Path integrals are given by sum over all paths satisfying some boundary conditions and can be understood as extensions to an infinite number ...
Pathintegral
FromScholarpedia
JeanZinn-Justin(2009),Scholarpedia,4(2):8674.
doi:10.4249/scholarpedia.8674
revision#147600[linkto/citethisarticle]
Jumpto:navigation,
search
Post-publicationactivityCurator:JeanZinn-Justin
Contributors: 0.12-NickOrbeck
0.12-RiccardoGuida
0.06-LeoTrottier
MasudChaichian
AndreiA.Slavnov
Prof.JeanZinn-Justin,CEA,IRFUandInstitutdePhysiqueThéorique,CentredeSaclay,F-91191Gif-sur-Yvette,France
Asizablefractionofthetheoreticaldevelopmentsinphysicsofthelastsixtyyearswouldnotbeunderstandablewithouttheuseofpathor,moregenerally,fieldintegrals.
Inthisarticlewewillfocusontheuseofpathintegralsandfieldintegralsindifferentbranchesoftheoreticalphysics.Arigorousstudyofthemathematicalpropertiesofpathandfieldintegralsisanopensubtopicoffunctionalanalysisandwillnotbedealtwithhere.
Pathintegralsaregivenbysumoverallpathssatisfyingsomeboundaryconditionsandcanbeunderstoodasextensionstoaninfinitenumberofintegrationvariablesofusualmulti-dimensionalintegrals.Pathintegralsarepowerfultoolsforthestudyofquantummechanics.Indeed,inquantummechanics,physicalquantitiescanbeexpressedasaveragesoverallpossiblepathsweightedbytheexponentialofatermproportionaltotheratiooftheclassicalaction\(\mathcalS\)associatedtoeachpath,dividedbythePlanck'sconstant\(\hbar\.\)Thus,pathintegralsemphasizeveryexplicitlythecorrespondencebetweenclassicalandquantummechanics.Inparticular,inthesemi-classicallimit\(\mathcal{S}/\hbar\rightarrow\infty\,\)theleadingcontributionsintheaveragecomefrompathsclosetoclassicalpaths,whicharestationarypointsoftheaction.Thus,pathintegralsleadtoanintuitiveunderstandingandsimplecalculationsofphysicalquantitiesinthesemi-classicallimit.
Theformulationofquantummechanicsbasedonpathintegralsiswelladaptedtosystemswithmanydegreesoffreedom,whereaformalismofSchrödingertypeismuchlessuseful.Therefore,itallowsaneasytransitionfromquantummechanicstoquantumfieldtheoryorstatisticalphysics.Inparticular,generalizedpathintegrals(functionalintegralsand,moreprecisely,fieldintegrals)leadtoanunderstandingofthedeeprelationsbetweenquantumfieldtheoryandthetheoryofcriticalphenomenaincontinuousphasetransitions.
WefirstdescribeBrownianmotionandEuclidean-time(i.e,imaginarytime)pathintegrals.Thismeansthatweconsiderthepathintegralrepresentationofthematrixelementsofthequantumstatisticaloperator,ordensitymatrixatthermalequilibrium\(\mathrm{e}^{-\beta\hatH},\)\(\hatH\)beingthequantumHamiltonianand\(\beta\)theinversetemperature(measuredinaunitwheretheBoltzmannconstant\(k_B\)is1).Inthisway,weareabletodescribequantumstatisticalphysicsintermsofpathintegrals,butalso,perhapsmoresurprisingly,toexhibitarelationbetweenclassicalandquantumstatisticalmechanics.Moreover,forawholeclassofHamiltonians,theEuclidean-timepathintegralcorrespondstoapositivemeasure.Wethendefinethereal-time(inrelativisticfieldtheoryMinkowskian-time)pathintegral,whichdescribesthetimeevolutionofquantumsystemsandcorrespondsfortime-translationinvariantsystemstotheevolutionoperator\(\mathrm{e}^{-it\hatH/\hbar}\)(\(t\)beingtherealtime).Finally,webrieflylistafewgeneralizations:pathintegralsintheHamiltonianformulation,pathintegralsintheholomorphicrepresentationrelatedtobosonsystemsand,correspondingly,Grassmannianpathintegralsforfermions.
Anumberofimportantapplicationstophysicsofthepathintegralideainvolveinfactintegralsoverfields.Inparticular,fieldintegralsareindispensableforthestudyofquantumgaugeinvarianttheorieswhichconstitutethebasisofthedescriptionoffundamentalinteractionsatthemicroscopicscale,aswellasforunderstandingofthecriticalpropertiesofphasetransitions.Theyrelyonapragmaticapproach,focusingmoreondevelopingcalculationaltoolsthanonestablishingrigorousproperties.Indeed,eventhoughanumberofinterestingrigorousresultshavebeenproved,onefacesextremelydifficultmathematicalproblemsinrealisticsituations(e.g.,infourdimensionalspace-time).
Contents
1Randomwalk,Brownianmotionandpathintegral
1.1Discussion
1.2Explicitcalculation
2ApplicationoftheWienermeasuretostatisticalphysics
2.1Classicalstatisticalphysics
2.2Quantumstatisticalphysics
3Generalization
3.1PathintegralsandlocalMarkovprocesses
3.2Pathintegralsandclassicalstatisticalphysics
3.3Pathintegralsandquantumstatisticalphysics
4Gaussianpathintegrals:Thequantumharmonicoscillator
5Perturbativeexpansionforthepathintegral
5.1Correlationfunctions
5.2GaussianexpectationvaluesandWick'stheorem
5.3Perturbativeexpansion
6Quantumtimeevolution
7Barrierpenetrationinthesemi-classicallimit
8Pathintegrals:Generalizations
8.1Thequantumparticleinastaticmagneticfield
8.2Hamiltonianformulationandphasespaceintegration
8.3Holomorphicformalismandbosons
8.4Grassmannpathintegralsandfermions
9Ageneralization:Thefieldintegral
10References
11Furtherreading
12Seealso
Randomwalk,Brownianmotionandpathintegral
Asafirstexample,weconsiderarandomwalkonthereallinewithdiscretetimes\(k=0,1,2,\dots,n.\)
Suchastochasticprocessisspecifiedbyaprobabilitydistribution\(P_0(x)\)fortheposition\(x\)atinitialtime\(k=0\)andatime-independentdensity
\(\rho(x,x')\)describingtheprobabilityoftransitionfromthepoint\(x'\)tothepoint\(x\,\)meaningthat
theprobabilitydistribution\(P_k(x)\)attime\(k\)satisfiestherecursionrelationormasterequation
\[P_k(x)=\int\mathrm{d}x'\,\rho(x,x')P_{k-1}(x'),\quad\int\mathrm{d}x\,\rho(x,x')=1\,.\]
Thisrandomwalkisa(homogeneousorstationary)Markovchain,thatis,a(time-translationinvariant)stochasticprocesswiththeMarkovproperty(i.e.,thepropertythattheprobabilitydistributionattime\(k\)dependsonlyontheprobabilityattime\(k-1\,\)butnotontheprobabilitydistributionsatpriortimes).
