Brain Computer Interfaces for Improving the Quality of Life of ...
文章推薦指數: 80 %
Brain computer interface (BCI) technology is now being incorporated into the treatment of many patients suffering from cognitive or physical ... Articles IoanOpris UniversityofMiami,UnitedStates ChristophGuger g.tecmedicalengineeringGmbH,Austria YuZhang LehighUniversity,UnitedStates Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction Methods HowCanBCIApplicationsImprovetheQualityofElderlyLiving? Conclusion AuthorContributions Funding ConflictofInterest Footnotes References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData MINIREVIEWarticle Front.Neurosci.,30June2020 |https://doi.org/10.3389/fnins.2020.00692 BrainComputerInterfacesforImprovingtheQualityofLifeofOlderAdultsandElderlyPatients AbdelkaderNasreddineBelkacem1*,NurainiJamil2,JasonA.Palmer3,SofiaOuhbi2andChaoChen4 1DepartmentofComputerandNetworkEngineering,CollegeofInformationTechnology,UnitedArabEmiratesUniversity,AlAin,UnitedArabEmirates 2DepartmentofComputerScienceandSoftwareEngineering,CollegeofInformationTechnology,UnitedArabEmiratesUniversity,AlAin,UnitedArabEmirates 3DepartmentofNeurologicalDiagnosisandRestoration,OsakaUniversity,Suita,Japan 4KeyLaboratoryofComplexSystemControlTheoryandApplication,TianjinUniversityofTechnology,Tianjin,China Allpeopleexperienceaging,andtherelatedphysicalandhealthchanges,includingchangesinmemoryandbrainfunction.Thesechangesmaybecomedebilitatingleadingtoanincreaseindependenceaspeoplegetolder.Manyexternalaidsandtoolshavebeendevelopedtoallowolderadultsandelderlypatientstocontinuetolivenormalandcomfortablelives.Thismini-reviewdescribessomeoftherecentstudiesoncognitivedeclineandmotorcontrolimpairmentwiththegoalofadvancingnon-invasivebraincomputerinterface(BCI)technologiestoimprovehealthandwellnessofolderadultsandelderlypatients.First,wedescribethestateoftheartincognitiveprostheticsforpsychiatricdiseases.Then,wedescribethestateoftheartofpossibleassistiveBCIapplicationsforcontrollinganexoskeleton,awheelchairandsmarthomeforelderlypeoplewithmotorcontrolimpairments.Thebasicage-relatedbrainandbodychanges,theeffectsofageoncognitiveandmotorabilities,andseveralBCIparadigmswithtypicaltasksandoutcomesarethoroughlydescribed.WealsodiscusslikelyfuturetrendsandtechnologiestoassisthealthyolderadultsandelderlypatientsusinginnovativeBCIapplicationswithminimaltechnicaloversight. Introduction Aginghasitseffectsonhumanbodyandbrain,especiallyinthemolecules,cells,vasculature,grossmorphology,andcognition.Thisbiologicalagingbecomesdisabilityanddependenceastimegoesby.Manyresearchershavebeensuggestingtransdisciplinaryapproachestoaddresstheproblemofaginganditseffectsonactivitiesofdailyliving.Healthyolderadultsandelderlypatientsmayhavedifficultiesincommunicating,concentrating,memorizing,talking,walking,ormaintainingbalance.Thesedeficitsmayleadtoinabilitytocommunicatewiththeirfamily,climbstairs,memorizenewinformation,ordrivesafely.Theagingprocessdoesnotaffectpeopleuniformly,butmostelderlyneedtouseassistivetechnologiestobetterperformdaily-lifeactivitiesifonlytheneedforhandrailsorcanestogetupsteps.Unfortunately,theydonotreceivethesupporttheyneed,becausethecostofcaringforthemrunsintothebillionsofdollars.Braincomputerinterface(BCI)technologyisnowbeingincorporatedintothetreatmentofmanypatientssufferingfromcognitiveorphysicalimpairments.Thistechnologyoffersthepromiseofgreatlyenhancingthesepatients’qualityoflifebyconsiderablyimprovingtheirpersonalautonomyandmobility.BCIcanbeusedasanassistive,adaptive,andrehabilitativetechnologytomonitorthebrainactivityandtranslatespecificsignalfeaturesthatreflecttheelderly’sintentintocommandsthatoperateanydevice.BCIsystemscouldbeusefulforelderlypeopleinmanywayssuchas:(1)trainingtheirmotor/cognitiveabilitiesforpreventingtheagingeffects,(2)controllinghomeappliances,(3)communicatingwithothersduringdailyactivities,and(4)controllinganexoskeletontoenhancethestrengthofthebody’sjoints.Thepurposeofthismini-reviewistosurveysomeexampleswhereBCIscanbefeasibleandusefulmedicalandnon-medicalapplicationsforhealthyolderadultsandelderlypatientsusingnon-invasivemeasurementssuchaselectroencephalogram(EEG)toimprovetheirqualityoflife. Thetopicisintroducedfurtherinthefollowingsubsections.Insubsection“Age-relatedChanges,”age-relatedbrainandbodychangesarereviewed.Insubsection“Braincomputerinterfacetechnology,”theprincipleandparadigmofseveraltypesofBCIarereviewed.Insubsection“Agingandcognitiveabilities,”theimpactofagingoncognitiveabilitiesisdiscussed.Finally,commonhealthconditionsassociatedwithagingsuchasmotorcontrolimpairmentsaregiveninsubsection“Agingandmotorcontrolimpairments.” Age-RelatedChanges Humandevelopmentencompassesmultiplephases,includingbaby,toddler,teenager,adult,andoldage.Throughouttheagingprocess,someofthemostprofoundchangesinvolvebraincognition.Cognitionisanessentialaspectofhumaninformationprocessing.Accordingtosocialdevelopmentperspectives,aperson’sbrainwillbegintodeclinegraduallyastheindividualreachesmiddleadulthoodandwillcontinuetodeclinethroughouttheagingprocess(Peters,2006).Recallingmemoriesandlearningnewskillsbecomemoredifficultandcantakealongertime.Bothdeclarativememoryandproceduralmemorycanbeaffected.Liferoutinesstoredindeclarativememorywillslowlychangeandbeforgottenduetoaging.ThiscanbemostpronouncedinAlzheimer’sdisease.Deteriorationinproceduralmemorycanmakeitverydifficulttolearnnewskillssuchasanewlanguage(Quametal.,2018).Lifestylechangesasaresultoftheagingprocesswilloftenaffectbothelderlypersonsandtheirfamilymembers.Healthyelderlypeopleoftenreportadeclineinmemorythatcausesthemtoexperiencedepressionandanxiety(Hertzogetal.,2000).Aspeopleage,theymayalsohavedifficultypayingattentiontomultipletasks.Forexample,atatrafficlight,theprocessingoftheinformationaboutthelightchangingcandistractfromprocessingofothersurroundings,andthuscanleadtoroadaccidents. Additionally,thebrainparenchymawillshrinkandchangealongwiththeadjustmentincognitiveability.Brainshrinkageappearsespeciallysignificantinmedialtemporallobestructuresandtertiaryassociationcortices(i.e.,regionsthatareparticularlyimportantforsupportofage-sensitivecognitivefunctions).