Anaerobic respiration - Wikipedia
文章推薦指數: 80 %
Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, ... Anaerobicrespiration FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Respirationusingelectronacceptorsotherthanoxygen NottobeconfusedwithFermentation. Anaerobicrespirationisrespirationusingelectronacceptorsotherthanmolecularoxygen(O2).Althoughoxygenisnotthefinalelectronacceptor,theprocessstillusesarespiratoryelectrontransportchain.[1] Inaerobicorganismsundergoingrespiration,electronsareshuttledtoanelectrontransportchain,andthefinalelectronacceptorisoxygen.Molecularoxygenisahigh-energy[2]oxidizingagentand,therefore,isanexcellentelectronacceptor.Anaerobesinsteaduselower-energy,less-oxidizingsubstancessuchasnitrate(NO−3),fumarate(C4H2O2−4),sulfate(SO2−4),orelementalsulfur(S).TheseterminalelectronacceptorshavesmallerreductionpotentialsthanO2andreleaselessenergyperoxidizedmolecule.Therefore,anaerobicrespirationislessefficientthanaerobic. Contents 1Ascomparedwithfermentation 2Ecologicalimportance 3Economicrelevance 4Examplesofelectronacceptorsinrespiration 5Seealso 6Furtherreading 7References Ascomparedwithfermentation[edit] AnaerobiccellularrespirationandfermentationgenerateATPinverydifferentways,andthetermsshouldnotbetreatedassynonyms.Cellularrespiration(bothaerobicandanaerobic)useshighlyreducedchemicalcompoundssuchasNADHandFADH2(forexampleproducedduringglycolysisandthecitricacidcycle)toestablishanelectrochemicalgradient(oftenaprotongradient)acrossamembrane.Thisresultsinanelectricalpotentialorionconcentrationdifferenceacrossthemembrane.Thereducedchemicalcompoundsareoxidizedbyaseriesofrespiratoryintegralmembraneproteinswithsequentiallyincreasingreductionpotentials,withthefinalelectronacceptorbeingoxygen(inaerobicrespiration)oranotherchemicalsubstance(inanaerobicrespiration).Aprotonmotiveforcedrivesprotonsdownthegradient(acrossthemembrane)throughtheprotonchannelofATPsynthase.TheresultingcurrentdrivesATPsynthesisfromADPandinorganicphosphate. Fermentation,incontrast,doesnotuseanelectrochemicalgradientbutinsteadusesonlysubstrate-levelphosphorylationtoproduceATP.TheelectronacceptorNAD+isregeneratedfromNADHformedinoxidativestepsofthefermentationpathwaybythereductionofoxidizedcompounds.Theseoxidizedcompoundsareoftenformedduringthefermentationpathwayitself,butmayalsobeexternal.Forexample,inhomofermentativelacticacidbacteria,NADHformedduringtheoxidationofglyceraldehyde-3-phosphateisoxidizedbacktoNAD+bythereductionofpyruvatetolacticacidatalaterstageinthepathway.Inyeast,acetaldehydeisreducedtoethanoltoregenerateNAD+. Therearetwoimportantanaerobicmicrobialmethaneformationpathways,throughcarbondioxide/bicarbonate(HCO−3)reduction(respiration)oracetatefermentation.[3] Ecologicalimportance[edit] Anaerobicrespirationisacriticalcomponentoftheglobalnitrogen,iron,sulfur,andcarboncyclesthroughthereductionoftheoxyanionsofnitrogen,sulfur,andcarbontomore-reducedcompounds.Thebiogeochemicalcyclingofthesecompounds,whichdependsuponanaerobicrespiration,significantlyimpactsthecarboncycleandglobalwarming.Anaerobicrespirationoccursinmanyenvironments,includingfreshwaterandmarinesediments,soil,subsurfaceaquifers,deepsubsurfaceenvironments,andbiofilms.Evenenvironments,suchassoil,thatcontainoxygenalsohavemicro-environmentsthatlackoxygenduetotheslowdiffusioncharacteristicsofoxygengas. Anexampleoftheecologicalimportanceofanaerobicrespirationistheuseofnitrateasaterminalelectronacceptor,ordissimilatorydenitrification,whichisthemainroutebywhichfixednitrogenisreturnedtotheatmosphereasmolecularnitrogengas.