturetechnologydevelopment.Front.Syst.Neurosci.9:64.doi:10.3389/fnsys.2015.00064 PubMedAbstract|CrossRefFullText|GoogleScholar Scholkmann,F.,Kleiser,S.,Metz,A.J.,Zimmermann,R.,Pavia,J.M.,Wolf,U.,etal.(2014).Areviewoncontinuouswavefunctionalnear-infraredspectroscopyandimaginginstrumentationandmethodology.Neuroimage85,6–27.doi:10.1016/j.neuroimage.2013.05.004 PubMedAbstract|CrossRefFullText|GoogleScholar Schreuder,M.,Blankertz,B.,andTangermann,M.(2010).Anewauditorymulti-classbrain-computerinterfaceparadigm:spatialhearingasaninformativecue.PLoSONE5:e9813.doi:10.1371/journal.pone.0009813 PubMedAbstract|CrossRefFullText|GoogleScholar Schwartz,A.B.,Cui,X.T.,Weber,D.J.,andMoran,D.W.(2006).Brain-controlledinterfaces:movementrestorationwithneuralprosthetics.Neuron52,205–220.doi:10.1016/j.neuron.2006.09.019 PubMedAbstract|CrossRefFullText|GoogleScholar Sekhavat,Y.A.(2020).Battleofminds:anewinteractionapproachinBCIgamesthroughcompetitivereinforcement.MultimediaToolsAppl.79,3449–3464.doi:10.1007/s11042-019-07963-w CrossRefFullText|GoogleScholar Seo,D.,Neely,R.M.,Shen,K.,Singhal,U.,Alon,E.,Rabaey,J.M.,etal.(2016).Wirelessrecordingintheperipheralnervoussystemwithultrasonicneuraldust.Neuron91,529–539.doi:10.1016/j.neuron.2016.06.034 PubMedAbstract|CrossRefFullText|GoogleScholar Shahriari,Y.,Vaughan,T.M.,McCane,L.,Allison,B.Z.,Wolpaw,J.R.,andKrusienski,D.J.(2019).AnexplorationofBCIperformancevariationsinpeoplewithamyotrophiclateralsclerosisusinglongitudinalEEGdata.J.NeuralEng.16:056031.doi:10.1088/1741-2552/ab22ea PubMedAbstract|CrossRefFullText|GoogleScholar Shibata,K.,Watanabe,T.,Sasaki,Y.,andKawato,M.(2011).PerceptuallearninginceptedbydecodedfMRIneurofeedbackwithoutstimuluspresentation.Science334,1413–1415.doi:10.1126/science.1212003 PubMedAbstract|CrossRefFullText|GoogleScholar Shih,J.J.,Krusienski,D.J.,andWolpaw,J.R.(2012).“Brain-computerinterfacesinmedicine,”inMayoClinicProceedings(Elsevier),268–279.doi:10.1016/j.mayocp.2011.12.008 CrossRefFullText|GoogleScholar Singh,A.K.,Wang,Y.-K.,King,J.-T.,andLin,C.-T.(2020).ExtendedinteractionwithaBCIvideogamechangesresting-statebrainactivity.IEEETrans.Cogn.Dev.Syst.12,809–823.doi:10.1109/TCDS.2020.2985102 CrossRefFullText|GoogleScholar Sitaram,R.,Ros,T.,Stoeckel,L.,Haller,S.,Scharnowski,F.,Lewis-Peacock,J.,etal.(2017).Closed-loopbraintraining:thescienceofneurofeedback.Nat.Rev.Neurosci.18,86–100.doi:10.1038/nrn.2016.164 PubMedAbstract|CrossRefFullText|GoogleScholar Sitaram,R.,Weiskopf,N.,Caria,A.,Veit,R.,Erb,M.,andBirbaumer,N.(2007).fMRIbrain-computerinterfaces.IEEESignalProcess.Mag.25,95–106.doi:10.1109/MSP.2008.4408446 CrossRefFullText|GoogleScholar Škola,F.,Tinková,S.,andLiarokapis,F.(2019).Progressivetrainingformotorimagerybrain-computerinterfacesusinggamificationandvirtualrealityembodiment.Front.Hum.Neurosci.13:329.doi:10.3389/fnhum.2019.00329 PubMedAbstract|CrossRefFullText|GoogleScholar Song,M.,andKim,J.