Path integral formulation - Wikipedia
文章推薦指數: 80 %
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical ...
Pathintegralformulation
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Formulationofquantummechanics
Thisarticleisaboutaformulationofquantummechanics.Forintegralsalongapath,alsoknownaslineorcontourintegrals,seelineintegral.
PartofaseriesofarticlesaboutQuantummechanics
i
ℏ
∂
∂
t
|
ψ
(
t
)
⟩
=
H
^
|
ψ
(
t
)
⟩
{\displaystylei\hbar{\frac{\partial}{\partialt}}|\psi(t)\rangle={\hat{H}}|\psi(t)\rangle}
Schrödingerequation
Introduction
Glossary
History
Background
Classicalmechanics
Oldquantumtheory
Bra–ketnotation
Hamiltonian
Interference
Fundamentals
Complementarity
Decoherence
Entanglement
Energylevel
Measurement
Nonlocality
Quantumnumber
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wavefunction
Collapse
Experiments
Bell'sinequality
Davisson–Germer
Double-slit
Elitzur–Vaidman
Franck–Hertz
Leggett–Garginequality
Mach–Zehnder
Popper
Quantumeraser
Delayed-choice
Schrödinger'scat
Stern–Gerlach
Wheeler'sdelayed-choice
Formulations
Overview
Heisenberg
Interaction
Matrix
Phase-space
Schrödinger
Sum-over-histories(pathintegral)
Equations
Dirac
Klein–Gordon
Pauli
Rydberg
Schrödinger
Interpretations
Overview
Bayesian
Consistenthistories
Copenhagen
deBroglie–Bohm
Ensemble
Hidden-variable
Local
Many-worlds
Objectivecollapse
Quantumlogic
Relational
Transactional
Advancedtopics
Relativisticquantummechanics
Quantumfieldtheory
Quantuminformationscience
Quantumcomputing
Quantumchaos
Densitymatrix
Scatteringtheory
Quantumstatisticalmechanics
Quantummachinelearning
Scientists
Aharonov
Bell
Bethe
Blackett
Bloch
Bohm
Bohr
Born
Bose
deBroglie
Compton
Dirac
Davisson
Debye
Ehrenfest
Einstein
Everett
Fock
Fermi
Feynman
Glauber
Gutzwiller
Heisenberg
Hilbert
Jordan
Kramers
Pauli
Lamb
Landau
Laue
Moseley
Millikan
Onnes
Planck
Rabi
Raman
Rydberg
Schrödinger
Simmons
Sommerfeld
vonNeumann
Weyl
Wien
Wigner
Zeeman
Zeilinger
vte
Thepathintegralformulationisadescriptioninquantummechanicsthatgeneralizestheactionprincipleofclassicalmechanics.Itreplacestheclassicalnotionofasingle,uniqueclassicaltrajectoryforasystemwithasum,orfunctionalintegral,overaninfinityofquantum-mechanicallypossibletrajectoriestocomputeaquantumamplitude.
Thisformulationhasprovencrucialtothesubsequentdevelopmentoftheoreticalphysics,becausemanifestLorentzcovariance(timeandspacecomponentsofquantitiesenterequationsinthesameway)iseasiertoachievethanintheoperatorformalismofcanonicalquantization.Unlikepreviousmethods,thepathintegralallowsonetoeasilychangecoordinatesbetweenverydifferentcanonicaldescriptionsofthesamequantumsystem.AnotheradvantageisthatitisinpracticeeasiertoguessthecorrectformoftheLagrangianofatheory,whichnaturallyentersthepathintegrals(forinteractionsofacertaintype,thesearecoordinatespaceorFeynmanpathintegrals),thantheHamiltonian.Possibledownsidesoftheapproachincludethatunitarity(thisisrelatedtoconservationofprobability;theprobabilitiesofallphysicallypossibleoutcomesmustadduptoone)oftheS-matrixisobscureintheformulation.Thepath-integralapproachhasproventobeequivalenttotheotherformalismsofquantummechanicsandquantumfieldtheory.Thus,byderivingeitherapproachfromtheother,problemsassociatedwithoneortheotherapproach(asexemplifiedbyLorentzcovarianceorunitarity)goaway.[1]
Thepathintegralalsorelatesquantumandstochasticprocesses,andthisprovidedthebasisforthegrandsynthesisofthe1970s,whichunifiedquantumfieldtheorywiththestatisticalfieldtheoryofafluctuatingfieldnearasecond-orderphasetransition.TheSchrödingerequationisadiffusionequationwithanimaginarydiffusionconstant,andthepathintegralisananalyticcontinuationofamethodforsummingupallpossiblerandomwalks.[2]
ThebasicideaofthepathintegralformulationcanbetracedbacktoNorbertWiener,whointroducedtheWienerintegralforsolvingproblemsindiffusionandBrownianmotion.[3]ThisideawasextendedtotheuseoftheLagrangianinquantummechanicsbyPaulDiracinhis1933article.[4][5]Thecompletemethodwasdevelopedin1948byRichardFeynman.SomepreliminarieswereworkedoutearlierinhisdoctoralworkunderthesupervisionofJohnArchibaldWheeler.Theoriginalmotivationstemmedfromthedesiretoobtainaquantum-mechanicalformulationfortheWheeler–FeynmanabsorbertheoryusingaLagrangian(ratherthanaHamiltonian)asastartingpoint.