[4]Thedenitrificationprocessisalsoveryimportantinhost-microbeinteractions.Similartomitochondriainoxygen-respiringmicroorganisms,somesingle-cellularanaerobicciliatesusedenitrifyingendosymbiontstogainenergy.[5]Anotherexampleismethanogenesis,aformofcarbon-dioxiderespiration,thatisusedtoproducemethanegasbyanaerobicdigestion.Biogenicmethaneisusedasasustainablealternativetofossilfuels.Onthenegativeside,uncontrolledmethanogenesisinlandfillsitesreleaseslargevolumesofmethaneintotheatmosphere,whereitactsasapowerfulgreenhousegas.[6]Sulfaterespirationproduceshydrogensulfide,whichisresponsibleforthecharacteristic'rottenegg'smellofcoastalwetlandsandhasthecapacitytoprecipitateheavymetalionsfromsolution,leadingtothedepositionofsulfidicmetalores.[7] Economicrelevance[edit] Dissimilatorydenitrificationiswidelyusedintheremovalofnitrateandnitritefrommunicipalwastewater.Anexcessofnitratecanleadtoeutrophicationofwaterwaysintowhichtreatedwaterisreleased.Elevatednitritelevelsindrinkingwatercanleadtoproblemsduetoitstoxicity.Denitrificationconvertsbothcompoundsintoharmlessnitrogengas.[8] AnaerobicDenitrification(ETCSystem)Themodelaboveshowstheprocessofanaerobicrespirationthroughdenitrification,whichusesnitrogen(intheformofnitrate,NO−3)astheelectronacceptor.NO−3goesthroughrespiratorydehydrogenaseandreducesthrougheachstepfromtheubiquinosethroughthebc1complexthroughtheATPsynthaseproteinaswell.EachreductaseremovesoxygenstepbystepsothatthefinalproductofanaerobicrespirationisN2.1.Cytoplasm2.PeriplasmComparetotheaerobicelectrontransportchain. Specifictypesofanaerobicrespirationarealsocriticalinbioremediation,whichusesmicroorganismstoconverttoxicchemicalsintoless-harmfulmoleculestocleanupcontaminatedbeaches,aquifers,lakes,andoceans.Forexample,toxicarsenateorselenatecanbereducedtolesstoxiccompoundsbyvariousanaerobicbacteriaviaanaerobicrespiration.Thereductionofchlorinatedchemicalpollutants,suchasvinylchlorideandcarbontetrachloride,alsooccursthroughanaerobicrespiration. Anaerobicrespirationisusefulingeneratingelectricityinmicrobialfuelcells,whichemploybacteriathatrespiresolidelectronacceptors(suchasoxidizediron)totransferelectronsfromreducedcompoundstoanelectrodeandreleasetheenergyofoxygenattheotherelectrode.Thisprocesscansimultaneouslydegradeorganiccarbonwasteandgenerateelectricity.[9] Examplesofelectronacceptorsinrespiration[edit] Type Lifestyle Electronacceptor Products Eo′(V) Exampleorganisms Aerobicrespiration Obligateaerobesandfacultativeanaerobes O2 H2O,CO2 +0.82 Aerobicprokaryotes Perchloraterespiration Facultativeanaerobes ClO−4,ClO−3 H2O,O2,Cl− +0.797 Azospirasuillum,Sedimenticolaselenatireducens,Sedimenticolathiotaurini,andothergramnegativeprokaryotes[10] Iodaterespiration Facultativeanaerobes IO−3 H2O,H2O2,I− +0.72 Denitromonas,[11]Azoarcus,Pseudomonas,andotherprokaryotes[12] Ironreduction Facultativeanaerobesandobligateanaerobes Fe(III) Fe(II) +0.75 