Inthefollowingwealsoassumethatthetransitionprobabilityistranslationinvariantandeven\[\rho(x,x')=R(x-x')=R(x'-x)\.\]
Underrathergeneralconditions,themostimportantbeingthat\(R(x)\)decreasesfastenoughfor\(|x|\)large(wecallthisalocalMarkovprocess),onecanprove(aconsequenceofthecentrallimittheoremofprobabilities)thatthedistribution\(P_n(x)\)convergesasymptoticallyforlargetimes\(n\)towardaGaussiandistributionthatisindependentofthetransitionprobability\(R(x)\.\)Therefore,ifoneisinterestedonlyinlargetimeproperties,onecanstartdirectlyfromaGaussiantransitionprobabilityoftheform
\[\tag{1}
R(x)={1\over\sqrt{2\pi\xi}}\mathrm{e}^{-x^2/(2\xi)},\]
where\(\xi>0\)characterizesthewidthofthedistribution.
Itistheneasytocalculate\(P_n(x)\)explicitlybysuccessiveGaussianintegrations.However,forourpurposeitismoreinstructivetojustapplytherecursionrelation.
Ifoneassumes,forexample,thattheinitialdistributionisconcentratedatthepoint\(x=x_0\)(i.e.,\(P_0(x)=\delta(x-x_0)\)where\(\delta(x)\)isDirac'sgeneralizedfunctionalsoknownasDiracfunctionor\(\delta-\)function)oneobtainsattime\(n\)theprobabilitydistribution
\[\tag{2}
P_n(x,x_0)=\int\mathrm{d}x_{n-1}\mathrm{d}x_{n-2}\ldots\mathrm{d}x_{1}\,R(x-x_{n-1})R(x_{n-1}-x_{n-2})\ldotsR(x_1-x_0).\]
IntheGaussianexample(1),theexpressionbecomes
\[\tag{3}P_n(x,x_0)=(2\pi\xi)^{(1-n)/2}\int\mathrm{d}x_{n-1}\mathrm{d}x_{n-2}\ldots\mathrm{d}x_{1}\,\mathrm{e}^{-\mathcal{S}(\mathbf{x})/\xi}\],
where,defining\(\mathbf{x}\equiv(x_0,x_1,\cdots,x_n)\)and\(x\equivx_n\,\)
\[\mathcal{S}(\mathbf{x})={1\over2}\sum_{k=1}^{n}\left(x_k-x_{k-1}\right)^2\,\].
Figure1:Piecewiselinearpath.
Wethenintroduceatimestep\(\varepsilon>0\,\)themacroscopictimevariables
\[\tau_k=t'+k\varepsilon\\mathrm{with}\0\lek\len\,,\]
(suchthat\(\tau_0=t'\,\)\(\tau_n=t'+n\varepsilon\equivt''\))andacontinuous,piecewiselinearpath(seeFigure1)
\[\tag{4}
q(\tau)=\sqrt{\varepsilon}\left[x_{k-1}+{\tau-\tau_{k-1}
\over\tau_k-\tau_{k-1}}\left(x_k-x_{k-1}\right)\right]\quad
\mathrm{for}\\tau_{k-1}\le\tau\le\tau_k\quad\mathrm{and}\;k\ge1,\]
withtheboundaryconditions
\[\tag{5}
q(t')=\sqrt{\varepsilon}x_0\equivq'\,,\quadq(t'')=\sqrt{\varepsilon}x\equivq''\,.\]
Oneverifiesthat\(\mathcal{S}(\mathbf{x})\)canberewrittenas
\[\mathcal{S}(\mathbf{x})=\mathcal{S}_\varepsilon(\mathbf{q})\equiv{1\over2}\int_{t'}^{t''}\,\dot{q}^2(\tau)\mathrm{d}\tau\]
where\(\dot{q}(\tau)\equiv\mathrm{d}q/\mathrm{d}\tau\.\)
Onecanthenstudythelargediscretetimeasymptoticbehaviour,bytakingthelarge\(n\)limitat\(t''-t'\)fixedand,thus,\(\varepsilon=(t''-t')/n\to0\.\)Onealsospeaksofatemporalcontinuumlimitsincethetimestepgoestozero.Inthislimit,thenormalizedprobabilitydistributioninthenewvariables\(\Pi_0(t'',t';q'',q')\)isgivenbyaEuclidean-timepathintegral(Wiener1923)thatwedenoteby
\[\tag{6}
\Pi_0(t'',t';q'',q')=\lim_{n\to\infty}{1\over\sqrt{\varepsilon}}P_n(x,x_0)=\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})/\xi},\quad\mathcal{S}_0(\mathbf{q})={1\over2}\int_{t'}^{t''}\,\dot{q}^2(\tau)\mathrm{d}\tau\]
(thefactor\(1/\sqrt{\varepsilon}\)comesfromthechangeofvariablesfrom\(x\)to\(q\))wherethesymbol\([\mathrm{d}q(\tau)]\)(alsodenotedby\(\mathcal{D}q(\tau)\)intheliterature)meanssumoverall(trajectories)\(q(\tau)\)satisfyingtheboundaryconditions(5).
Discussion
Afewsimpleremarksareinorder.First,theintegrandinthepathintegralispositiveand\([\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})/\xi}\)thusdefinesapositivemeasureonpaths,theso-calledWienermeasure.Second,itisdifficulttokeeptrackoftheabsolutenormalizationinthecontinuumpathintegrallimit.Therefore,onemostlyusespathintegralstocalculateexpectationvalues.If\(\mathcal{F}(\mathbf{q})\)isafunctionalofthepath\(\mathbf{q}\equivq(\cdot),\)itsexpectationvalueisdefinedby
\[\tag{7}
\langle\mathcal{F}(\mathbf{q})\rangle_0=\mathcal{Z}^{-1}\int[\mathrm{d}q(\tau)]\mathcal{F}(\mathbf{q})\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})/\xi}\]
with
\[\mathcal{Z}\equiv\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})/\xi}.\]
Notethatintheratioof(7)thenormalizationcancels.Inthecaseoftherandomwalk,typicalexpectationvaluescorrespondtocorrelationsbetweenpositionsatdifferenttimes,whichcanalsobeconsideredasgeneralizedmomentsoftheprobabilitydistribution.Forexample,
\[\mathcal{F}(\mathbf{q})\equivq(\tau_1)q(\tau_2)\ldotsq(\tau_{2n}).\]
Expectationvaluesofthiskindarealsocalledcorrelationfunctions.
Theformof\(\mathcal{S}_0(\mathbf{q})\)determinestheclassofpathsthatcontributetothepathintegral,whicharecalledinthiscaseBrownianpaths.Asthefactor\(\sqrt{\varepsilon}\)in(4)suggests,BrownianpathssatisfyaHölderconditionoforder1/2,thatis,for\(\tau-\tau'\to0\,\)
\[|q(\tau)-q(\tau')|=O\left(\left|\tau-\tau'\right|^{1/2}\right);\]
inparticularBrownianpathsarecontinuousbutnotdifferentiableand,thus,\(\dot{q}(\tau)\)isnotdefined.
Inthissense,thenotation\(\dot{q}^2(\tau)\)hastobeconsideredasasymbolandshouldnottakenliterally.Nevertheless,itisausefulnotationsince,for\(\xi\to0\,\)thepathintegralisdominatedbypathsclosetotheclassicalpathsthatleave\(\mathcal{S}_0(\mathbf{q})\)stationary,andwhicharedifferentiable(seethecalculationbelow).Finally,thecontinuityofthepathsallowsunderstandingwhyitispossiblethatanintegrationoveranincreasinglydensesetofpoints(orsumoverallpossiblepiecewiselinearpaths)eventuallyconvergestowardanintegrationoverallcontinuouspaths.