Incontrast,sensorycorticalregions(i.e.,thevisualcortex)evidencelesserage-relatedchange(Perssonetal.,2016).Thisshrinkingwillaffectmemoryandmentalsharpness.Whenapersongetsolder,thebrainshrinksnaturally.Changesinthebrainstructurecanreducethecommunicationbetweenneuronsinsomepartsofthebrain.Bloodflowtothebrainwillalsodecrease.Changesmayalsotakeplaceintheneurotransmittersystem,whichcancausedepressionandothermooddisorders(Nutt,2008). Ashumansage,theriskfactorsforbraindiseasessuchasAlzheimer’s,dementia,heartattack,depression,andobesityincrease.Allofthesediseasescancontributetodamagetobrainstructureanddecreasedbrainfunction(UylingsandDeBrabander,2002),leadingtoreducedcognitiveandmemoryfunction.Theseprogressionscaninfluencethecapacitytoencodenewdataintomemoryandretrievedataalreadyinmemory.Healthylifestyle,includingphysical,andmentalexercise,mightbeoneofthewaystopreventchanges. Agingaffectsmorethanjustthebrain.Musclescommonlystarttolosethefunctionandbecomeslowandweak(sarcopenia;Ryalletal.,2008).Strengthgraduallydecreases(frailty)andcontributestowardthelimitationofphysicalactivitysuchasrunning,hikingandgeneralsocialwellbeing(Friedetal.,2001).Furthermore,neurodegenerativediseasesasParkinson’sbecomeariskforpeopleoverage60.Themotorsystemaffectedbythedegenerativeimpairmentofthecentralnervoussystemcancauselimbtremor,posturalinstabilityandstiffness(Willis,2013).PhysicalconditioningandtheuseofadvancedtechnologiessuchasBCItoassistmobilityandperformanceoffinemotorcontrolcangreatlyimprovethequalityoflifefortheelderly. BrainComputerInterfaceTechnology Braincomputerinterfaceisoneofthemostpromisingandincreasinglypopulartechnologiesforassistingandimprovingcommunication/controlformotorparalysis(e.g.,paraplegiaorquadriplegia)duetostroke,spinalcordinjury,cerebralpalsy,andamyotrophiclateralsclerosis(ALS).Eye-trackingtechnologyalsoallowsparalyzedpeopletocontrolexternaldevicesbutithasmanydrawbacksduetothewayofmeasuringtheeyemovementsviacamerasorusingattachedelectrodeonfacesuchaselectrooculography(EOG)signals.BCIessentiallyinvolvestranslatinghumanbrainactivityintoexternalactionbysendingneuralcommandstoexternaldevices(Belkacemetal.,2015a,2018;Gaoetal.,2017;Chenetal.,2020;Shaoetal.,2020).Although,themostcommonuseofBCIistohelpdisabledpeoplewithdisordersinthemotorsystem,itmightbeveryusefultoolforimprovingthequalityoflifeofhealthypeople,particularlytheelderly.Assistive,adaptive,andrehabilitativeBCIapplicationsforolderadultsandelderlypatientsshouldbedevelopedtoassistwiththeirdomesticchores,enhancerelationshipswiththeirfamiliesandimprovetheircognitiveandmotorabilities.BCItechnologyhasclinicalandnon-clinicalapplicationsinmanyareas,includingmedicine,entertainment,education,andpsychologytosolvemanyhealthissuessuchascognitivedeficits,slownessinprocessingspeed,impairedmemoryandmovementcapabilitydeclineamongelderlypeople.Theseissuescanaffectthequalityofelderlylifeandmayhaveadverseeffectsonmentalhealth.Tohelpolderpeoplemaintainahealthy,goodqualityoflifeandsenseofwellbeing,manyBCIapplicationshavebeendevelopedinthepastdecade. TherearetwotypesofBCIbasedontheelectrodesusedformeasuringthebrainactivity:non-invasiveBCIwheretheelectrodesareplacedonthescalp(e.g.,EEGbasedBCI),andinvasiveBraincomputerinterfacewheretheelectrodesaredirectlyattachedonhumanbrain[e.g.,BCIbasedonelectrocorticography(ECoG),orintracranialelectroencephalography(iEEG)]. BraincomputerinterfacesusingEEGtechnologyhavebeenwidelyusedtoestablishportablesynchronousandasynchronouscontrolandcommunication.Non-invasiveEEG-basedBCIscanbeclassifiedas“evoked”or“spontaneous.”AnevokedBCIexploitsastrongcharacteristicoftheEEG,theso-calledevokedpotential,whichreflectstheimmediateautomaticresponsesofthebraintosomeexternalstimuli.SpontaneousBCIsarebasedontheanalysisofEEGphenomenaassociatedwithvariousaspectsofbrainfunctionrelatedtomentaltaskscarriedoutbytheBCIuserattheirownwill.TheseBCIshavebeendevelopedbasedonsomebrainfeaturessuchasevokedpotentials[e.g.,P300andsteady-statevisualevokedpotential(SSVEP)]orbasedonslowpotentialshiftsandvariationsofrhythmicactivity[e.g.,motorimagery(MI)]. TobuildaBCIsystem,fiveorsixcomponentsaregenerallyneeded:signalacquisitionduringaspecificexperimentalparadigm,preprocessing,featureextraction(e.g.,P300amplitude,SSVEP,oralpha/betabands),classification(detection),translationoftheclassificationresulttocommands(BCIapplications),anduserfeedback.Forquickandaccurateprocessingandanalysisofbraindata,researchershavedevelopedmanyopensourcesoftwarepackagesandtoolboxessuchasBCI20001,EEGLab2,FieldTrip3,andBrainstorm4.Thesesoftwarepackagesarebasedonadvancedsignalandimageprocessingmethodsandartificialintelligenceprogramsforperformingsensororsourcelevelanalyses(Belkacemetal.,2015b,2020;Dongetal.,2017). However,manycriticalissuesarefacedinthedevelopmentofaready-to-useBCIproduct.Thesecriticalissuesincludelowclassificationaccuracy,smallnumberofdegreesoffreedom,andlongtrainingtimetolearnhowtoperfectlyoperateaBCI.Therefore,researchershavebeentryingtoimprovetheperformanceoftheexistingBCIsbydevelopingahybridBCI(hBCI)thatcombinesatleasttwoBCImodalities(e.g.,P300withSSVEPorP300withMI).ThehBCIcombinesdifferentapproachestoutilizetheadvantagesofmultipleBCImodalities.Itcanbealsoacombinationofbrainactivitywithnon-brainactivity,andvariousotherpsychologicalsignalswereshowntobeapromisingoptionofhBCIdevelopment(Schereretal.,2007;Choietal.,2016).Thus,theinputsignalscanconsistofthecombinationoftwobraincharacteristicsusingEEGsignals,orEEGwitheyemovements(EOG),muscleactivity(electromyography,EMG),orwithheartsignal(ECGorEKG).However,P300-basedBCIs(e.g.,avisual/auditory/tactileP300Speller)arethemostpopularBCIsystemsduetotheirhighclassificationaccuracyandspeed,orinformationtransferrate(ITR). Inaddition,aclosed-loopBCIsystemusingvisualandproprioceptivefeedbackwithreal-timemodulationandcommunicationcanbeusednotonlyforinteractingwiththeexternalenvironment,butalsoasabiofeedbackplatformtoenhancethecognitiveabilitiesofelderlypatientsandprovidebettertherapeuticeffects.Thisclosed-loopinteractionbetweentheparticipant’sbrainresponsesandthestimuliisthoughttoinducecerebralplasticityandtherebyfacilitaterehabilitation. OneofthegreatestchallengesinBCItechnologyisthedevelopmentoflessinvasiveornon-invasivetechnologiesforparalyzedpatients.Usingnon-invasivedevicescangreatlyreducetheboththetotalcostofsurgicaloperationandthephysicalharmtothepatient.However,non-invasivemethodscanleadtoweakersignalsandalowsignal-to-noiseratio(SNR)withlesssourceprecisionandlowerspatialresolution.ThesedrawbackscanbepartiallyovercomewithadvancedmethodssuchasdeeplearningtodecodeandextractmorerelevantsourceinformationfromtheEEGsignal(NagelandSpüler,2019). Electroencephalogram-basedBCItechnologyhasmanyimportantapplicationsinthemedicalandpsychologyfieldsnotonlyformotorcontrolimpairments.Onepromisingapplicationforelderlypatientsisthedevelopmentofautomaticsystemstodetecttheinfluencesonthebrainsignalrelatedthesmokingandalcoholabuseusingresting-stateEEG(Mumtazetal.,2017;Suetal.,2017).BCIhasalsobeenfoundtobehelpfulinidentifyingdeficitsandimprovingsocialskillsinpatientswithautismthroughtheuseofBCI-assistedsocialgames(Amaraletal.,2018).Otherresearchhasfocusedonsystemstotestmemorycapacityandcognitivelevel(Burkeetal.,2015;Buchetal.,2018). AgingandCognitiveAbilities Oldageisakeyriskfactorformanymajormedicalhealthproblems,notleastneurodegenerativediseaseanddementia.Infact,anumberofneurologicalandpsychiatricdiseases(e.g.,schizophrenia,depression,epilepsy,HIVinfection,andtraumaticbraininjury)havebeenproposedtoresultinprematureoracceleratedaging,basedonclinicalobservationsandbehavioralorbiologicalresearch(Coleetal.,2019).Invasivetechniques(e.g.,deepbrainstimulation)andnon-invasivemeasurements[e.g.,EEGandfunctionalmagneticresonanceimaging(fMRI)]havebeenusedtotreatand/orunderstandthepathophysiologyofschizophrenia,depression,andepilepsyusingspecifiedregionsofinterest(ROIs),quantitativeEEG(brainmapping),orEEGrhythms(e.g.,delta,theta,alpha,beta,andgammabands).However,oneofthemostcommonaging-relatedhealthissuesaftercardiovascularconditionsisdementia,whichmaybecausedbydiseasessuchasAlzheimer’s,Lewybodydisease,vasculardementiaandfrontotemporaldementia.Patientswithdementiamaylosetheabilitytothinkclearly,learnandremember.WefocusinthefollowingparagraphsonmemoryimpairmentsandhowBCItechnologycanprevent,reduce,orsolvethem. Memoryisstoredinthehumanbraintokeepinformationandpreviousexperiencesavailableforrecallwheneverneeded.Memoryhelpspeopletolearnfrompastexperiences,andassistsinacquiringnewskillsandlearningnewinformation.Fromaneurologicalandpsychologicalperspective,humanmemoryinvolvesgroupingandcommunicationbetweenneuronsinthehumanbrain.Humanmemoryisnotlocatedinonlyoneareaofthehumanbrain,butratherinvolvesthecooperationofseveralareas.Memoryandlearningarestronglyrelatedintermsharingalmostthesamebrainareas,butintermofbrainmechanismandprocessarestrictlydistinctfromoneandanother.Memoryitselfisconsecutivefromretrievingtheknowledgeandadjustwithourbehaviorbutlearningistheprocesswhentheneuronsareworkinguptogaintheknowledgeandinformation. Ingeneral,humanmemoryisdividedintoshort-termmemoryandlong-termmemory.Short-termmemory,alsoknownasworkingmemory,istemporarystoragethatcanholdasmalleramountofmemorythatcanbeaccessedimmediately.Forexample,rememberingaphonenumberthatwasjustmentioned,orasecurenumberfromthebankforthetransactioninvolvesshort-termmemory.Informationcanberetrievedafteronlyafewsecondsinourshort-termmemory.Incontrast,long-termmemorylastsoveranextendedperiodoftime,andcanstoreamuchlargeramountofinformation(Konkleetal.,2010).Workingmemorycanbetransferredtolong-termmemorythroughrehearsalandstrengthening. Humanmemorycanstarttodegradefromage20.Memorylosscanbeoneoftheworstfactorsassociatedwiththeagingprocess.Theriskofdevelopingmemory-relateddiseaseslikedementiaandAlzheimer’sproportionallyincreasewithage.Olderpeopletendtohavedifficultyrememberingorrecognizingobjectsinthesamegroupandsemanticcategory(Pansuwanetal.,2020).Forexample,differenttypesofanimal-likehamstersordogsinthesameclasscancauseconfusionandincorrectrecognition.Asthebrainages,someregionsbecomeslowerduetodecreasedbloodflow.Additionally,neurotransmittersarealsoreducedandaffecttheabilitytounderstandtheenvironmentandaccessmemory. Braincomputerinterfacetechnologycouldbeonepotentialtoolforrestoringlearningandimprovingmemory,attention,andconsciousnessforcognitivelyimpairedelderlypatients(Buchetal.,2018).Forinstance,non-invasiveBCIshavebeenbeusedforrestoringmemoryandplanningusingelectromagneticstimulationandbiofeedbackthatmodulateactivityinapatient’sbrainaspartofarehabilitationprogram.Inaddition,BCIshavebeenusedtoenhanceepisodicmemoryinhumanparticipantswhereneuraloscillationsinthethetaandalphabandswereusedtopredictthefuturesuccessofmemoryencoding.Electrophysiologicalsignalsmayalsobecausallylinkedtoaspecificbehavioralcondition,andcontingentstimuluspresentationhasthepotentialtomodulatehumanmemoryencoding(Burkeetal.,2015).Moreover,BCIcouldprovideapowerfulapproachforfutureapplicationsincognitiveprosthetics(e.g.,promisestoimprovelearningandmemoryforpatientswithcognitiveimpairment,whichneedadeepunderstandingoftheneuralmechanismsunderlyingthesecognitiveprocesses). AgingandMotorControlImpairments Motorcontrolisacomplexsystemthatincludesthebrain,muscleandlimb(Rosenbaum,2009).Cooperationbetweenphysicalandphysiologicalsystemsmakesitpossibleforthehumanbodytomove.Physicalmovementsincludewalking,running,grabbingorexercising.Physiologicalcontrolmechanismsincludecholesterollevels,bloodpressureandequilibrium.Allofthesecanbedestroyedduetoagingfactors,accidents,ordiseaseandtheytypicallydonothealnaturally. Agingtendstonaturallyreducemotorskillsandphysiologicalenergylevels.Hence,itcanreducethespeedofhumanmovementssuchaswalking(Wertetal.,2010).Theelderlycanexerciseandpracticetoimprovemuscleandmotorskills(Kleim,2011),however,excessivetrainingandpracticecanberiskyforolderpeopleandmightcontributetootherinjuryordisease.EmergingtechnologiesusingBCIcancontributetokeepinghealthyelderlyfit.ElderlypeoplewhoneedassistanceorrehabilitationcancontinuetheirordinaryliferoutinesusingaBCIsystem(seeFigure1).Inthefollowing,wenotethreepossibleEEG-basedBCIsforage-relatedmotorcontrolimpairments:controllinganexoskeleton,wheelchair,andsmarthomeappliances(includingdroneandsmartcleaningand/orassistiverobotstoperformphysicaltasksforthewell-beingoftheelderly). FIGURE1 