ThesearefiveoftheinfinitelymanypathsavailableforaparticletomovefrompointAattimettopointBattimet’(>t).Pathswhichself-intersectorgobackwardsintimearenotallowed.
Contents
1Quantumactionprinciple
2Feynman'sinterpretation
3Pathintegralinquantummechanics
3.1Time-slicingderivation
3.2Pathintegral
3.3Freeparticle
3.4Simpleharmonicoscillator
3.5Coulombpotential
3.6TheSchrödingerequation
3.7Equationsofmotion
3.8Stationary-phaseapproximation
3.9Canonicalcommutationrelations
3.10Particleincurvedspace
3.11Measure-theoreticfactors
3.12Expectationvaluesandmatrixelements
4Euclideanpathintegrals
4.1WickrotationandtheFeynman–Kacformula
4.2Thepathintegralandthepartitionfunction
5Quantumfieldtheory
5.1Thepropagator
5.2Functionalsoffields
5.3Expectationvalues
5.4Asaprobability
5.5Schwinger–Dysonequations
6Localization
6.1Ward–Takahashiidentities
7Caveats
7.1Theneedforregulatorsandrenormalization
7.2Orderingprescription
8Thepathintegralinquantum-mechanicalinterpretation
9Quantumgravity
10Quantumtunneling
11Seealso
12Remarks
13Notes
14References
15Externallinks
Quantumactionprinciple[edit]
Inquantummechanics,asinclassicalmechanics,theHamiltonianisthegeneratoroftimetranslations.ThismeansthatthestateataslightlylatertimediffersfromthestateatthecurrenttimebytheresultofactingwiththeHamiltonianoperator(multipliedbythenegativeimaginaryunit,−i).Forstateswithadefiniteenergy,thisisastatementofthedeBroglierelationbetweenfrequencyandenergy,andthegeneralrelationisconsistentwiththatplusthesuperpositionprinciple.
TheHamiltonianinclassicalmechanicsisderivedfromaLagrangian,whichisamorefundamentalquantityrelativetospecialrelativity.TheHamiltonianindicateshowtomarchforwardintime,butthetimeisdifferentindifferentreferenceframes.TheLagrangianisaLorentzscalar,whiletheHamiltonianisthetimecomponentofafour-vector.SotheHamiltonianisdifferentindifferentframes,andthistypeofsymmetryisnotapparentintheoriginalformulationofquantummechanics.
TheHamiltonianisafunctionofthepositionandmomentumatonetime,anditdeterminesthepositionandmomentumalittlelater.TheLagrangianisafunctionofthepositionnowandthepositionalittlelater(or,equivalentlyforinfinitesimaltimeseparations,itisafunctionofthepositionandvelocity).TherelationbetweenthetwoisbyaLegendretransformation,andtheconditionthatdeterminestheclassicalequationsofmotion(theEuler–Lagrangeequations)isthattheactionhasanextremum.
Inquantummechanics,theLegendretransformishardtointerpret,becausethemotionisnotoveradefinitetrajectory.Inclassicalmechanics,withdiscretizationintime,theLegendretransformbecomes
ε
H
=
p
(
t
)
(
q
(
t
+
ε
)
−
q
(
t
)
)
−
ε
L
{\displaystyle\varepsilonH=p(t){\big(}q(t+\varepsilon)-q(t){\big)}-\varepsilonL}
and
p
=
∂
L
∂
q
˙
,
{\displaystylep={\frac{\partialL}{\partial{\dot{q}}}},}
wherethepartialderivativewithrespectto
q
˙
{\displaystyle{\dot{q}}}
holdsq(t+ε)fixed.TheinverseLegendretransformis
ε
L
=
ε
p
q
˙
−
ε
H
,
{\displaystyle\varepsilonL=\varepsilonp{\dot{q}}-\varepsilonH,}
where
q
˙
=
∂
H
∂
p
,
{\displaystyle{\dot{q}}={\frac{\partialH}{\partialp}},}
andthepartialderivativenowiswithrespecttopatfixedq.