OrganismswithintheorderDesulfuromonadales(suchasGeobacter,Geothermobacter,Geopsychrobacter,Pelobacter)andShewanellaspecies[13] Manganese Facultativeanaerobesandobligateanaerobes Mn(IV) Mn(II) DesulfuromonadalesandShewanellaspecies[13] Cobaltreduction Facultativeanaerobesandobligateanaerobes Co(III) Co(II) Geobactersulfurreducens Uraniumreduction Facultativeanaerobesandobligateanaerobes U(VI) U(IV) Geobactermetallireducens,Shewanellaoneidensis[14] Nitratereduction(denitrification) Facultativeanaerobes NitrateNO−3 (Ultimately)N2 +0.40 Paracoccusdenitrificans,Escherichiacoli Fumaraterespiration Facultativeanaerobes Fumarate Succinate +0.03 Escherichiacoli Sulfaterespiration Obligateanaerobes SulfateSO2−4 SulfideHS− −0.22 ManyDeltaproteobacteriaspeciesintheordersDesulfobacterales,Desulfovibrionales,andSyntrophobacterales Methanogenesis(carbondioxidereduction) Methanogens CarbondioxideCO2 MethaneCH4 −0.25 Methanosarcinabarkeri Sulfurrespiration(sulfurreduction) Facultativeanaerobesandobligateanaerobes SulfurS0 SulfideHS− −0.27 Desulfuromonadales Acetogenesis(carbondioxidereduction) Obligateanaerobes CarbondioxideCO2 Acetate −0.30 Acetobacteriumwoodii Dehalorespiration Facultativeanaerobesandobligateanaerobes HalogenatedorganiccompoundsR–X HalideionsanddehalogenatedcompoundX−+R–H +0.25–+0.60[15] DehalococcoidesandDehalobacterspecies Seealso[edit] Hydrogenosomesandmitosomes Anaerobicdigestion[16] Microbialfuelcell Standardelectrodepotential(datapage) Tableofstandardreductionpotentialsforhalf-reactionsimportantinbiochemistry Lithotrophs Furtherreading[edit] Gregory,KelvinB.;Bond,DanielR.;Lovley,DerekR.(June2004)."Graphiteelectrodesaselectrondonorsforanaerobicrespiration".EnvironmentalMicrobiology.6(6):596–604.doi:10.1111/j.1462-2920.2004.00593.x.ISSN 1462-2912.PMID 15142248. References[edit] ^Slonczewski,JoanL.;Foster,JohnW.(2011).Microbiology:AnEvolvingScience(2nd ed.).NewYork:W.W.Norton.p. 166.ISBN 9780393934472. ^Schmidt-Rohr,K.(2020)."OxygenIstheHigh-EnergyMoleculePoweringComplexMulticellularLife:FundamentalCorrectionstoTraditionalBioenergetics".ACSOmega.5(5):2221–2233.doi:10.1021/acsomega.9b03352.PMC 7016920.PMID 32064383. ^Sapart;et al.(2017)."TheoriginofmethaneintheEastSiberianArcticShelfunraveledwithtripleisotopeanalysis".Biogeosciences.14(9):2283–2292.Bibcode:2017BGeo...14.2283S.doi:10.5194/bg-14-2283-2017. ^Simon,Jörg;Klotz,MartinG.(2013-02-01)."Diversityandevolutionofbioenergeticsystemsinvolvedinmicrobialnitrogencompoundtransformations".BiochimicaetBiophysicaActa(BBA)-Bioenergetics.1827(2):114–135.doi:10.1016/j.bbabio.2012.07.005.PMID 22842521. ^Graf,JonS.;Schorn,Sina;Kitzinger,Katharina;Ahmerkamp,Soeren;Woehle,Christian;Huettel,Bruno;Schubert,CarstenJ.;Kuypers,MarcelM.M.;Milucka,Jana(3March2021)."Anaerobicendosymbiontgeneratesenergyforciliatehostbydenitrification".Nature.591(7850):445–450.Bibcode:2021Natur.591..445G.doi:10.1038/s41586-021-03297-6.PMC 7969357.PMID 33658719. ^Bogner,Jean;Pipatti,Riitta;Hashimoto,Seiji;Diaz,Cristobal;Mareckova,Katarina;Diaz,Luis;Kjeldsen,Peter;Monni,Suvi;Faaij,Andre(2008-02-01)."Mitigationofglobalgreenhousegasemissionsfromwaste:conclusionsandstrategiesfromtheIntergovernmentalPanelonClimateChange(IPCC)FourthAssessmentReport.WorkingGroupIII(Mitigation)".WasteManagement&Research.26(1):11–32.doi:10.1177/0734242x07088433.ISSN 0734-242X.PMID 18338699.S2CID 29740189. ^Pester,Michael;Knorr,Klaus-Holger;Friedrich,MichaelW.;Wagner,Michael;Loy,Alexander(2012-01-01)."Sulfate-reducingmicroorganismsinwetlands–famelessactorsincarboncyclingandclimatechange".FrontiersinMicrobiology.3:72.doi:10.3389/fmicb.2012.00072.ISSN 1664-302X.PMC 3289269.PMID 22403575. ^Nancharaiah,Y.V.;VenkataMohan,S.;Lens,P.N.L.