Figure1.PossibleassistiveapplicationsofEEG-basedBCIfordecreasingdebilitatinganddependenceofelderly(e.g.,controllingawheelchair,exoskeleton“softExosuits,”drone,assistiverobot,andsmarthomeappliances). Roboticexoskeletonshavebeendevelopedtoincreasejointstrengthandtoreducetheeffectofcarryingaheavyload.Anexoskeletoncanenableasoldiertoliftaheavyobject,orassistafirefighterwhohastowearheavyequipment.Atthesametime,exoskeletonscanbeaccessoriestoassistelderlypeopleorpeoplewithmotorimpairmentsinperformingtheirdailyactivities.Therearevarioustypesofexoskeletonsforusebyelderlypeople,suchaslowerlimbExosuits(Shoreetal.,2020),ankle-footexoskeletontoassistinplantarflexionwhilewalking(Galleetal.,2017),roboticexoskeletontofacilitatethemovementofshoulderandelbow(Tangetal.,2019),andupperlimbexoskeletonforhandgraspingandmotion(Chauhanetal.,2019). Awheelchairisaverycommondeviceusedbyhealthyanddisabledelderlytomovefromoneplacetoanotherwithoutexternalaid.Theneedforawheelchaircanbecausedbylossofmusclestrength,ordiseaseslikeALS,arthritisorParkinson’s.Oftenpatientsrequireacaretakertohelpthemmoveandperformtheirdailyroutine.However,sometimesacaretakerisnotavailable.Inthiscase,someextendedfunctionsareavailableforwheelchairusebyelderlypeople.Theautomatedwheelchairisoneeasywayfortheelderlytonavigateinthehome(Brandtetal.,2004).Theelderlycanalsomovefromoneroomtoanotherroombywheelchairwithvoicecontrolincombinationwiththenavigationassistanceprovidedby“Smartwheelchairs,”whichusesensorstoidentifyandavoidobstaclesinthewheelchair’spath(Megalingametal.,2011).Finally,anintelligentwheelchairsuchasRoboChair,withaheadgesture-basedinterface,canbeusedformobilitywithlittleeffort(Grayetal.,2007). Ontheotherhand,thehomecanbeadangerousplace,especiallyforolderpeoplewholivealoneandhavehealthproblems,astheymaybepronetofallingorotheraccidents.Smarthometechnologiesarethusimportantsolutionstoenableseniorstolivemoresafelyintheirownhomes.Theuseofintelligenthomesbytheelderlyincreasestheirindependenceandimprovestheirhealth(SapciandSapci,2019).Forexample,eHomeSeniorsfocusesontheobjectiveofdetectingtheelderlywhofallinthehome(Riquelmeetal.,2019).Also,Kernetal.(2019)developedMyLittleSmartPersonalAssistantforelderlypeopletointeractwithavocalassistantthatprovidesthemedicalservices.Finally,Shangetal.(2019)designedasystemtoidentifyandobservebehaviortosupporthomecareforelderlypeoplewholivealoneinahouse. Methods Inthismini-review,theauthorsconductedaliteraturesearchofavailablesourcesdescribingissuesrelatingtoelderlywithBCI,EEG,cognitiveaging,andmotorcontrolimpairments.RecentresearchstudieswereselectedbasedonresearchtopicsfoundingloballyacknowledgeddatabasessuchasWebofScience,PubMed,Springer,IEEEXplore,andScopus.Searcheswererestrictedtorecentoriginalideaspublishedinnreputablejournalsinthepast10years.PapersthatwerenotEnglish,grayliterature,bookchapters,conferenceproceedingsandopinionspieceswerenotincluded.TheinclusioncriteriawereappliedfortheBCIapplicationsthatcanhelptheagingpeoplebyreviewingtitlesandabstractsbasedonkeywords.Weexcludedmanyresearchpapersformanyreasonssuchasredundancy,titleandabstractareunrelatedtotheresearchtopic,orifwecouldnotfindanyoccurrenceofatleastelderly(orolderadults,elderlypatients,etc.)withonekeyword(BCI,EEG,cognitiveaging,motorimpairment,exoskeleton,wheelchair,smarthomecontrol,freecommunication,disordersofconsciousness,rehabilitation,andneurofeedback,etc.).DuethelimitedavailableBCIarticlesthatusedtheelderlypeopleassubjectsorparticipants,somepotentialBCIstudydesignswereconsideredforinclusion.Thus,somestudieswereincludedwithnon-elderlyparticipantsiftheiroutcomesseemtobehelpfulandusefulforhealthierelderlyliving.Theselectedarticleswereclassifiedaccordingtotheirrelevancy(seeTable1).Theinformationprovidedintheselectedrecentstudies(e.g.,ageoftheparticipants,invasiveornon-invasivemeasurements,experimentalparadigm,thepurposeoftheoriginalstudy,theimpactofthepaper’soutcomesonelderlylivingsuchasengineeringapplications,andscientificfindings)werecarefullyevaluatedanddiscussedinthefollowingsection. TABLE1 Table1.SomeinterestingexamplesofrelatedworkforBCIapplicationsforelderlypeople. HowCanBCIApplicationsImprovetheQualityofElderlyLiving? Withtherapidlyincreasingpopulationofelderlypeople(Coimbraetal.,2010),therehasbeenmuchinterestinresearchinvolvingtheuseofBCIstoimprove,repairorenhancelostcognitiveormotorfunction.Table1showsselectedstudiesthatrepresentdifferentusesofBCItoimprovethequalityoflifeoftheelderly,includingimprovedcognitivefunction,especiallymemory,controlofsmarthomes,andlimbsupportformovement.Wepresenttheparticipants,theBCIparadigmsthatwereimplementedinthepapers,thetargetortaskthattheparticipantswereinstructedtocomplete,andtheresultfromtheexperiments. Toaddressaging-relatedcognitiveimpairments,Leeetal.(2013),andGomez-Pilaretal.(2016)studythecognitivecapabilitiesofelderlypeoplerelatedtomemory.BothofthestudiesshowthatBCIandcognitivetestscanimprovememoryabilityamongtheelderly.IntheLeeetal.(2013)experiment,participantshavetoplayacardmatchinggametotesttheirmemoryability.Atthesametime,theyneedtofocusongivingacommandtocloseandopenthecard.IntheGomez-Pilaretal.(2016)experiment,participantshavefivetasks:(i)learningtoimaginethehandmovement,(ii)movingthecursoronthescreen,(iii)movingthecursortowardthecorrecttarget,(iv)avoidinganobstacleforpersonwalkinginthescreen,and(v)identifyingtheimagefromapreviouslydisplayedgroupthatmatchesanewlydisplayedimage. Furthermore,deliriumandconfusionalstatesarecommonmentaldisorders,whichcanleadtoadisorderofconsciousness(DOC)amongolderadultsinvolvinglackofenvironmentalawareness.EEG-basedBCIparadigmshavemanyadvantagesinthisproblemdomain.Xiaoetal.(2018)developedaBCIsystemtoassistthevisualfixationofelderlypatientswithDOCtoevaluatethevisualpartofthecomarecoveryscale-revised(CRS-R).Panetal.