Explicitcalculation
Gaussianpathintegrals,likefinitedimensionalGaussianintegrals,areexplicitlycalculable.LetusillustratethispropertywiththesimpleexampleoftheBrownianmotion.Wenowexplicitlyevaluatetheintegral(6)byamethodthatgeneralizestootherkindsofGaussianintegrals.Varyingthequantity\(S_0(\mathbf{q})\)withrespecttothepath\(q(\tau),\)oneobtainstheclassicalequationofmotion\(\ddotq(\tau)=0\.\)Imposingtheboundaryconditions(5)ofthepathintegraltotheclassicalsolution,oneobtains
\[q_c(\tau)=q'+\frac{(\tau-t')}{(t''-t')}(q''-q').\]
Onethenchangesvariables,\(q(\tau)\mapstor(\tau)\)with\(q(\tau)=q_c(\tau)+r(\tau).\)Ateachtime\(\tau\)thisisasimpletranslationandtheassociatedJacobianis\(1\.\)Theboundaryconditionsonthenewpath\(r(\tau)\)are\(r(t'')=r(t')=0\)andonefinds
\[S_0(\mathbf{q})=\frac{1}{2}{(q''-q')^2\over(t''-t')}+S_0(\mathbf{r}).\]
Thepathintegral(6)becomes
\[\Pi_0(t'',t';q'',q')=\mathrm{e}^{-\frac{1}{2\xi}{(q''-q')^2\over(t''-t')}}\int[\mathrm{d}r(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{r})/\xi}.\]
Theremainingpathintegralis\(q'',q'\)-independentandgivesthenasimplenormalizationfactor.Here,itcanbedeterminedbyimposingtheconditionofprobabilityconservation
\[\tag{8}
\int\mathrm{d}q''\,\Pi_0(t'',t';q'',q')=1\\Rightarrow\\Pi_0(t'',t';q'',q')={1\over\sqrt{2\pi\xi(t''-t')}}\mathrm{e}^{-\frac{(q''-q')^2}{2(t''-t')\xi}}.\]
Aspointedoutabove,thisnormalizationcancelsinexpectationvalues.
ApplicationoftheWienermeasuretostatisticalphysics
ThesamepathintegraldescribingtheBrownianmotionhasaninterpretationintheframeworkofstatisticalphysics.
Classicalstatisticalphysics
Theexpression(3)intheexample(1)mayalsobephysicallyinterpretedastheclassicalpartitionfunctionof\(n+1\)particlesonaone-dimensionallatticewithspatialsites\(k=0,1,\cdots,n\.\)Particlesdeviatefromtheirequilibriumpositionsbythevalue\(x_k\)andhavenearest-neighbourharmonicinteractions:
\[\mathcal{Z}(x_n,x_0;\xi)=(2\pi\xi)^{(1-n)/2}\;\int\mathrm{d}x_{n-1}\mathrm{d}x_{n-2}\ldots\mathrm{d}x_{1}
\,\exp\left(-{1\over2\xi}\sum_{k=1}^{n}\left(x_k-x_{k-1}\right)^2\right).\]
(Theextremitiesofthechainbeingfixedatdeviations\(x_0\)and\(x_n\,\)respectively.)
Here,theparameter\(\xi\)hastheinterpretationofatemperature.Thepathintegral(6)thencorrespondstothecontinuumlimitwherethelatticespacing\(\varepsilon\)betweentwoadjacentsitesgoestozeroatfixedtotalmacroscopiclengthofthechain\(L=n\varepsilon\.\)
Quantumstatisticalphysics
Remarkablyenough,thepathintegraloftheBrownianmotionyieldsalsothedensitymatrixofafreenon-relativisticquantumparticle.
Thecontinuumdistribution\(\Pi_0(t,t';q,q')\)givenbyequation(8)satisfiesthediffusionequation
\[{\partial\Pi_0\over\partialt}={\xi\over2}{\partial^2\Pi_0\over(\partialq)^2}\;,\]
withinitialcondition:
\[\lim_{t\rightarrowt'}\Pi_0(t,t';q,q')=\delta(q-q')\;.\]
Thisequationcanbecomparedwiththeequationsatisfiedbytheelementsofthequantumdensitymatrix\(\mathrm{e}^{-\beta\hat{H}_0}\)(inthebasisinwhichthepositionoperator\(\hatq\)isdiagonal\(:\;\hat{q}|q\rangle=q|q\rangle\)),anoperatordescribingthethermalequilibriumofafreenon-relativisticquantumparticle,
where\(\hat{H}_0={\hat{p}}^2/(2m)\)isthequantumHamiltonianinrealtime(alinearoperatoractingontheHilbertspaceofquantumstates),\(\hatp\)themomentumoperator(withthecommutationrelation\([\hatq,\hatp]=i\hbar\)),\(m\)istheparticle'smassand
\(\beta\)theinversetemperature(inunitsoftheBoltzmann'sconstant\(k_\mathrm{B}\)).Thematrixelements\(\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle\)satisfythepartialdifferentialequation:
\[{\partial\over\partial\beta}\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle={\hbar^2\over2m}{\partial^2\over(\partialq)^2}\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle,\]
\(\hbar\)beingPlanck'sconstant.
Since\(\Pi_0(t,t';q,q')\)and\(\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle\)alsosatisfythesameboundaryconditionsatinitialtime\(t-t'\equiv\hbar\beta=0\,\)itfollowsthat\(\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle\)isequalto\(\Pi_0(t=\hbar\beta,0;q,q')\)when\(\xi=\hbar/m\)and,therefore,isgivenbythepathintegral
\[\tag{9}
\langleq|\mathrm{e}^{-\beta\hat{H}_0}|q'\rangle=\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})/\hbar},\quad\mathcal{S}_0(\mathbf{q})={1\over2}\int_{0}^{\hbar\beta}\,m\dot{q}^2(\tau)\mathrm{d}\tau\]
withtheboundaryconditions\(q(0)=q',\)\(q(\hbar\beta)=q.\)
Generalization
Asimplegeneralizationofthepathintegral(9)relevantforquantumstatisticalphysicsisthepathintegral
\[\tag{10}
\Pi(t'',t';q'',q')=\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}(\mathbf{q})/\hbar}\quad\text{with}\;q(t')=q',q(t'')=q''\;,\]
where
\[\tag{11}
\mathcal{S}(\mathbf{q})=\int_{t'}^{t''}\mathrm{d}\tau\,\mathcal{L}_{\mathrm{E}}(\dot{q}(\tau),q(\tau);\tau)\]
andtheEuclideanLagrangianisdefinedas
\[\tag{12}
\mathcal{L}_{\mathrm{E}}(\dot{q},q;\tau)=\frac{1}{2}m\dot{q}^2+V(q,\tau)\;.\]
NotethatintheEuclideanLagrangianthepotential\(V(q,\tau)\)isaddedtothekineticenergy,whileinthenormalLagrangianofclassicalmechanicsthepotentialissubtractedfromthekineticenergy.