Inquantummechanics,thestateisasuperpositionofdifferentstateswithdifferentvaluesofq,ordifferentvaluesofp,andthequantitiespandqcanbeinterpretedasnoncommutingoperators.Theoperatorpisonlydefiniteonstatesthatareindefinitewithrespecttoq.SoconsidertwostatesseparatedintimeandactwiththeoperatorcorrespondingtotheLagrangian:
e
i
[
p
(
q
(
t
+
ε
)
−
q
(
t
)
)
−
ε
H
(
p
,
q
)
]
.
{\displaystylee^{i{\big[}p{\big(}q(t+\varepsilon)-q(t){\big)}-\varepsilonH(p,q){\big]}}.}
Ifthemultiplicationsimplicitinthisformulaarereinterpretedasmatrixmultiplications,thefirstfactoris
e
−
i
p
q
(
t
)
,
{\displaystylee^{-ipq(t)},}
andifthisisalsointerpretedasamatrixmultiplication,thesumoverallstatesintegratesoverallq(t),andsoittakestheFouriertransforminq(t)tochangebasistop(t).ThatistheactionontheHilbertspace–changebasistopattimet.
Nextcomes
e
−
i
ε
H
(
p
,
q
)
,
{\displaystylee^{-i\varepsilonH(p,q)},}
orevolveaninfinitesimaltimeintothefuture.
Finally,thelastfactorinthisinterpretationis
e
i
p
q
(
t
+
ε
)
,
{\displaystylee^{ipq(t+\varepsilon)},}
whichmeanschangebasisbacktoqatalatertime.
Thisisnotverydifferentfromjustordinarytimeevolution:theHfactorcontainsallthedynamicalinformation–itpushesthestateforwardintime.ThefirstpartandthelastpartarejustFouriertransformstochangetoapureqbasisfromanintermediatepbasis.
...weseethattheintegrandin(11)mustbeoftheformeiF/h,whereFisafunctionofqT,q1,q2,…qm,qt,whichremainsfiniteashtendstozero.Letusnowpictureoneoftheintermediateqs,sayqk,asvaryingcontinuouslywhiletheotheronesarefixed.Owingtothesmallnessofh,weshalltheningeneralhaveF/hvaryingextremelyrapidly.ThismeansthateiF/hwillvaryperiodicallywithaveryhighfrequencyaboutthevaluezero,asaresultofwhichitsintegralwillbepracticallyzero.TheonlyimportantpartinthedomainofintegrationofqkisthusthatforwhichacomparativelylargevariationinqkproducesonlyaverysmallvariationinF.ThispartistheneighbourhoodofapointforwhichFisstationarywithrespecttosmallvariationsinqk.Wecanapplythisargumenttoeachofthevariablesofintegration...andobtaintheresultthattheonlyimportantpartinthedomainofintegrationisthatforwhichFisstationaryforsmallvariationsinallintermediateqs....WeseethatFhasforitsclassicalanalogue∫tTLdt,whichisjusttheactionfunction,whichclassicalmechanicsrequirestobestationaryforsmallvariationsinalltheintermediateqs.Thisshowsthewayinwhichequation(11)goesoverintoclassicalresultswhenhbecomesextremelysmall.
Dirac(1933),p.69
AnotherwayofsayingthisisthatsincetheHamiltonianisnaturallyafunctionofpandq,exponentiatingthisquantityandchangingbasisfromptoqateachstepallowsthematrixelementofHtobeexpressedasasimplefunctionalongeachpath.Thisfunctionisthequantumanalogoftheclassicalaction.ThisobservationisduetoPaulDirac.[6]
Diracfurthernotedthatonecouldsquarethetime-evolutionoperatorintheSrepresentation:
e
i
ε
S
,
{\displaystylee^{i\varepsilonS},}
andthisgivesthetime-evolutionoperatorbetweentimetandtimet+2ε.WhileintheHrepresentationthequantitythatisbeingsummedovertheintermediatestatesisanobscurematrixelement,intheSrepresentationitisreinterpretedasaquantityassociatedtothepath.Inthelimitthatonetakesalargepowerofthisoperator,onereconstructsthefullquantumevolutionbetweentwostates,theearlyonewithafixedvalueofq(0)andthelateronewithafixedvalueofq(t).Theresultisasumoverpathswithaphase,whichisthequantumaction.Crucially,Diracidentifiedinthisarticlethedeepquantum-mechanicalreasonfortheprincipleofleastactioncontrollingtheclassicallimit(seequotationbox).