(2018)usedBCItodetecttheemotionforDOCsincetheyareunabletoaffordthemotorrespondedtodisplaythefeelings.Someoftheelderlyfacedifficultyincommunicatingtheirneeds.Hence,thefreecommunicationcanbeatoolforthemtosupporttheconversation(Rentonetal.,2019).Asageisthemostsignificantriskfactorinstroke,rehabilitationcanhelpforrestoringtheabilityforthemotorfunctions.Predictionandmonitoringofspecificbiomarkersofthemotorfunctionarebeinginvestigatedtopersonalizetherehabilitationprogram(Maneetal.,2019).Strokeisalsoassociatedwithmentalfatigue,andmemoryissues.Foongetal.(2019)studiedthecorrelationsofmentalfatigueduringtheBCIwhileperformingtheupperlimbstrokerehabilitation. Regardingaging-relatedmotorcontrolimpairments,BCI-assistedwheelchairtechnologyisoneofthepromisingdevelopmentsforrehabilitationandtheelderlywithmuscleandseveremotordisabilities.Herwegetal.(2016)haveshownwithtenhealthyelderlyparticipantstheabilitytotraintheusertocontrolthewheelchairusingEEGandthetactileevent-relatedpotential(ERP).Eachparticipantdidfivesessionswithamaximumofthreesessionsperweek.Thetrainingtaskinvolvedcontrolofavirtualwheelchairusing14commandsinvirtualenvironments.90%accuracywasachievedforthenavigationtasks.Fortheoptionalorbonustasks,theefficiencywasmorethan95%.Kaufmannetal.(2014)alsoproposedaBCIsystemusingEEGandERPtocontrolawheelchair.There,theparticipantsneededtonavigatethewheelchairtofourdifferentcheckpointsinsidethebuilding.Theprimarytargetusersarepeoplewithneurodegenerativedisease. ThewearablekneeexoskeletonhasbeenproposedandtestedbyVilla-Parraetal.(2015)withfourmainhealthysubjectsusingEEGandEMGsignals.Theprimarypurposeofthedeviceistoimproveandrehabilitatethegait,andrestorethefunctionformusculardisabilitiesrelatedtokneemotionlikestandingupandsittingdown.Eventhoughtheparticipantsintheexperimentwerenotelderly,thisequipmentcanalsobeusedforseniors,especiallythosewithmuscleproblems.Ontheotherhand,Leeetal.(2017)developedthelowerlimbexoskeletonusingtheEEGsignal,withtheintentionofofferingmorefunctionalitythanatraditionalwheelchair.Theyusedhealthyparticipantsasaproofofconceptfortheirwork,withthetargetusersbeingpeoplewithlimitedornoresidualmotorcontrol.Thisexoskeletoncanalsobeusedforelderlypeoplewithmotordifficulties.Theresultshowedallthesubjectssuccessfullyperformedthemaintaskforthethreedifferentdirections:walkfront,turnleftandturnright. StateoftheartsmarthometechnologiesforelderlypeopleusingBCIhavebeenproposedbyJafrietal.(2019)andChaietal.(2020).BothoftheexperimentsofJafriandChaiwereconductedtotestthefeasibilityofthesmarthomedesigns.Althoughtheresultofattentionlevelfortheyoungermalereachedattentionlevel74.78within26.20swhichwasquickerthanyoungerfemaleandolderpeople,theaddedvalueforthisexperimentistheelderlypeoplestillcancontrolthefunctioninasmarthomeusingseveralBCIexperimentalparadigms(Jafrietal.,2019).Oneofthesmarthomeservicesisdialingthethreeemergencynumbersspeciallydesignedforolderpeopleinhands-freemodeusingEMGandSSVEP(Chaietal.,2020). AnotherimportantunresolvedissueinvolvesthechallengesinclinicalapplicationsofBCIswitholderindividualswhohaveswallowingdisorders(e.g.,ALSpatientswithprogressivedysphagia),orspinalcordinjury[e.g.,afterspinalshockendsspasticactivitymaydevelopinthedetrusormusclerestrictingthebladdercapacitytostoreurineandresultinginincontinence(Rupp,2014)].Moreover,invasiveBCIsthatrequireimplantationofthedevicemightbeaseriousethicalissue.Therefore,non-invasiveEEG-basedBCIsandhBCIsappeartobethemostpromisingtechnologies.However,hBCIhasshownadvantagesinvariousapplicationsasitcombinesthestrengthsofdifferentBCIparadigms(e.g.,highaccuracy,minimaldailysetup,rapidresponsetimes,andmulti-functionality).hBCIcouldfurtherhelpimprovethequalityoflifeofolderadultsandelderlypatientsthroughthedevelopmentofmultifunctionalandmultidimensionalinterfaces.Auditory,visualortactileBCIsmaynotabletosatisfytherequirementsofreal-lifeactivities,andmaynotbesuitableintermsofcomfortforallelderlypeopleduetothepotentialdeficitsinhearing,vision,andsensationassociatedwithaging.Forexample,visualstimuliusingP300-basedBCI,orSSVEP-basedBCImaycauseeyefatigue(e.g.,imminentretinalfatigue)duetotheprolongedvisualfixation,ormayevenharmelderlypeoplewhocannotcontroltheirgaze(unattainablevolitionalmovements),orhaveweakvision.Thesestimulimayalsoinduceepilepticseizuresinsomepatients.Inaddition,agingaffectstheintegrationoftemporalrateofauditoryflutter(amplitudemodulation)presentedwithvisualflicker(Brooksetal.,2015).Theseage-relatedchangesinauditoryandvisualinteractionsintemporalrateperceptionmayaffectP300-basedBCIperformances.However,addingadditionalnon-brainsignalsorcombiningmorethantwoBCImodalitiesmaycompensatetheage-relatedchanges.BCIbasedoncontrollingasmarthomeoranautonomouswheelchairrequiresmultipledegreesoffreedomandfastintentiondetection,makingsolelyEEG-basedmultipledevicesorwheelchaircontrolachallenge.hBCIsmayoffermoreeffectivecontrolforelderlypeople,especiallybyofferingmultiplecommandsandaccuratestopinemergencycases.Inaddition,directtactilestimulationmayimproveshort-termandlong-termmemoryinelderlypatientsdiagnosedwithAlzheimer’sdisease.Theseimprovementsmayleadtoimprovedpsychologicalwell-being,andincreasedsocializationandparticipationindailyactivities(WituckiandTwibell,1997;Herwegetal.,2016). TherapidgrowthinneuroinformaticsandrelatedintelligentalgorithmsmayalsoadvanceEEGanalysesandhelptoimprovetheperformanceofexistingBCIsfortheusageathomebyreducingthetimeforthecalibrationphaseandincreasingclassificationaccuracyandITR.Withthisgoalinmind,researchershavebeenusingsomecommonmethodsforreducingthenumberofEEGchannels,removingartifactsusingonlinesourceseparation,distinguishingbetweenneuralactivationpatternsusingmachine-learningalgorithms,andunderstandingbrainmechanismsusingadvancedbrainnetworkanalyses.Forexample,SparseBayesianLearning(Zhangetal.,2015)hasbeenusedtopredictsubject’sbehaviorsorcognitivestatesfromhisbrainactivitieswithasmallnumberofsamplesofhighdimensionaldata(Sparseestimationtoolbox:https://bicr.atr.jp/cbi/sparse_estimation/index.html).Deeplearningalgorithms(TabarandHalici,2016;Schwemmeretal.,2018)havealsobeenusedtoextractusefulfeaturerepresentationsfromrawdataandachieveahighEEGclassificationaccuracy.Inaddition,theGrangercausalitymethodshavebeenusedtoassessbrainconnectivity(Chenetal.,2019). DevelopingEEG-basedgamecontrolmayalsohelpelderlypeopletoimprovetheircapacityofmultitaskingtocarryoutthetasksineverydaylife.Thiscapacitycanfacilitatethecontrolofsmarthomeappliances,droneswarms,and/orassistiverobots.Neurofeedback(biofeedbackforthebrain)canbeanadditionaloptiontoenhancecognitiveperformanceofelderlypeople(Jirayucharoensaketal.,2019).Thelastchallengeisthedevelopmentofhardwareandsoftwaresolutionsforhome-basedapplicationsthatcanbeusedbyhealthyolderadultsandelderlypatientswithminimaltechnicaloversight,althoughtherearealreadymanyuser-friendly,wearable,portable,andwirelessEEGequipmentinthemarketsuchasrecoveriX,mindBEAGLE,UnicornSpeller(g.tecmedicalengineering,Graz,Austria). Conclusion