Theparameter\(m\)canbeidentifiedwiththemassofanon-relativisticquantumparticle.Wealsoassumethat\(V(q,t)\)isasmoothfunctionof\(q\)andthat
\[\tag{13}
\int\mathrm{d}q\,\mathrm{e}^{-\varepsilonV(q,\tau)}0\,.\]
OnepossibledefinitionofthiskindofpathintegralsreferstotheWienermeasure:
\[\tag{14}
\Pi(t'',t';q'',q')=\Pi_0(t'',t';q'',q')\left\langle\exp\left[-{1\over\hbar}\int_{t'}^{t''}\mathrm{d}\tau\,V(q(\tau),\tau)\right]\right\rangle_0\,,\]
wheretheexpectationvalueisdefinedin(7)with\(\xi=\hbar/m.\)Withthisnormalization,\(\Pi(t',t';q'',q')=\delta(q''-q')\,\)whichisthekernelassociatedwiththeidentityoperator.
PathintegralsandlocalMarkovprocesses
Weintroduceinsidethepathintegral(10)theidentity
\[1=\int\mathrm{d}q\,\delta\bigl(q-q(t)\bigr)\\mathrm{with}\t'0\,.\]
Weset
\[\mathcal{S}(\mathbf{q})=\mathcal{S}_0(\mathbf{q})+\lambda\int\mathrm{d}\tau\,q^4(\tau)\]
with
\[\mathcal{S}_0(\mathbf{q})=\frac{1}{2}\int\mathrm{d}\tau\,\bigl(\dot{q}^2(\tau)+q^2(\tau)\bigr).\]
Theexpansionofthecorrespondingpathintegralcanthenbewrittenas(hereweset\(\hbar=1\))
\[\mathcal{Z}(\lambda)=\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}_0(\mathbf{q})}\sum_{k=0}^\infty{(-\lambda)^k\overk!}\left[\int\mathrm{d}\tau\,q^4(\tau)\right]^k\sim\mathcal{Z}(0)\sum_{k=0}^\infty{(-\lambda)^k\overk!}\left\langle\left[\int\mathrm{d}\tau\,q^4(\tau)\right]^k\right\rangle_0,\]
where\(\langle\bullet\rangle_0\)meansexpectationvaluewithrespecttotheGaussianmeasureassociatedwith\(\mathcal{S}_0\)andthesymbol\(\sim\)meansthattheperturbativeseriesisnotconvergent.EachtermintheseriescanthenbeevaluatedusingWick'stheoremandtheexplicitformoftheGaussiantwo-pointfunction.Forexample,atfirstorderin\(\lambda\,\)
\[\langleq^4(\tau)\rangle_0=3(\langleq^2(\tau)\rangle_0)^2.\]
Thenextorderinvolves
\[\langleq^4(\tau)q^4(\tau')\rangle_0=9(\langleq^2(\tau)\rangle_0)^2(\langleq^2(\tau')\rangle_0)^2+72
\langleq^2(\tau)\rangle_0\langleq^2(\tau')\rangle_0(\langleq(\tau)q(\tau')\rangle_0)^2+24
(\langleq(\tau)q(\tau')\rangle_0)^4.\]
ItisthenconvenienttorepresentindividualcontributionsgraphicallyintermsofFeynmandiagrams.Letuspointoutthatsuchanexpansionisdivergentforallvaluesoftheparameter\(\lambda\.\)Itisanasymptoticseries,usefulassuchonlyfor\(\lambda\)smallenough.Forlargervaluesoftheexpansionparameter,seriessummationmethodsarerequired.
Quantumtimeevolution
FollowingFeynman(Feynman1948),quantumtime-evolution(herewerefertorealphysicaltime)canbedescribedintermsof(oscillatory)pathintegrals.
Inthisformalism,consideringasystemclassicallydescribedbytheCartesiancoordinates\(\mathbf{q}\equiv\{q^1,q^2\ldots\}\,\)thematrixelementsofthequantumevolutionoperator\(\mathbf{U}(t'',t')\)betweentimes\(t'\)and\(t''\)aregivenby
asumoverallpossibletrajectories(paths)\(\mathbf{q}(\tau)\equiv\{q^1(\tau),q^2(\tau)\ldots\}\,\)whichinthesimplestcasescanbewrittenas
\[\tag{29}
\langle\mathbf{q}''\left|\mathbf{U}(t'',t')\right|\mathbf{q}'
\rangle=\int\left[\mathrm{d}\mathbf{q}(\tau)\right]\exp\left({i
\over\hbar}\mathcal{A}(\mathbf{q})\right)\]
withtheboundaryconditions
\[\tag{30}
\mathbf{q}(t')=\mathbf{q}',\\mathbf{q}(t'')=\mathbf{q}'',\]
wheretheclassicalaction\(\mathcal{A}(\mathbf{q})\)isthetime-integraloftheclassicalLagrangian:
\[\tag{31}
\mathcal{A}(\mathbf{q})=\int_{t'}^{t''}\mathrm{d}\tau\,\mathcal{L}\left(\mathbf{q}(\tau),\dot{\mathbf{q}}(\tau);\tau\right).\]
Theexpression(29)isvalidwhenthekineticterm,thatis,thetermwithtwotime-derivativesintheLagrangianhastheform\(\textstyle{\frac{1}{2}\sum_i}m_i(\dot{q}^i)^2\,\)otherwisethemeasurehastobemodifiedandnewproblemsarise.Anexampleofthelattersituationisprovidedwhenthecoordinates\(q^i\)parametrizeaRiemannianmanifoldandthekineticterminvolves\(\textstyle{\sum_{i,j}}\dot{q}^ig_{ij}(\mathbf{q})\dot{q}^j\,\)where\(g_{ij}\)isthemetrictensor.
Theformulationofquantummechanicsintermsofpathintegralsactuallyexplainswhyequationsofmotioninclassicalmechanicscanbederivedfromavariationalprinciple.
Intheclassicallimit,thatis,whenthetypicalclassicalactionislargewithrespectto\(\hbar\,\)thepathintegralcanbeevaluatedbyusingthestationaryphasemethod.Thesumoverpathsisthusdominatedbypathsthatleavetheactionstationary:theclassicalpathsthatsatisfy
\[\tag{32}
\mathcal{A}\left(\mathbf{q}+\delta\mathbf{q}\right)-\mathcal{A}\left(\mathbf{q}\right)=O(\|\delta\mathbf{q}\|^2)\\Rightarrow\\frac{\delta\mathcal{A}}{\deltaq^i}=0\\Rightarrow\{\partial\mathcal{L}\over\partialq^i}-{\mathrm{d}\over\mathrm{d}t}{\partial\mathcal{L}\over\partial\dot{q}^i}=0\]
withtheboundaryconditions(30).Theleadingordercontributionisthenobtainedbyexpandingthepatharoundtheclassicalpath,keepingonlythequadraticterminthedeviationandperformingthecorrespondingGaussianintegration.
Thispropertygeneralizestorelativisticquantumfieldtheory.
Fromthemathematicalpointofview,itismuchmoredifficulttodefinerigorouslythereal-timepathintegralthantheimaginary-timestatisticalpathintegral.Apossiblestrategyinvolves,whenapplicable,tocalculatephysicalobservablesforimaginarytimeandthentoproceedbyanalyticcontinuation.