(2019).Aparadigmtoenhancemotorimageryusingrubberhandillusioninducedbyvisuo-tactilestimulus.IEEETrans.NeuralSyst.Rehabil.Eng.27,477–486.doi:10.1109/TNSRE.2019.2895029 PubMedAbstract|CrossRefFullText|GoogleScholar Song,T.,Zheng,W.,Song,P.,andCui,Z.(2018).EEGemotionrecognitionusingdynamicalgraphconvolutionalneuralnetworks.IEEETrans.Affect.Comput.11,532–541.doi:10.1109/TAFFC.2018.2817622 CrossRefFullText|GoogleScholar Spataro,R.,Chella,A.,Allison,B.,Giardina,M.,Sorbello,R.,Tramonte,S.,etal.(2017).Reachingandgraspingaglassofwaterbylocked-inalspatientsthroughaBCI-controlledhumanoidrobot.Front.Hum.Neurosci.11:68.doi:10.3389/fnhum.2017.00068 PubMedAbstract|CrossRefFullText|GoogleScholar Sporns,O.(2013).Structureandfunctionofcomplexbrainnetworks.Dialog.Clin.Neurosci.15:247.doi:10.31887/DCNS.2013.15.3/osporns PubMedAbstract|CrossRefFullText|GoogleScholar Steinert,S.,andFriedrich,O.(2020).Wiredemotions:ethicalissuesofaffectivebrain-computerinterfaces.Sci.Eng.Ethics26,351–367.doi:10.1007/s11948-019-00087-2 PubMedAbstract|CrossRefFullText|GoogleScholar Sternson,S.M.,andRoth,B.L.(2014).Chemogenetictoolstointerrogatebrainfunctions.Annu.Rev.Neurosci.37,387–407.doi:10.1146/annurev-neuro-071013-014048 PubMedAbstract|CrossRefFullText|GoogleScholar Stocco,A.,Prat,C.S.,Losey,D.M.,Cronin,J.A.,Wu,J.,Abernethy,J.A.,etal.(2015).Playing20questionswiththemind:collaborativeproblemsolvingbyhumansusingabrain-to-braininterface.PLoSONE10:e0137303.doi:10.1371/journal.pone.0137303 PubMedAbstract|CrossRefFullText|GoogleScholar Stoica,A.(2012).“Multimind:multi-brainsignalfusiontoexceedthepowerofasinglebrain,”in2012ThirdInternationalConferenceonEmergingSecurityTechnologies(Lisbon:IEEE),94–98.doi:10.1109/EST.2012.47 CrossRefFullText|GoogleScholar Summerer,L.,Izzo,D.,andRossini,L.(2009).Brain-machineinterfacesforspaceapplications-research,technologicaldevelopment,andopportunities.Int.Rev.Neurobiol.86,213–223.doi:10.1016/S0074-7742(09)86016-9 PubMedAbstract|CrossRefFullText|GoogleScholar Taylor,D.M.,Tillery,S.I.H.,andSchwartz,A.B.(2002).Directcorticalcontrolof3dneuroprostheticdevices.Science296,1829–1832.doi:10.1126/science.1070291 PubMedAbstract|CrossRefFullText|GoogleScholar Tidoni,E.,Abu-Alqumsan,M.,Leonardis,D.,Kapeller,C.,Fusco,G.,Guger,C.,etal.(2016).Localandremotecooperationwithvirtualandroboticagents:ap300BCIstudyinhealthyandpeoplelivingwithspinalcordinjury.IEEETrans.NeuralSyst.Rehabil.Eng.25,1622–1632.doi:10.1109/TNSRE.2016.2626391 PubMedAbstract|CrossRefFullText|GoogleScholar Tonin,L.,Bauer,F.C.,andMillán,J.d.R.(2019).Theroleofthecontrolframeworkforcontinuousteleoperationofabrain-machineinterface-drivenmobilerobot.IEEETrans.Robot.36,78–91.doi:10.1109/TRO.2019.2943072 CrossRefFullText|GoogleScholar Tonin,L.,andMillán,J.d.R.