Thismini-reviewhaspresentedseveralpotentialBCIapplications(e.g.,cognitiveandmotorprosthetics)toassisttheolderadultsandelderlypatientsusingnon-invasivemeasurement.Avarietyofexternalaidsandneurofeedbacktestsareavailable,andhavebeenshowntobeusefultoanddesiredbyolderpeople,healthcarepersons,caretakersandfamilymembers.Interactivegamingtestscanmonitorandimprovethecognitiveabilityofagedpeople.Thecurrentwheelchairandexoskeletontechnologieshavebeendevelopedtosupportelderpeopleandallowthemtocarryontheirdailyroutinesandatthesametime,toproviderehabilitationofdeterioratedmuscleandmotorfunction.Smarthomeenvironmentscanassisttheelderlyinlivingindependentlyandfeelingsafeintheirownhomes.WehopethatthetechnologiesreviewedinthisarticlewillfurtherstimulatethedesignofnewtechnologiesanddevicesbasedonBCIforseniorcitizens.BCItechnologyhasalreadyshownpromisingresultsinprovidingassistanceinbothcognitiveandphysicalsupportandrehabilitation,andwelookforwardtofutureinnovationinthisimportantareaofresearchthataffectsallofuseventually. AuthorContributions Allauthorswereinvolvedinthewritingandeditingofthemanuscript,specificauthorcontributionswere:ABoverallconceptualdesignforreview,supervisorofNJ–advisinginwritingandfiguredesign.AB,NJ,andSOcontributedtoselectingthearticles,analyzingresults,writing,andeditingofthemanuscript.JPandCCcontributedtowritingandeditingofthemanuscript. Funding ABacknowledgessupportfromtheUnitedArabEmiratesUniversity(Start-upgrantG00003270“31T130”). ConflictofInterest Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Footnotes ^https://www.bci2000.org/ ^https://sccn.ucsd.edu/eeglab/ ^http://www.fieldtriptoolbox.org/ ^http://neuroimage.usc.edu/brainstorm References Amaral,C.,Mouga,S.,Simões,M.,Pereira,H.C.,Bernardino,I.,Quental,H.,etal.(2018).Afeasibilityclinicaltrialtoimprovesocialattentioninautisticspectrumdisorder(ASD)usingabraincomputerinterface.Front.Neurosci.12:477.doi:10.3389/fnins.2018.00477 PubMedAbstract|CrossRefFullText|GoogleScholar Belkacem,A.N.,Kiso,K.,Uokawa,E.,Goto,T.,Yorifuji,S.,andHirata,M.(2020).Neuralprocessingmechanismofmentalcalculationbasedoncerebraloscillatorychanges:acomparisonbetweenabacusexpertsandnovices.Front.Hum.Neurosci.14:137.doi:10.3389/fnhum.2020.00137 PubMedAbstract|CrossRefFullText|GoogleScholar Belkacem,A.N.,Nishio,S.,Suzuki,T.,Ishiguro,H.,andHirata,M.(2018).Neuromagneticdecodingofsimultaneousbilateralhandmovementsformultidimensionalbrain–machineinterfaces.IEEETrans.NeuralSyst.Rehabil.Eng.26,1301–1310.doi:10.1109/tnsre.2018.2837003 PubMedAbstract|CrossRefFullText|GoogleScholar Belkacem,A.N.,Saetia,S.,Zintus-art,K.,Shin,D.,Kambara,H.,Yoshimura,N.,etal.(2015a).Real-timecontrolofavideogameusingeyemovementsandtwotemporalEEGsensors.Comput.Intell.Neurosci.2015,1–10.doi:10.1155/2015/653639 PubMedAbstract|CrossRefFullText|GoogleScholar Belkacem,A.N.,Shin,D.,Kambara,H.,Yoshimura,N.,andKoike,Y.(2015b).Onlineclassificationalgorithmforeye-movement-basedcommunicationsystemsusingtwotemporalEEGsensors.Biomed.SignalProcess.Control16,40–47.doi:10.1016/j.bspc.2014.10.005 CrossRefFullText|GoogleScholar Brandt,A.,Iwarsson,S.,andStahle,A.(2004).Olderpeople’suseofpoweredwheelchairsforactivityandparticipation.J.Rehabil.Med.36,70–77.doi:10.1080/16501970310017432 PubMedAbstract|CrossRefFullText|GoogleScholar Brooks,C.J.,Anderson,A.J.,Roach,N.W.,McGraw,P.V.,andMcKendrick,A.M.(2015).Age-relatedchangesinauditoryandvisualinteractionsintemporalrateperception.J.Vis.15:2.doi:10.1167/15.16.2 CrossRefFullText|GoogleScholar Buch,V.P.,Richardson,A.G.,Brandon,C.,Stiso,J.,Khattak,M.N.,Bassett,D.S.,etal.(2018).Networkbrain-computerinterface(nBCI):analternativeapproachforcognitiveprosthetics.Front.Neurosci.12:790.doi:10.3389/fnins.2018.00790 PubMedAbstract|CrossRefFullText|GoogleScholar Burke,J.F.,Merkow,M.B.,Jacobs,J.,Kahana,M.J.,andZaghloul,K.A.(2015).Braincomputerinterfacetoenhanceepisodicmemoryinhumanparticipants.Fronti.Hum.Neurosci.8:1055.doi:10.3389/fnhum.2014.01055 PubMedAbstract|CrossRefFullText|GoogleScholar Chai,X.,Zhang,Z.,Guan,K.,Lu,Y.,Liu,G.,Zhang,T.,etal.(2020).AhybridBCI-controlledsmarthomesystemcombiningSSVEPandEMGforindividualswithparalysis.Biomed.SignalProcess.Control56:101687.doi:10.1016/j.bspc.2019.101687 CrossRefFullText|GoogleScholar Chauhan,R.,Sebastian,B.,andBen-Tzvi,P.(2019).“Grasppredictiontowardnaturalisticexoskeletonglovecontrol,”inIEEETransactionsonHuman-MachineSystems,(Piscataway,NJ:IEEE). GoogleScholar Chen,C.,Zhang,J.,Belkacem,A.N.,Zhang,S.,Xu,R.,Hao,B.,etal.(2019).G-causalitybrainconnectivitydifferencesoffingermovementsbetweenmotorexecutionandmotorimagery.J.HealthcareEng.2019,1–12.doi:10.1155/2019/5068283 PubMedAbstract|CrossRefFullText|GoogleScholar Chen,C.,Zhou,P.,Belkacem,A.N.,Lu,L.,Xu,R.,Wang,X.,etal.(2020).Quadcopterrobotcontrolbasedonhybridbrain–computerinterfacesystem.Sens.Mater.32,991–1004. GoogleScholar Choi,I.,Bond,K.,andNam,C.S.(2016).“AhybridBCI-controlledFESsystemforhand-wristmotorfunction,”in2016IEEEInternationalConferenceonSystems,Man,andCybernetics(SMC),(Budapest:IEEE),002324–002328. GoogleScholar Coimbra,A.M.V.,Ricci,N.A.,Coimbra,I.B.,andCostallat,L.T.L.(2010).Fallsintheelderlyofthefamilyhealthprogram.Arch.Gerontol.Geriatr.51,317–322. GoogleScholar Cole,J.H.,Marioni,R.E.,Harris,S.E.,andDeary,I.J.(2019).Brainageandotherbodily‘ages’:implicationsforneuropsychiatry.Mol.Psychiatry24,266–281.doi:10.1038/s41380-018-0098-1 PubMedAbstract|CrossRefFullText|GoogleScholar Dong,E.,Li,C.,Li,L.,Du,S.,Belkacem,A.N.,andChen,C.