Barrierpenetrationinthesemi-classicallimit
Thepurposeofthissectionistoillustratewithasimpleexampletheevaluationofstatistical(orimaginarytime)pathintegralsinthesemi-classicalapproximation.Itismoretechnicalandcanbeomittedinafirstreading.
Thepathintegralassociatedwith\(\mathrm{tr}\,\mathrm{e}^{-t\hatH/\hbar}\,\)
\[\tag{33}
\mathcal{Z}=\int[\mathrm{d}q(\tau)]\mathrm{e}^{-\mathcal{S}(\mathbf{q})/\hbar}\quad\text{with}\;q(t/2)=q(-t/2),\]
isespeciallywellsuitedtotheevaluation,inthesemi-classicallimit\(\hbar\to0\,\)ofspecificquantumphenomenacalledbarrierpenetrationortunnelling.Indeed,itcanbeshownthattheclassicallyforbiddenbarrierpenetrationappears,inthesemi-classicallimit,asformallyrelatedtoclassicalevolutioninimaginarytime.
Toexplainthegeneralidea,weconsideranexampleoftheform
\[\tag{34}
\mathcal{S}(\mathbf{q})=\int_{-t/2}^{t/2}\mathrm{d}\tau\left[\frac{1}{2}m\dot{q}^2(\tau)+V\bigl(q(\tau)\bigr)\right],\]
withthepotential
\[\tag{35}
V(q)=\frac{1}{2}q^2-\frac{1}{2}\lambdaq^3\,,\]
whichhasonelocalminimumat\(q=0\)(\(V=0\)),alocalmaximumat\(q=2/(3\lambda)\)(\(V=4/(27\lambda^2)\))andgoesto\(\mp\infty\)when\(q\to\pm\infty\.\)
Theproblemistoevaluatetheprobabilityperunittimeforaparticlelocalizedinitiallyinthewellofthepotentialat\(q=0\)toescapethewell.Sincethepotential(35)isnotboundedfrombelow,itisfirstnecessarytodefinethequantumHamiltonian.Inthisexample,onecanproceedbyanalyticcontinuationstartingfrom\(\lambda\)pureimaginary.AsconjecturedinitiallybyBessisandZinn-Justin(unpublished),thecorrespondingHamiltonian,thoughcomplex,hasadiscreterealspectrumasaconsequenceofthesymmetry\(q\mapsto-q\,\)\(\hatH\mapsto\hatH^*\,\)asymmetryalsocalledPTsymmetry(PbeingtheparitytransformationandTthetime-reversaltransformation).Returningbyanalyticcontinuationto\(\lambda\)real,onefindsinthiscaseacomplexenergyspectrum(quantumresonances),theimaginarypartoftheenergyeigenvaluesbeingdirectlyrelatedtotunnelling.
Inthepathintegralframework,itcanbeshownthatbarrierpenetrationeffectscanbederivedfromanevaluationoftheintegral(33)for\(\hbar\to0\)and,therefore,bythesteepest-descentmethod,suitablygeneralizedtopathintegrals.Onelooksfornon-trivialsaddlepoints,herenon-constantsolutionsoftheclassicalequationsofmotionderivedfromtheEuclideanaction(34),whichcorrespondformallytoevolutioninimaginarytime.Moreover,ifoneisinterestedonlyinstateswithenergiesoforder\(\hbar\,\)thenonehastotakethelimit\(|t|\to\infty\.\)Therefore,onelooksforsolutionsthathaveafiniteactionontherealline.Thesesolutionsarecalledinstantons.Here,
theequationofmotionobtainedbyvarying\(\mathcal{S}\)is
\[-\ddotq(\tau)+q(\tau)-\frac{3}{2}\lambdaq^2(\tau)=0\,.\]
Duetotimetranslationinvariance,onefindsaone-parameterfamilyofinstantonsolutions:
\[q_c(\tau)={1\over\lambda\cosh^2((\tau-\tau_0)/2)}\\Rightarrow\\mathcal{S}(\mathbf{q}_c)=\int_{-\infty}^{+\infty}\mathrm{d}\tau\,\mathcal{L}_{\mathrm{E}}(\mathbf{q}_c)={8\over15\lambda^2}.\]
Completingthecalculationofthesaddlepointcontributionisanon-trivialexercisebecauseitrequiresfactorizingthepathintegralmeasureintoanintegrationover\(\tau_0\)(acollectivecoordinaterelatedtothebreakingoftime-translationsymmetrybythesolution)beforeusingasaddlepointapproximationfortheothermodesofthepath.Oneinfersthat,uptopowerlawcorrections,theprobabilityperunittimeofleavingthewell
isoforder\(\exp{-\mathcal{S}(\mathbf{q}_c)/\hbar}=\exp{-8/(15\lambda^2\hbar)}.\)
Pathintegrals:Generalizations
Wehavepresentedonlythesimplestformofpathintegrals,whichforthepointofviewofquantummechanicsinvolveonlyaclassicalLagrangianwiththegeneralform(11).FormoregeneralLagrangiansorHamiltonians,oneencountersnewproblemsinthedefinitionofpathintegrals.
Thequantumparticleinastaticmagneticfield
WhentheLagrangianinvolvesatermlinearinthevelocity,asintheexampleofaquantumparticleinamagneticfield,
\[\tag{36}
\mathcal{L}(\mathbf{q},\dot{\mathbf{q}})=\textstyle{1\over2}\,m\,\dot{\mathbf{q}}^2-e\,\mathbf{A}(\mathbf{q})\cdot\dot{\mathbf{q}}\,,\]
where\(\mathbf{A}(\mathbf{q})\)isagivenvectorpotential,
anewproblemrelatedtoquantizationarises.TheclassicalLagrangiantogetherwiththecorrespondenceprinciple(replacingpositionandvelocitybythecorrespondingquantumoperators)doesnotdeterminethequantumtheorybecauseoperators\(\mathbf{A}(\hat{\mathbf{q}})\)and\(\dot{\hat{\mathbf{q}}}\)nolongercommute.Correspondingly,thenaivecontinuumformofthepathintegralisnotdefinedbecausethecontinuumlimitdependsexplicitlyonthetime-discretizedformofthepathintegralandleadstoaone-parameterfamilyofdifferenttheories.Thisreflects,forexample,intheappearanceofundefinedterms\(\operatorname{sgn}(0)\)incalculations.
TheunderlyingquantumHamiltonianisthenuniquelydeterminedbydemandingeitheritshermiticityorequivalentlyitsgaugeinvariance.Todeterminethepathintegral,onecaneitherreturntoatime-discretizedformconsistentwiththequantumHamiltonian(whichimpliesthemidpointruleintheargumentofthevectorpotential),oraddatermwithhigherordertimederivativesintheaction,forexample,
\[\mathcal{S}\mapsto\mathcal{S}+\eta\int_{t'}^{t''}\mathrm{d}\tau(\ddotq(\tau))^2,\\eta>0\,.\]
ThishastheeffectofrestrictingtheintegrationtopathsthatsatisfyaHölderconditionoforder3/2andarethusdifferentiable,insuchawaythatexpectationsvalueswith\(\dot{\mathbf{q}}\)aredefined.ThisregularizationdoesnotviolategaugeinvariancebutviolateshermiticityoftheHamiltonian.Inthecaseofthemagneticfield,inthe\(\eta\to0\)limit,itfixestheambiguities(\(\operatorname{sgn}(0)=0\))inawaythatisconsistentwithagaugeinvariantHermitianquantumHamiltonian.