(2020).Noninvasivebrain-machineinterfacesforroboticdevices.Annu.Rev.ControlRobot.Auton.Syst.4.doi:10.1146/annurev-control-012720-093904 CrossRefFullText|GoogleScholar Toriyama,H.,Ushiba,J.,andUshiyama,J.(2018).Subjectivevividnessofkinestheticmotorimageryisassociatedwiththesimilarityinmagnitudeofsensorimotorevent-relateddesynchronizationbetweenmotorexecutionandmotorimagery.Front.Hum.Neurosci.12:295.doi:10.3389/fnhum.2018.00295 PubMedAbstract|CrossRefFullText|GoogleScholar Tremmel,C.,Herff,C.,Sato,T.,Rechowicz,K.,Yamani,Y.,andKrusienski,D.J.(2019).EstimatingcognitiveworkloadinaninteractivevirtualrealityenvironmentusingEEG.Front.Hum.Neurosci.13:401.doi:10.3389/fnhum.2019.00401 PubMedAbstract|CrossRefFullText|GoogleScholar Vaadia,E.,andBirbaumer,N.(2009).Grandchallengesofbraincomputerinterfacesintheyearstocome.Front.Neurosci.3:15.doi:10.3389/neuro.01.015.2009 PubMedAbstract|CrossRefFullText|GoogleScholar vanVliet,M.,Robben,A.,Chumerin,N.,Manyakov,N.V.,Combaz,A.,andVanHulle,M.M.(2012).“Designingabrain-computerinterfacecontrolledvideo-gameusingconsumergradeEEGhardware,”in2012ISSNIPBiosignalsandBioroboticsConference:BiosignalsandRoboticsforBetterandSaferLiving(BRC)(Manaus:IEEE),1–6.doi:10.1109/BRC.2012.6222186 CrossRefFullText|GoogleScholar Vansteensel,M.J.,Pels,E.G.,Bleichner,M.G.,Branco,M.P.,Denison,T.,Freudenburg,Z.V.,etal.(2016).Fullyimplantedbrain-computerinterfaceinalocked-inpatientwithals.N.Engl.J.Med.375,2060–2066.doi:10.1056/NEJMoa1608085 PubMedAbstract|CrossRefFullText|GoogleScholar Vasilyev,A.,Liburkina,S.,Yakovlev,L.,Perepelkina,O.,andKaplan,A.(2017).Assessingmotorimageryinbrain-computerinterfacetraining:psychologicalandneurophysiologicalcorrelates.Neuropsychologia97,56–65.doi:10.1016/j.neuropsychologia.2017.02.005 PubMedAbstract|CrossRefFullText|GoogleScholar Vidal,J.J.(1973).Towarddirectbrain-computercommunication.Annu.Rev.Biophys.Bioeng.2,157–180.doi:10.1146/annurev.bb.02.060173.001105 CrossRefFullText|GoogleScholar Vidaurre,C.,andBlankertz,B.(2010).TowardsacureforBCIilliteracy.BrainTopogr.23,194–198.doi:10.1007/s10548-009-0121-6 PubMedAbstract|CrossRefFullText|GoogleScholar Vourvopoulos,A.,Pardo,O.M.,Lefebvre,S.,Neureither,M.,Saldana,D.,Jahng,E.,etal.(2019).Effectsofabrain-computerinterfacewithvirtualreality(VR)neurofeedback:apilotstudyinchronicstrokepatients.Front.Hum.Neurosci.13:210.doi:10.3389/fnhum.2019.00210 PubMedAbstract|CrossRefFullText|GoogleScholar Vyas,S.,Even-Chen,N.,Stavisky,S.D.,Ryu,S.I.,Nuyujukian,P.,andShenoy,K.V.(2018).Neuralpopulationdynamicsunderlyingmotorlearningtransfer.Neuron97,1177–1186.doi:10.1016/j.neuron.2018.01.040 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,H.,Chang,W.,andZhang,C.(2016a).Functionalbrainnetworkandmultichannelanalysisforthep300-basedbraincomputerinterfacesystemoflyingdetection.ExpertSyst.Appl.53,117–128.doi:10.1016/j.eswa.2016.01.024 CrossRefFullText|GoogleScholar Wang,H.,McIntosh,A.R.,Kovacevic,N.,Karachalios,M.,andProtzner,A.B.