(2016-09-01)."Recentadvancesinnutrientremovalandrecoveryinbiologicalandbioelectrochemicalsystems".BioresourceTechnology.215:173–185.doi:10.1016/j.biortech.2016.03.129.ISSN 1873-2976.PMID 27053446. ^Xu,Bojun;Ge,Zheng;He,Zhen(2015-05-15)."Sedimentmicrobialfuelcellsforwastewatertreatment:challengesandopportunities".EnvironmentalScience:WaterResearch&Technology.1(3):279–284.doi:10.1039/c5ew00020c.ISSN 2053-1419. ^Melnyk,RyanA.;Engelbrektson,Anna;Clark,IainC.;Carlson,HansK.;Byrne-Bailey,Kathy;Coates,JohnD.(2011)."IdentificationofaPerchlorateReductionGenomicIslandwithNovelRegulatoryandMetabolicGenes".AppliedandEnvironmentalMicrobiology.77(20):7401–7404.Bibcode:2011ApEnM..77.7401M.doi:10.1128/AEM.05758-11.PMC 3194888.PMID 21856823. ^Reyes-Umana,Victor;Henning,Zachary;Lee,Kristina;Barnum,TylerP.;Coates,JohnD.(2021-07-02)."Geneticandphylogeneticanalysisofdissimilatoryiodate-reducingbacteriaidentifiespotentialnichesacrosstheworld'soceans".TheISMEJournal.16:38–49.doi:10.1038/s41396-021-01034-5.ISSN 1751-7370.PMID 34215855.S2CID 235722250. ^Reyes-Umana,Victor;Henning,Zachary;Lee,Kristina;Barnum,Tyler;Coates,John(2020)."Geneticandphylogeneticanalysisofdissimilatoryiodate-reducingbacteriaidentifiespotentialnichesacrosstheworld'soceans".bioRxiv 10.1101/2020.12.28.424624. ^abRichter,Katrin;Schicklberger,Marcus;Gescher,Johannes(2012-02-01)."Dissimilatoryreductionofextracellularelectronacceptorsinanaerobicrespiration".AppliedandEnvironmentalMicrobiology.78(4):913–921.Bibcode:2012ApEnM..78..913R.doi:10.1128/AEM.06803-11.ISSN 1098-5336.PMC 3273014.PMID 22179232. ^Wall,JudyD.;Krumholz,LeeR.(13October2006)."UraniumReduction".AnnualReviewofMicrobiology.60:149–166.doi:10.1146/annurev.micro.59.030804.121357.PMID 16704344. ^Holliger,C.;Wohlfarth,G.;Diekert,G.(1998)."Reductivedechlorinationintheenergymetabolismofanaerobicbacteria"(PDF).FEMSMicrobiologyReviews.22(5):383.doi:10.1111/j.1574-6976.1998.tb00377.x. ^Lovley,DerekR.;Fraga,JocelynL.;Coates,JohnD.;Blunt‐Harris,ElizabethL.(1999)."Humicsasanelectrondonorforanaerobicrespiration".EnvironmentalMicrobiology.1(1):89–98.doi:10.1046/j.1462-2920.1999.00009.x.PMID 11207721. vteMetabolism,catabolism,anabolismGeneral Metabolicpathway Metabolicnetwork Primarynutritionalgroups EnergymetabolismAerobicrespiration Glycolysis→Pyruvatedecarboxylation→Citricacidcycle→Oxidativephosphorylation(electrontransportchain+ATPsynthase) Anaerobicrespiration Electronacceptorsotherthanoxygen Fermentation Glycolysis→Substrate-levelphosphorylation ABE Ethanol Lacticacid SpecificpathsProteinmetabolism Proteinsynthesis Catabolism Carbohydratemetabolism(carbohydratecatabolismandanabolism)Human Glycolysis⇄Gluconeogenesis Glycogenolysis⇄Glycogenesis Pentosephosphatepathway Fructolysis Galactolysis Glycosylation N-linked O-linked Nonhuman Photosynthesis Anoxygenicphotosynthesis