Hamiltonianformulationandphasespaceintegration
ForageneralclassicalHamiltonian,thequantumevolutionoperatorcanformallybeexpressedintermsofapathintegralinvolvinganintegrationoverphasespacevariables,position\(\mathbf{q}\)andconjugatemomentum\(\mathbf{p}\:\)
\[\tag{37}
\langle\mathbf{q}''\left|\mathbf{U}(t'',t')\right|\mathbf{q}'
\rangle=\int\left[\mathrm{d}\mathbf{p}(\tau)\mathrm{d}\mathbf{q}(\tau)\right]\exp\left({i
\over\hbar}\mathcal{A}(\mathbf{p},\mathbf{q})\right)\]
withtheboundaryconditions
\(\tag{38}
\mathbf{q}(t')=\mathbf{q}',\\mathbf{q}(t'')=\mathbf{q}'',\)
wheretheclassicalaction\(\mathcal{A}(\mathbf{p},\mathbf{q})\)isnowexpressedintermsoftheclassicalHamiltonian\(H(\mathbf{p},\mathbf{q};t):\)
\[\tag{39}
\mathcal{A}(\mathbf{p},\mathbf{q})=\int_{t'}^{t''}\mathrm{d}\tau\,\left[\mathbf{p}(\tau)\cdot\dot{\mathbf{q}}(\tau)-H\!\left(\mathbf{p}(\tau),\mathbf{q}(\tau);\tau\right)\right].\]
WhentheHamiltonianisquadraticintheconjugatemomentum\(\mathbf{p},\)theintegralover\(\mathbf{p}(\tau)\)isGaussianandcanbeperformedexplicitly:firstoneshifts\(\mathbf{p}(\tau)\)intheexponentialbythesolutionoftheclassicalequation
\(\dot{\mathbf{q}}(\tau)=\frac{\partialH\!\left(\mathbf{p}(\tau),\mathbf{q}(\tau);\tau\right)}{\partial\mathbf{p}(\tau)}\.\)
OnethusrecoversintheexponentialtheclassicalLagrangian.Onethenintegratesover\(\mathbf{p}(\tau)\)andthismaymodifythe\(\mathbf{q}(\tau)\)-integrationmeasureifthecoefficientofthequadratictermin\(\mathbf{p}(\tau)\)isnotaconstant.Inthegeneralcase,theinterpretationofthispathintegralreflectstheproblemsofquantizingclassicalHamiltoniansandtheorderofoperatorsinproducts.TheHamiltonianpathintegralhasmainlyaheuristicvalue(exceptinthesemi-classicallimit).
Holomorphicformalismandbosons
Uptonow,wehavedescribedthepathintegralformalismrelevantfordistinctquantumparticles.Butquantumparticlesareeitherbosons,obeyingtheBose-Einsteinstatisticsorfermions,governedbyFermi-Diracstatistics.Todescribethequantumevolutionofseveralidentical(andthusindiscernible)quantumparticles,thepathintegralformulationhastobegeneralized.
Inthecaseofbosons,itisbasedonthecoherentstatesholomorphicformalismandtheHilbertspaceofanalyticentirefunctions.Forbosonsoccupyingonlyafinitenumberofquantumstates,therelevantpathintegralcanformallybededucedfromthephasespaceintegralbyacomplexchangeofvariables,uptoboundarytermsandboundaryconditions.Intheexampleofonequantumstate,thechangeofvariablesissimply
\[z=(p+iq)/i\sqrt{2}\,,\quad\barz=i(p-iq)/\sqrt{2}\,.\]
Theholomorphicpathintegralthentakestheform
\[\tag{40}
\langle\mathbf{z}''\left|\mathbf{U}(t'',t')\right|\bar{\mathbf{z}}'
\rangle=\int\left[\mathrm{d}\bar{\mathbf{z}}(\tau)\mathrm{d}\mathbf{z}(\tau)\right]\mathrm{e}^{\bar{\mathbf{z}}(t')\cdot\mathbf{z}(t')}\exp\left({i
\over\hbar}\mathcal{A}(\mathbf{z},\bar{\mathbf{z}})\right)\]
withtheboundaryconditions
\(\tag{41}
\bar{\mathbf{z}}(t')=\bar{\mathbf{z}}',\\mathbf{z}(t'')=\mathbf{z}'',\)
wheretheclassicalaction\(\mathcal{A}(\mathbf{z},\bar{\mathbf{z}})\)reads
\[\tag{42}
\mathcal{A}(\mathbf{z},\bar{\mathbf{z}})=\int_{t'}^{t''}\mathrm{d}\tau\,\left[-i\bar{\mathbf{z}}(\tau)\cdot\dot{\mathbf{z}}(\tau)-H\left(i(\mathbf{z}(\tau)-\bar{\mathbf{z}}(\tau))/\sqrt{2},(\mathbf{z}(\tau)+\bar{\mathbf{z}}(\tau))/\sqrt{2};\tau\right)\right].\]
Moregenerally,to\(N\)quantumstatesareassociated\(N\)pairsofcomplexvariables\((z_i,\bar{z_i})\.\)
EvenintheGaussianexample,thispathintegralsuffersfromthesameambiguitiesasintheexampleofaparticleinamagneticfield,andthisleadsalsototheappearanceof\(\operatorname{sgn}(0)\)incalculations.
Grassmannpathintegralsandfermions
TheunderstandingofthissectionnecessitatessomepriorknowledgeofGrassmannorexterioralgebras,includingthedefinitionandpropertiesofGrassmanndifferentiationandintegration.
ThedescriptionofthestatisticalpropertiesorofthequantumevolutionoffermionsystemsrequirestheintroductionofelementsofaninfinitedimensionalGrassmannalgebraandtheintegrationoverGrassmannianpaths.Forexample,todescribeasystemwith\(N\)availablequantumstates,oneintroducesthegenerators\(\theta_i(\tau),\)\(\bar\theta_i(\tau),\)\(i=1\ldotsN\,\)ofaGrassmannalgebra.Theysatisfythecommutationrelations
\[\theta_i(\tau)\theta_j(\tau')+\theta_j(\tau')\theta_i(\tau)=0\,,\quad
\theta_i(\tau)\bar\theta_j(\tau')+\bar\theta_j(\tau')\theta_i(\tau)=0\,,\quad\bar\theta_i(\tau)\bar\theta_j(\tau')+\bar\theta_j(\tau')\bar\theta_i(\tau)=0\,.\]
Then,rulesofGrassmanniandifferentiationandintegrationcanbeformulated.Itfollowsthattheelementsofthedensitymatrixatthermalequilibrium,ortheimaginary-timepathintegral,taketheform
\[\left\langle\boldsymbol{\theta}''|U(t'',t')|\bar{\boldsymbol{\theta}}'\right\rangle=\int^{\boldsymbol{\theta}(t'')=\boldsymbol{\theta}''}_{\bar{\boldsymbol{\theta}}(t')=\bar{\boldsymbol{\theta}}'}\left[\mathrm{d}
\boldsymbol{\theta}(\tau)\mathrm{d}\bar{\boldsymbol{\theta}}(\tau)\right]\mathrm{e}^{-\bar{\boldsymbol{\theta}}(t')\cdot\boldsymbol{\theta}(t')}
\exp\left[-\mathcal{S}(\boldsymbol{\theta},\bar{\boldsymbol{\theta}})\right]\]
with
\[\mathcal{S}(\boldsymbol{\theta},\bar{\boldsymbol{\theta}})=\int^{t''}_{t'}\mathrm{d}\tau\,
\left\{\bar{\boldsymbol{\theta}}(\tau)\cdot\dot{\boldsymbol{\theta}}(\tau)+H\left[\boldsymbol{\theta}(\tau),\bar{\boldsymbol{\theta}}
(\tau)\right]\right\},\]
where\(H\left[\boldsymbol{\theta}(\tau),\bar{\boldsymbol{\theta}}
(\tau)\right]\)representstheHamiltonianactingonGrassmannfunctions.