(2016b).Age-relatedmultiscalechangesinbrainsignalvariabilityinpre-taskversuspost-taskresting-stateEEG.J.Cogn.Neurosci.28,971–984.doi:10.1162/jocn_a_00947 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,W.,Collinger,J.L.,Perez,M.A.,Tyler-Kabara,E.C.,Cohen,L.G.,Birbaumer,N.,etal.(2010).Neuralinterfacetechnologyforrehabilitation:exploitingandpromotingneuroplasticity.Phys.Med.Rehabil.Clin.21,157–178.doi:10.1016/j.pmr.2009.07.003 PubMedAbstract|CrossRefFullText|GoogleScholar Wardman,D.L.,Gandevia,S.C.,andColebatch,J.G.(2014).Cerebral,subcortical,andcerebellaractivationevokedbyselectivestimulationofmuscleandcutaneousafferents:anfMRIstudy.Physiol.Rep.2:e00270.doi:10.1002/phy2.270 PubMedAbstract|CrossRefFullText|GoogleScholar Waytowich,N.R.,Lawhern,V.J.,Bohannon,A.W.,Ball,K.R.,andLance,B.J.(2016).Spectraltransferlearningusinginformationgeometryforauser-independentbrain-computerinterface.Front.Neurosci.10:430.doi:10.3389/fnins.2016.00430 PubMedAbstract|CrossRefFullText|GoogleScholar Wei,C.-S.,Wang,Y.-T.,Lin,C.-T.,andJung,T.-P.(2018).Towarddrowsinessdetectionusingnon-hair-bearingEEG-basedbrain-computerinterfaces.IEEETrans.NeuralSyst.Rehabil.Eng.26,400–406.doi:10.1109/TNSRE.2018.2790359 PubMedAbstract|CrossRefFullText|GoogleScholar Wronkiewicz,M.,Larson,E.,andLee,A.K.(2015).Leveraginganatomicalinformationtoimprovetransferlearninginbrain-computerinterfaces.J.NeuralEng.12:046027.doi:10.1088/1741-2560/12/4/046027 PubMedAbstract|CrossRefFullText|GoogleScholar Wu,D.,King,J.-T.,Chuang,C.-H.,Lin,C.-T.,andJung,T.-P.(2017a).SpatialfilteringforEEG-basedregressionproblemsinbrain-computerinterface(BCI).IEEETrans.FuzzySyst.26,771–781.doi:10.1109/TFUZZ.2017.2688423 CrossRefFullText|GoogleScholar Wu,D.,Lance,B.J.,Lawhern,V.J.,Gordon,S.,Jung,T.-P.,andLin,C.-T.(2017b).EEG-baseduserreactiontimeestimationusingriemanniangeometryfeatures.IEEETrans.NeuralSyst.Rehabil.Eng.25,2157–2168.doi:10.1109/TNSRE.2017.2699784 PubMedAbstract|CrossRefFullText|GoogleScholar Wu,D.,Lawhern,V.J.,Hairston,W.D.,andLance,B.J.(2016).SwitchingEEGheadsetsmadeeasy:reducingofflinecalibrationeffortusingactiveweightedadaptationregularization.IEEETrans.NeuralSyst.Rehabil.Eng.24,1125–1137.doi:10.1109/TNSRE.2016.2544108 PubMedAbstract|CrossRefFullText|GoogleScholar Wu,D.,Xu,Y.,andLu,B.(2020).TransferlearningforEEG-basedbrain-computerinterfaces:areviewofprogressmadesince2016.IEEETrans.Cogn.Dev.Syst.doi:10.1109/TCDS.2020.3007453 CrossRefFullText|GoogleScholar Yang,W.,Miller,J.K.,Carrillo-Reid,L.,Pnevmatikakis,E.,Paninski,L.,Yuste,R.,etal.(2016).Simultaneousmulti-planeimagingofneuralcircuits.Neuron89,269–284.doi:10.1016/j.neuron.2015.12.012 PubMedAbstract|CrossRefFullText|GoogleScholar Yin,E.,Zeyl,T.,Saab,R.,Chau,T.,Hu,D.,andZhou,Z.(2015).Ahybridbrain-computerinterfacebasedonthefusionofp300andSSVEPscores.IEEETrans.NeuralSyst.Rehabil.Eng.23,693–701.doi:10.1109/TNSRE.2015.2403270 PubMedAbstract|CrossRefFullText|GoogleScholar Yin,M.,Borton,D.A.,Komar,J.,Agha,N.,Lu,Y.,Li,H.,etal.