Feynman'sinterpretation[edit]
Dirac'sworkdidnotprovideapreciseprescriptiontocalculatethesumoverpaths,andhedidnotshowthatonecouldrecovertheSchrödingerequationorthecanonicalcommutationrelationsfromthisrule.ThiswasdonebyFeynman.[nb1]Thatis,theclassicalpatharisesnaturallyintheclassicallimit.
FeynmanshowedthatDirac'squantumactionwas,formostcasesofinterest,simplyequaltotheclassicalaction,appropriatelydiscretized.Thismeansthattheclassicalactionisthephaseacquiredbyquantumevolutionbetweentwofixedendpoints.Heproposedtorecoverallofquantummechanicsfromthefollowingpostulates:
Theprobabilityforaneventisgivenbythesquaredmodulusofacomplexnumbercalledthe"probabilityamplitude".
Theprobabilityamplitudeisgivenbyaddingtogetherthecontributionsofallpathsinconfigurationspace.
ThecontributionofapathisproportionaltoeiS/ħ,whereSistheactiongivenbythetimeintegraloftheLagrangianalongthepath.
Inordertofindtheoverallprobabilityamplitudeforagivenprocess,then,oneaddsup,orintegrates,theamplitudeofthe3rdpostulateoverthespaceofallpossiblepathsofthesysteminbetweentheinitialandfinalstates,includingthosethatareabsurdbyclassicalstandards.Incalculatingtheprobabilityamplitudeforasingleparticletogofromonespace-timecoordinatetoanother,itiscorrecttoincludepathsinwhichtheparticledescribeselaboratecurlicues,curvesinwhichtheparticleshootsoffintoouterspaceandfliesbackagain,andsoforth.Thepathintegralassignstoalltheseamplitudesequalweightbutvaryingphase,orargumentofthecomplexnumber.Contributionsfrompathswildlydifferentfromtheclassicaltrajectorymaybesuppressedbyinterference(seebelow).
FeynmanshowedthatthisformulationofquantummechanicsisequivalenttothecanonicalapproachtoquantummechanicswhentheHamiltonianisatmostquadraticinthemomentum.AnamplitudecomputedaccordingtoFeynman'sprincipleswillalsoobeytheSchrödingerequationfortheHamiltoniancorrespondingtothegivenaction.
Thepathintegralformulationofquantumfieldtheoryrepresentsthetransitionamplitude(correspondingtotheclassicalcorrelationfunction)asaweightedsumofallpossiblehistoriesofthesystemfromtheinitialtothefinalstate.AFeynmandiagramisagraphicalrepresentationofaperturbativecontributiontothetransitionamplitude.
Pathintegralinquantummechanics[edit]
Time-slicingderivation[edit]
Mainarticle:RelationbetweenSchrödinger'sequationandthepathintegralformulationofquantummechanics
Onecommonapproachtoderivingthepathintegralformulaistodividethetimeintervalintosmallpieces.Oncethisisdone,theTrotterproductformulatellsusthatthenoncommutativityofthekineticandpotentialenergyoperatorscanbeignored.
Foraparticleinasmoothpotential,thepathintegralisapproximatedbyzigzagpaths,whichinonedimensionisaproductofordinaryintegrals.Forthemotionoftheparticlefrompositionxaattimetatoxbattimetb,thetimesequence
t
a
=
t
0
<
t
1
<
⋯
<
t
n
−
1
<
t
n
<
t
n
+
1
=
t
b
{\displaystylet_{a}=t_{0}
延伸文章資訊
- 1Path integral - Wikipedia
Path integral may refer to: Line integral, the integral of a function along a curve; Functional i...
- 2Path integral formulation - Wikipedia
The path integral formulation is a description in quantum mechanics that generalizes the action p...
- 3Deriving The Feynman Path Integral Part 1 - YouTube
- 4The Path Integral approach to Quantum Mechanics ... - EPFL
1 The path integral formalism. 5. 1.1 Introducing the path integrals . . . . . . . . . . . . . . ...
- 5Field Theory: A Path Integral Approach - 博客來
書名:Field Theory: A Path Integral Approach,語言:英文,ISBN:9789812568472,頁數:361,作者:Das, Ashok,出版日期:2006...