Ageneralization:Thefieldintegral
Whilethepathintegralisaninterestingtopicforitsownsake,themostusefulphysicsapplicationsareprovidedbyageneralization:thefieldintegral,wheretheintegrationoverpathsisreplacedbyanintegrationoverfields.Forexample,inalocalfieldtheoryforaneutralscalarfield\(\phi(x),\)\(x\in\mathbb{R}^d\,\)thepartitionfunctionisgivenby
\[\mathcal{Z}=\int[\mathrm{d}\phi(x)]\mathrm{e}^{-\mathcal{S}(\phi)/\hbar},\]
wheretheEuclideanaction\(\mathcal{S}(\phi)\)isa\(d\)-dimensionalintegralofafunctionofthefieldanditsderivatives(\(\partial_\mu\equiv\partial/\partialx_\mu\)):
\[\mathcal{S}(\phi)=\int\mathrm{d}^dx\,\mathcal{L}_{\mathrm{E}}(\partial_\mu\phi(x),\phi(x)).\]
Whilethealgebraicpropertiesofthepathintegralgeneralizeeasily,thefieldintegralleadstonewproblemsrequiringnewconceptslikeregularizationandrenormalization.Indeed,anaturalphysicalchoice,forexample,wouldbe
\[\tag{43}
\mathcal{L}_{\mathrm{E}}(\partial_\mu\phi,\phi)=\frac{1}{2}\sum_\mu(\partial_\mu\phi)^2+\frac{1}{2}r\phi^2+{g\over4!}\phi^4,\]
where\(r\)and\(g\ge0\)aretwoparameterscharacterizingthemodel.
However,indimensions\(d>1\)thederivativetermnolongerselectsfieldsregularenough,asadiscreteorlatticeapproximationreveals,and,asaconsequence,fieldcorrelationfunctionsarenotdefinedatcoincidingpoints.Itisnecessarytomodify(inanunphysicalwayfromtheviewpointofquantumphysics)theactionatshortdistance,aprocedurecalledregularization.
Onepossibilityistointroducequadratictermsinthefieldwithderivativesofhigherorder\(2n>d\,\)whichrestricttheintegrationtofieldssatisfyingaHölderconditionasin\(d=1\.\)Anotherpossibilityistoconsideralatticeapproximationwithalatticespacing\(1/\Lambda\.\)Theexistenceofacontinuumlimitorlarge\(\Lambda\)limit,thenrequires,inaddition,tuningtheinitialparametersofthemodelasafunctionof\(\Lambda\,\)aprocedurecalledrenormalization.Renormalization,anditsconsequence,therenormalizationgroup,findanaturalinterpretationinthetheoryofcontinuousmacroscopicphasetransitions.
Inarelativistic-covariantquantumfieldtheory,thereal-timeevolution(in3+1space-timedimensions)isthengivenby
\[\int[\mathrm{d}\phi(x)]\exp\left[{i\over\hbar}\mathcal{A}(\phi)\right],\]
where\(\mathcal{A}\)nowistheclassicalaction,space-timeintegraloftheclassicalLagrangiandensity
\[\mathcal{A}(\phi)=\int\mathrm{d}^4x\,\mathcal{L}(\partial_\mu\phi(x),\phi(x)).\]
IntheexampleoftheEuclideanLagrangian(43),thereal-timeLagrangianreads(\(t\equivx_0\))
\[\mathcal{L}=\frac{1}{2}(\partial_t\phi)^2-\frac{1}{2}(\nabla\phi)^2-\frac{1}{2}r\phi^2-{g\over4!}\phi^4,\]
where\(\nabla\equiv\{\partial/\partialx^1,\partial/\partialx^2,\partial/\partialx^3\}\.\)
Besidescalarbosonfields,ingeneralothertypesoffieldsarealsorequiredlikeGrassmannfieldswithspinforfermionmatter.Moreover,sinceintheStandardModelthatdescribesfundamentalinteractionsatthemicroscopicscale,interactionsaregeneratedbytheprincipleofgaugeinvariance,gaugefieldsalsoappear(andunphysicalspinlessfermionsafterquantization).
References
Bargmann,V(1961).OnaHilbertspaceofanalyticfunctionsandanassociatedintegraltransformpartI.Commun.PureandAppl.Math.14:187-214.doi:10.1002/cpa.3160140303.
Berezin,FA(1966).TheMethodofSecondQuantization,translatedfromRussianAkadNaukMoscow(1965)byMugibayashiNandJeffreyA.AcademicPress,NewYork.ISBN978-0120894505
Berezin,FA(1971).Non-Wienerfunctionalintegrals.Theor.Math.Phys.6:141-155.doi:10.1007/bf01036576.
Caldeira,AOandLeggett,AJ(1981).InfluenceofDissipationonQuantumTunnelinginMacroscopicSystems.PhysicalReviewLetters46:211-214.doi:10.1103/physrevlett.46.211.
Dirac,PAM(1933).TheLagrangianinquantummechanics.Physik.Z.Sowjetunion3:64.ReprintedinSelectedPapersonQuantumElectrodynamics,SchwingerJed.,Dover(New-York1958)ISBN978-0486604442.
Faddeev,LD(1969).TheFeynmanintegralforsingularLagrangians.TheoreticalandMathematicalPhysics1:1-13.doi:10.1007/bf01028566.
Feynman,RP(1948).Space-TimeApproachtoNon-RelativisticQuantumMechanics.ReviewofModernPhysics20(2):367-387.
Feynman,RP(1950).MathematicalFormulationoftheQuantumTheoryofElectromagneticInteractions.PhysicalReview80:440-457.doi:10.1103/physrev.80.440.ReprintedinSelectedPapersonQuantumElectrodynamics,SchwingerJed.,Dover(New-York1958).
Feynman,RPandHibbs,AR(1965).QuantumMechanicsandPathIntegrals.McGraw-HillCompanies,NewYork.ISBN978-0070206502
Gelfand,IMandYaglom,AM(1957).DieIntegrationinFunktionenräumenundihreAnwendunginderQuantentheorie.FortschrittederPhysik5:517-556.ibidem(1960)IntegrationinFunctionalSpacesanditsApplicationsinQuantumPhysics.JournalofMathematicalPhysics1:48-69,containanearlyreviewofthepropertiesofpathintegrals,withmanyreferencestothecorrespondingmathematicalliterature.