(2017).Classificationofmulti-classmotorimagerywithanovelhierarchicalSVMalgorithmforbrain–computerinterfaces.Med.Biol.Eng.Comput.55,1809–1818.doi:10.1007/s11517-017-1611-4 PubMedAbstract|CrossRefFullText|GoogleScholar Foong,R.,Ang,K.K.,Quek,C.,Guan,C.,Phua,K.S.,Kuah,C.W.K.,etal.(2019).AssessmentoftheEfficacyofEEG-basedMI-BCIwithvisualfeedbackandEEGcorrelatesofmentalfatigueforupper-limbstrokerehabilitation.IEEETrans.Biomed.Eng.67,786–795.doi:10.1109/tbme.2019.2921198 PubMedAbstract|CrossRefFullText|GoogleScholar Fried,L.P.,Tangen,C.M.,Walston,J.,Newman,A.B.,Hirsch,C.,Gottdiener,J.,etal.(2001).Frailtyinolderadults:evidenceforaphenotype.J.Gerontol.Ser.ABiol.Sci.Med.Sci.56,M146–M157. GoogleScholar Galle,S.,Derave,W.,Bossuyt,F.,Calders,P.,Malcolm,P.,andDeClercq,D.(2017).Exoskeletonplantarflexionassistanceforelderly.GaitPost.52,183–188.doi:10.1016/j.gaitpost.2016.11.040 PubMedAbstract|CrossRefFullText|GoogleScholar Gao,Q.,Dou,L.,Belkacem,A.N.,andChen,C.(2017).NoninvasiveelectroencephalogrambasedcontrolofaroboticarmforwritingtaskusinghybridBCIsystem.BioMedRes.Int.2017:8316485. GoogleScholar Gomez-Pilar,J.,Corralejo,R.,Nicolas-Alonso,L.F.,Álvarez,D.,andHornero,R.(2016).Neurofeedbacktrainingwithamotorimagery-basedBCI:neurocognitiveimprovementsandEEGchangesintheelderly.Med.Biolo.Eng.Comput.54,1655–1666.doi:10.1007/s11517-016-1454-4 PubMedAbstract|CrossRefFullText|GoogleScholar Gray,J.O.,Jia,P.,Hu,H.H.,Lu,T.,andYuan,K.(2007).Headgesturerecognitionforhands-freecontrolofanintelligentwheelchair.Ind.Robot.34,60–68.doi:10.1108/01439910710718469 CrossRefFullText|GoogleScholar Hertzog,C.,Park,D.C.,Morrell,R.W.,andMartin,M.(2000).Askandyeshallreceive:behaviouralspecificityintheaccuracyofsubjectivememorycomplaints.Appl.Cogn.Psychol.14,257–275.doi:10.1002/(sici)1099-0720(200005/06)14:3<257::aid-acp651>3.0.co;2-o CrossRefFullText|GoogleScholar Herweg,A.,Gutzeit,J.,Kleih,S.,andKübler,A.(2016).Wheelchaircontrolbyelderlyparticipantsinavirtualenvironmentwithabrain-computerinterface(BCI)andtactilestimulation.Biol.Psychol.121,117–124.doi:10.1016/j.biopsycho.2016.10.006 PubMedAbstract|CrossRefFullText|GoogleScholar Jafri,S.R.A.,Hamid,T.,Mahmood,R.,Alam,M.A.,Rafi,T.,Haque,M.Z.U.,etal.(2019).Wirelessbraincomputerinterfaceforsmarthomeandmedicalsystem.WirelessPers.Commun.106,2163–2177.doi:10.1007/s11277-018-5932-x CrossRefFullText|GoogleScholar Jirayucharoensak,S.,Israsena,P.,Pan-ngum,S.,Hemrungrojn,S.,andMaes,M.(2019).Agame-basedneurofeedbacktrainingsystemtoenhancecognitiveperformanceinhealthyelderlysubjectsandinpatientswithamnesticmildcognitiveimpairment.Clin.Intervent.Aging14,347–360.doi:10.2147/cia.s189047 PubMedAbstract|CrossRefFullText|GoogleScholar Kaufmann,T.,Herweg,A.,andKübler,A.(2014).Towardbrain-computerinterfacebasedwheelchaircontrolutilizingtactually-evokedevent-relatedpotentials.J.Neuroengin.Rehabil.11:7.doi:10.1186/1743-0003-11-7 PubMedAbstract|CrossRefFullText|GoogleScholar Kern,J.B.,Strola,S.,Quintas,J.,Moulaert,T.,Jacquet,J.P.,andBenhamou,P.Y.(2019).Mylittlesmartpersonalassistant:aco-designedsolutiontoensureanoptimizedageing-wellathomeinruraleuropeansettings.Stud.HealthTechnol.Informat.264,1949–1950. GoogleScholar Kleim,J.A.(2011).Neuralplasticityandneurorehabilitation:teachingthenewbrainoldtricks.J.Commun.Dis.44,521–528.doi:10.1016/j.jcomdis.2011.04.006 PubMedAbstract|CrossRefFullText|GoogleScholar Konkle,T.,Brady,T.F.,Alvarez,G.A.,andOliva,A.(2010).Conceptualdistinctivenesssupportsdetailedvisuallong-termmemoryforreal-worldobjects.J.Exp.Psychol.Gen.139,558–578.doi:10.1037/a0019165 PubMedAbstract|CrossRefFullText|GoogleScholar Lee,K.,Liu,D.,Perroud,L.,Chavarriaga,R.,andMillán,J.D.R.(2017).Abrain-controlledexoskeletonwithcascadedevent-relateddesynchronizationclassifiers.Robot.Auton.Syst.90,15–23.doi:10.1016/j.robot.2016.10.005 CrossRefFullText|GoogleScholar Lee,T.S.,Goh,S.J.A.,Quek,S.Y.,Phillips,R.,Guan,C.,Cheung,Y.B.,etal.(2013).Abrain-computerinterfacebasedcognitivetrainingsystemforhealthyelderly:arandomizedcontrolpilotstudyforusabilityandpreliminaryefficacy.PLoSOne8:e79419.doi:10.1371/journal.pone.0079419 PubMedAbstract|CrossRefFullText|GoogleScholar Mane,R.,Chew,E.,Phua,K.S.,Ang,K.K.,Robinson,N.,Vinod,A.P.,etal.(2019).PrognosticandmonitoryEEG-biomarkersforBCIupper-limbstrokerehabilitation.IEEETrans.NeuralSyst.Rehabil.Eng.27,1654–1664.doi:10.1109/tnsre.2019.2924742 PubMedAbstract|CrossRefFullText|GoogleScholar Megalingam,R.K.,Nair,R.N.,andPrakhya,S.M.(2011).“Automatedvoicebasedhomenavigationsystemfortheelderlyandthephysicallychallenged,”in13thInternationalConferenceonAdvancedCommunicationTechnology(ICACT2011),Piscataway,NJ:IEEE,603–608. GoogleScholar Mumtaz,W.,Vuong,P.L.,Xia,L.,Malik,A.S.,andRashid,R.B.A.(2017).AnEEG-basedmachinelearningmethodtoscreenalcoholusedisorder.Cogn.Neurodyn.11,161–171.doi:10.1007/s11571-016-9416-y PubMedAbstract|CrossRefFullText|GoogleScholar Nagel,S.,andSpüler,M.(2019).World’sfastestbrain-computerinterface:combiningEEG2Codewithdeeplearning.PLoSOne14:e0221909.doi:10.1371/journal.pone.0221909 PubMedAbstract|CrossRefFullText|GoogleScholar Nutt,D.J.(2008).Relationshipofneurotransmitterstothesymptomsofmajordepressivedisorder.J.Clin.Psychiatry69,4–7. GoogleScholar Pan,J.,Xie,Q.,Huang,H.,He,Y.,Sun,Y.,Yu,R.,etal.(2018).Emotion-relatedconsciousnessdetectioninpatientswithdisordersofconsciousnessthroughanEEG-basedBCIsystem.Front.Hum.Neurosci.12:198.doi:10.3389/fnhum.2018.00198 PubMedAbstract|CrossRefFullText|GoogleScholar Pansuwan,T.,Breuer,F.,Gazder,T.,Lau,Z.,Cueva,S.,Swanson,L.,etal.(2020).Evidenceforadultage-invarianceinassociativefalserecognition.Memory28,172–186.doi:10.1080/09658211.2019.1705351 PubMedAbstract|CrossRefFullText|GoogleScholar Persson,N.,Ghisletta,P.,Dahle,C.L.,Bender,A.R.,Yang,Y.,Yuan,P.,etal.(2016).Regionalbrainshrinkageandchangeincognitiveperformanceovertwoyears:thebidirectionalinfluencesofthebrainandcognitivereservefactors.Neuroimage126,15–26.doi:10.1016/j.neuroimage.2015.11.028 PubMedAbstract|CrossRefFullText|GoogleScholar Peters,R.(2006).Ageingandthebrain.Postgrad.Med.J.82,84–88. GoogleScholar Quam,C.,Wang,A.,Maddox,W.T.,Golisch,K.,andLotto,A.(2018).Procedural-memory,working-memory,anddeclarative-memoryskillsareeachassociatedwithdimensionalintegrationinsound-categorylearning.Front.Psychol.9:1828.doi:10.3389/fpsyg.2018.01828 PubMedAbstract|CrossRefFullText|GoogleScholar Renton,A.I.,Mattingley,J.B.,andPainter,D.R.