(2014).Wirelessneurosensorforfull-spectrumelectrophysiologyrecordingsduringfreebehavior.Neuron84,1170–1182.doi:10.1016/j.neuron.2014.11.010 PubMedAbstract|CrossRefFullText|GoogleScholar Yu,Y.,Liu,Y.,Jiang,J.,Yin,E.,Zhou,Z.,andHu,D.(2018).Anasynchronouscontrolparadigmbasedonsequentialmotorimageryanditsapplicationinwheelchairnavigation.IEEETrans.NeuralSyst.Rehabil.Eng.26,2367–2375.doi:10.1109/TNSRE.2018.2881215 PubMedAbstract|CrossRefFullText|GoogleScholar Yuan,W.,andLi,Z.(2018).Brainteleoperationcontrolofanonholonomicmobilerobotusingquadrupolepotentialfunction.IEEETrans.Cogn.Dev.Syst.11,527–538.doi:10.1109/TCDS.2018.2869903 CrossRefFullText|GoogleScholar Zander,T.O.,Kothe,C.,Welke,S.,andRötting,M.(2009).“Utilizingsecondaryinputfrompassivebrain-computerinterfacesforenhancinghuman-machineinteraction,”inInternationalConferenceonFoundationsofAugmentedCognition(LasVegas,NV:Springer),759–771.doi:10.1007/978-3-642-02812-0_86 CrossRefFullText|GoogleScholar Zhang,R.,Xu,P.,Chen,R.,Li,F.,Guo,L.,Li,P.,etal.(2015).Predictinginter-sessionperformanceofSMR-basedbrain-computerinterfaceusingthespectralentropyofresting-stateEEG.BrainTopogr.28,680–690.doi:10.1007/s10548-015-0429-3 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,W.,andWu,D.(2020).Manifoldembeddedknowledgetransferforbrain-computerinterfaces.IEEETrans.NeuralSyst.Rehabil.Eng.28,1117–1127.doi:10.1109/TNSRE.2020.2985996 PubMedAbstract|CrossRefFullText|GoogleScholar Zhao,X.,Chu,Y.,Han,J.,andZhang,Z.(2016).SSVEP-basedbrain-computerinterfacecontrolledfunctionalelectricalstimulationsystemforupperextremityrehabilitation.IEEETrans.Syst.ManCybernet.Syst.46,947–956.doi:10.1109/TSMC.2016.2523762 CrossRefFullText|GoogleScholar Zuo,C.,Jin,J.,Yin,E.,Saab,R.,Miao,Y.,Wang,X.,etal.(2020).Novelhybridbrain-computerinterfacesystembasedonmotorimageryandp300.Cogn.Neurodyn.14,253–265.doi:10.1007/s11571-019-09560-x PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:braincomputerinterface,hybrid/multimodalBCI,neuroimagingtechniques,neurosensors,electrical/hemodynamicbrainsignals,cognitiverehabilitation Citation:SahaS,MamunKA,AhmedK,MostafaR,NaikGR,DarvishiS,KhandokerAHandBaumertM(2021)ProgressinBrainComputerInterface:ChallengesandOpportunities.Front.Syst.Neurosci.15:578875.doi:10.3389/fnsys.2021.578875 Received:01July2020;Accepted:06January2021;Published:25February2021. Editedby:AlessandroE.P.Villa,Neuro-HeuristicResearchGroup(NHRG),Switzerland Reviewedby:DongruiWu,HuazhongUniversityofScienceandTechnology,ChinaDavidR.Painter,TheUniversityofQueensland,Australia Copyright©2021Saha,Mamun,Ahmed,Mostafa,Naik,Darvishi,KhandokerandBaumert.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:SimantoSaha,[email protected];MathiasBaumert,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?