Kac,M(1949).OnDistributionsofcertainWienerFunctionals.Trans.Amer.Math.Soc.65:1-13.Seealso
Kac,M(1959).ProbabilityandRelatedTopicsinPhysicalSciences,chapter4.Interscience,NewYork.ISBN0821800477
Klauder,JR(1960).TheactionoptionandaFeynmanquantizationofspinorfieldsintermsofordinaryc-numbers.AnnalsofPhysics11:123-168.
Langer,JS(1967).Theoryofthecondensationpoint.AnnalsofPhysics41:108-157.doi:10.1016/0003-4916(67)90200-x.
Martin,JL(1959).TheFeynmanPrincipleforaFermiSystem.Proc.Roy.Soc.(London)A251:543-549.doi:10.1098/rspa.1959.0127.
Masani,PandWiener,N(1976).NorbertWiener:CollectedWorks,Volume1,page55,MITPress,Cambridge.ISBN978-0262230704
Matthews,PTandSalam,A(1955).Propagatorsofquantizedfield.NuovoCimento2:120-134.doi:10.1007/bf02856011.
Morette,C(1951).OntheDefinitionandApproximationofFeynman'sPathIntegrals.PhysicalReview81:848-852.
Nelson,E(1964).FeynmanIntegralsandtheSchrödingerEquation.JournalofMathematicalPhysics5:332.doi:10.1063/1.1704124.
Schweber,SS(1962).OnFeynmanQuantization.JournalofMathematicalPhysics3:831-842.doi:10.1063/1.1724296.
Wentzel,G(1924).ZurQuantenoptik.ZeitschriftderPhysik22:193-199.
Wick,GC(1950).TheEvaluationoftheCollisionMatrixPhysicsReview80:268-272.
Wiener,N(1923).DifferentialSpace.JournalofMathematicsandPhysics2:132-174.
Zinn-Justin,J(1981).Perturbationseriesatlargeordersinquantummechanicsandfieldtheories:Applicationtotheproblemofresummation.PhysicsReports70:109-167.doi:10.1016/0370-1573(81)90016-8.
Internalreferences
JamesMeiss(2007)Dynamicalsystems.Scholarpedia,2(2):1629.
EugeneM.Izhikevich(2007)Equilibrium.Scholarpedia,2(10):2014.
JeanZinn-JustinandRiccardoGuida(2008)Gaugeinvariance.Scholarpedia,3(12):8287.
Gerard′tHooft(2008)Gaugetheories.Scholarpedia,3(12):7443.
JamesMeiss(2007)Hamiltoniansystems.Scholarpedia,2(8):1943.
AndreiD.Polyanin,WilliamE.Schiesser,AlexeiI.Zhurov(2008)Partialdifferentialequation.Scholarpedia,3(10):4605.
JeffMoehlis,KresimirJosic,EricT.Shea-Brown(2006)Periodicorbit.Scholarpedia,1(7):1358.
DavidH.TermanandEugeneM.Izhikevich(2008)Statespace.Scholarpedia,3(3):1924.
Furtherreading
Coleman,S(1979).TheusesofinstantonsinTheWhysofSubnuclearPhysics,Erice1977,ZichichiAed.Plenum,NewYork.reprintedinColemanS(1985)AspectsofSymmetry,CambridgeUniversityPress,ISBN0-521-31827-0
Vainshtein,AI;Zakharov,VI;Novikov,VAandShifman,MA(1982).ABCofinstantonsSovietPhysicsUspekhi25(4):195.doi:10.1070/pu1982v025n04abeh004533.
Faddeev,LD(1976).LesHouchesSchool1975inMethodsinFieldTheory,BalianRandZinn-JustinJeds.ElsevierSciencePublishing,Amsterdam.ISBN978-0720404333
Faddeev,LDandSlavnov,AA(1991).GaugeFields.Introductiontoquantumtheory.(2ndedition).Addison-WesleyPublishingCompany,T.ISBN0201524724.
Grosche,CandSteiner,F(1998).HandbookofFeynmanpathintegrals.Springer,Berlin,Heidelberg.ISBN978-3540571353
Kleinert,H(1995).PathIntegralsinQuantumMechanics,StatisticsandPolymerPhysics.WorldScientific,Singapore.ISBN978-981-270-009-4
Popov,VN(2002).FunctionalIntegralsinQuantumFieldTheoryandStatisticalPhysics,translatedfromRussian.Springer,Heildelberg.ISBN978-1-4020-0307-3
Schulman,LS(2005).Techniquesandapplicationsofpathintegration.DoverPublications,US.ISBN978-0486445281
Vasilev,AN(1998).FunctionalMethodsinQuantumFieldTheoryandStatisticalPhysics,translatedfromRussian.GordonandBreach,Amsterdam.ISBN90-5699-035-7
Zinn-Justin,J(2004).PathIntegralsinQuantumMechanics.OxfordUniversityPress,Oxford.ISBN978-0198566748
Frenchversion:Intégraledecheminenmécaniquequantique,EDPSciences2003ISBN978-2868836601,RussiantranslationFislitmat(Moscow2006).
Zinn-Justin,J(2002).QuantumFieldTheoryandCriticalPhenomena(4thedition).OxfordUniversityPress,Oxford.ISBN0198509235
Seealso
Coherentstate(quantummechanics),Densitymatrix,Gaugeinvariance,Gaugetheories,Instanton,Pathintegral(mathematicalphysics),Quantummechanics,Schrödingerequation,
Sponsoredby:Dr.RiccardoGuida,InstitutdePhysiqueThéorique,CEA&CNRS,Gif-sur-Yvette,FranceReviewedby:AnonymousReviewedby:Dr.AndreiA.Slavnov,SteklovMathematicalInstitute,Moscow,RussiaReviewedby:Prof.MasudChaichian,DepartmentofPhysics,UniversityofHelsinki,Finland.Acceptedon:2009-02-0917:49:50GMT
Retrievedfrom"http://www.scholarpedia.org/w/index.php?title=Path_integral&oldid=147600"
Categories:PhysicsQuantummechanicsQuantumandstatisticalfieldtheoryQuantumfieldtheory(foundations)
Personaltools
Login/createaccount
Namespaces
Page
Discussion
Variants
Views
Read
Viewsource
Viewhistory
Actions
Search
Navigation
Mainpage
About
Proposeanewarticle
InstructionsforAuthors
Randomarticle
FAQs
Help
Focalareas
Astrophysics
Celestialmechanics
Computationalneuroscience
Computationalintelligence
Dynamicalsystems
Physics
Touch
Moretopics
Activity
Recentlypublishedarticles
Recentlysponsoredarticles
Recentchanges
Allarticles
ListallCurators
Listallusers
ScholarpediaJournal
Tools
Whatlinkshere
Relatedchanges
Specialpages
Printableversion
Permanentlink
Thispagewaslastmodifiedon11February2015,at09:21.
Thispagehasbeenaccessed160,041times.
"Pathintegral"by
JeanZinn-Justin
islicensedundera
CreativeCommonsAttribution-NonCommercial-ShareAlike3.0UnportedLicense.PermissionsbeyondthescopeofthislicensearedescribedintheTermsofUse
Privacypolicy
AboutScholarpedia
Disclaimers