(2019).Optimisingnon-invasivebrain-computerinterfacesystemsforfreecommunicationbetweennaïvehumanparticipants.Sci.Rep.9,1–18. GoogleScholar Riquelme,F.,Espinoza,C.,Rodenas,T.,Minonzio,J.G.,andTaramasco,C.(2019).eHomeSeniorsdataset:aninfraredthermalsensordatasetforautomaticfalldetectionresearch.Sensors19:4565.doi:10.3390/s19204565 PubMedAbstract|CrossRefFullText|GoogleScholar Rosenbaum,D.A.(2009).HumanMotorControl.Cambridge,MA:AcademicPress. GoogleScholar Rupp,R.(2014).Challengesinclinicalapplicationsofbraincomputerinterfacesinindividualswithspinalcordinjury.Front.Neuroeng.7:38.doi:10.3389/fneng.2014.00038 PubMedAbstract|CrossRefFullText|GoogleScholar Ryall,J.G.,Schertzer,J.D.,andLynch,G.S.(2008).Cellularandmolecularmechanismsunderlyingage-relatedskeletalmusclewastingandweakness.Biogerontology9,213–228.doi:10.1007/s10522-008-9131-0 PubMedAbstract|CrossRefFullText|GoogleScholar Sapci,A.H.,andSapci,H.A.(2019).Innovativeassistedlivingtools,remotemonitoringtechnologies,artificialintelligence-drivensolutions,androboticsystemsforagingsocieties:systematicreview.JMIRAging2:e15429.doi:10.2196/15429 PubMedAbstract|CrossRefFullText|GoogleScholar Scherer,R.,Müller-Putz,G.R.,andPfurtscheller,G.(2007).Self-initiationofEEG-basedbrain–computercommunicationusingtheheartrateresponse.J.NeuralEng.4,L23–L29. GoogleScholar Schwemmer,M.A.,Skomrock,N.D.,Sederberg,P.B.,Ting,J.E.,Sharma,G.,Bockbrader,M.A.,etal.(2018).Meetingbrain–computerinterfaceuserperformanceexpectationsusingadeepneuralnetworkdecodingframework.Nat.Med.24,1669–1676.doi:10.1038/s41591-018-0171-y PubMedAbstract|CrossRefFullText|GoogleScholar Shang,C.,Chang,C.Y.,Chen,G.,Zhao,S.,andChen,H.(2019).BIA:behavioridentificationalgorithmusingunsupervisedlearningbasedonsensordataforhomeelderly.24,1589–1600.doi:10.1109/jbhi.2019.2943391 PubMedAbstract|CrossRefFullText|GoogleScholar Shao,L.,Zhang,L.,Belkacem,A.N.,Zhang,Y.,Chen,X.,Li,J.,etal.(2020).EEG-controlledwall-crawlingcleaningrobotusingssvep-basedbrain-computerinterface.J.HealthcareEng.2020,1–11.doi:10.1155/2020/6968713 PubMedAbstract|CrossRefFullText|GoogleScholar Shore,L.,Power,V.,Hartigan,B.,Schülein,S.,Graf,E.,deEyto,A.,etal.(2020).Exoscore:adesigntooltoevaluatefactorsassociatedwithtechnologyacceptanceofsoftlowerlimbexosuitsbyolderadults.Hum.Fact.62,391–410.doi:10.1177/0018720819868122 PubMedAbstract|CrossRefFullText|GoogleScholar Su,S.,Yu,D.,Cheng,J.,Chen,Y.,Zhang,X.,Guan,Y.,etal.(2017).Decreasedglobalnetworkefficiencyinyoungmalesmoker:anEEGstudyduringtherestingstate.Front.Psychol.8:1605.doi:10.3389/fpsyg.2017.01605 PubMedAbstract|CrossRefFullText|GoogleScholar Tabar,Y.R.,andHalici,U.(2016).AnoveldeeplearningapproachforclassificationofEEGmotorimagerysignals.J.NeuralEng.14:016003.doi:10.1088/1741-2560/14/1/016003 CrossRefFullText|GoogleScholar Tang,S.,Chen,L.,Barsotti,M.,Hu,L.,Li,Y.,Wu,X.,etal.(2019).Kinematicsynergyofmulti-DoFmovementinupperlimbanditsapplicationforrehabilitationexoskeletonmotionplanning.Front.Neurorobot.13:99.doi:10.3389/fnbot.2019.00099 PubMedAbstract|CrossRefFullText|GoogleScholar Uylings,H.B.,andDeBrabander,J.M.(2002).NeuronalchangesinnormalhumanagingandAlzheimer’sdisease.BrainCogn.49,268–276.doi:10.1006/brcg.2001.1500 PubMedAbstract|CrossRefFullText|GoogleScholar Villa-Parra,A.C.,Delisle-Rodríguez,D.,López-Delis,A.,Bastos-Filho,T.,Sagaró,R.,andFrizera-Neto,A.(2015).TowardsarobotickneeexoskeletoncontrolbasedonhumanmotionintentionthroughEEGandsEMGsignals.Proc.Manufact.3,1379–1386.doi:10.1016/j.promfg.2015.07.296 CrossRefFullText|GoogleScholar Wert,D.M.,Brach,J.,Perera,S.,andVanSwearingen,J.M.(2010).Gaitbiomechanics,spatialandtemporalcharacteristics,andtheenergycostofwalkinginolderadultswithimpairedmobility.Phys.Ther.90,977–985.doi:10.2522/ptj.20090316 PubMedAbstract|CrossRefFullText|GoogleScholar Willis,A.W.(2013).Parkinsondiseaseintheelderlyadult.Miss.Med.110,406–410. GoogleScholar Witucki,J.M.,andTwibell,R.S.(1997).TheeffectofsensorystimulationactivitiesonthepsychologicalwellbeingofpatientswithadvancedAlzheimer’sdisease.Am.J.Alzheimer’sDis.12,10–15.doi:10.1177/153331759701200103 CrossRefFullText|GoogleScholar Xiao,J.,Pan,J.,He,Y.,Xie,Q.,Yu,T.,Huang,H.,etal.(2018).Visualfixationassessmentinpatientswithdisordersofconsciousnessbasedonbrain-computerinterface.Neurosci.Bull.34,679–690.doi:10.1007/s12264-018-0257-z PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,Y.,Zhou,G.,Jin,J.,Zhao,Q.,Wang,X.,andCichocki,A.(2015).SparseBayesianclassificationofEEGforbrain–computerinterface.IEEETrans.NeuralNetworksLearn.Syst.27,2256–2267. GoogleScholar Keywords:braincomputerinterface,EEG,cognitiveaging,motorimpairment,olderadults,elderlypatients Citation:BelkacemAN,JamilN,PalmerJA,OuhbiSandChenC(2020)BrainComputerInterfacesforImprovingtheQualityofLifeofOlderAdultsandElderlyPatients.Front.Neurosci.14:692.doi:10.3389/fnins.2020.00692 Received:13February2020;Accepted:08June2020;Published:30June2020. Editedby: IoanOpris,UniversityofMiami,UnitedStates Reviewedby: ChristophGuger,g.tecmedicalengineeringGmbH,Austria YuZhang,StanfordUniversity,UnitedStates Copyright©2020Belkacem,Jamil,Palmer,OuhbiandChen.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:AbdelkaderNasreddineBelkacem,[email protected];[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1Brain Computer Interfaces for Improving the Quality of Life of ...
Brain computer interface (BCI) technology is now being incorporated into the treatment of many pa...
- 2Brain–computer interface - Wikipedia
A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI), is a direct c...
- 3What is brain-computer interface (BCI)? - TechTarget
Brain-computer interface (BCI) is a collaboration between a brain and a device that enables signa...
- 4腦機介面(Brain-Computer Interface) 專題(上)
科幻小說與電影描繪的世界,一直是科學家追求的夢想。而這個新興領域,統稱為腦機介面(Brain-computer interface, BCI,亦稱brain-machine interface,...
- 5What Brain-Computer Interfaces Could Mean for the ...
Brain computer interfaces (BCIs) are slowly moving into the mass market. In the next few years, w...