Chemosynthesis Carbonfixation Xylosemetabolism Radiotrophism Lipidmetabolism(lipolysis,lipogenesis)Fattyacidmetabolism Fattyaciddegradation(Betaoxidation) Fattyacidsynthesis Other Steroidmetabolism Sphingolipidmetabolism Eicosanoidmetabolism Ketosis Reversecholesteroltransport Aminoacid Aminoacidsynthesis Ureacycle Nucleotidemetabolism Purinemetabolism Nucleotidesalvage Pyrimidinemetabolism Other Metalmetabolism Ironmetabolism Ethanolmetabolism vteMetabolismmap Carbonfixation Photo-respiration Pentosephosphatepathway Citricacidcycle Glyoxylatecycle Ureacycle Fattyacidsynthesis Fattyacidelongation Betaoxidation Peroxisomal betaoxidation Glyco-genolysis Glyco-genesis Glyco-lysis Gluconeo-genesis Pyruvatedecarb-oxylation Fermentation Keto-lysis Keto-genesis feederstogluconeo-genesis Direct/C4/CAMcarbonintake Lightreaction Oxidativephosphorylation Aminoaciddeamination Citrateshuttle Lipogenesis Lipolysis Steroidogenesis MVApathway MEPpathway Shikimatepathway Transcription&replication Translation Proteolysis Glycosyl-ation Sugaracids Double/multiplesugars&glycans Simplesugars Inositol-P Aminosugars&sialicacids Nucleotidesugars Hexose-P Triose-P Glycerol P-glycerates Pentose-P Tetrose-P Propionyl-CoA Succinate Acetyl-CoA Pentose-P P-glycerates Glyoxylate Photosystems Pyruvate Lactate Acetyl-CoA Citrate Oxalo-acetate Malate Succinyl-CoA α-Keto-glutarate Ketonebodies Respiratorychain Serinegroup Alanine Branched-chainaminoacids Aspartategroup Homoserinegroup&lysine Glutamategroup&proline Arginine Creatine&polyamines Ketogenic&glucogenicaminoacids Aminoacids Shikimate Aromaticaminoacids&histidine Ascorbate(vitaminC) δ-ALA Bilepigments Hemes Cobalamins(vitaminB12) VariousvitaminBs Calciferols(vitaminD) Retinoids(vitaminA) Quinones(vitaminK)&tocopherols(vitaminE) Cofactors Vitamins&minerals Antioxidants PRPP Nucleotides Nucleicacids Proteins Glycoproteins&proteoglycans Chlorophylls MEP MVA Acetyl-CoA Polyketides Terpenoidbackbones Terpenoids&carotenoids(vitaminA) Cholesterol Bileacids Glycero-phospholipids Glycerolipids Acyl-CoA Fattyacids Glyco-sphingolipids Sphingolipids Waxes Polyunsaturatedfattyacids Neurotransmitters&thyroidhormones Steroids Endo-cannabinoids Eicosanoids Majormetabolicpathwaysinmetro-stylemap.Clickanytext(nameofpathwayormetabolites)tolinktothecorrespondingarticle.Singlelines:pathwayscommontomostlifeforms.Doublelines:pathwaysnotinhumans(occursine.g.plants,fungi,prokaryotes).Orangenodes:carbohydratemetabolism.Violetnodes:photosynthesis.Rednodes:cellularrespiration.Pinknodes:cellsignaling.Bluenodes:aminoacidmetabolism.Greynodes:vitaminandcofactormetabolism.Brownnodes:nucleotideandproteinmetabolism.Greennodes:lipidmetabolism. Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Anaerobic_respiration&oldid=1088460344" Categories:AnaerobicdigestionBiodegradationCellularrespirationAnaerobicrespirationHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidata Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages العربيةAzərbaycancaবাংলাCatalàDanskEestiΕλληνικάEspañolEuskaraFrançaisGalego한국어हिन्दीItalianoҚазақшаMagyarമലയാളംBahasaMelayu日本語PolskiRomânăРусскийSimpleEnglishTürkçeУкраїнськаTiếngViệt Editlinks
延伸文章資訊
- 1anaerobic respiration中文(繁體)翻譯:劍橋詞典
anaerobic respiration翻譯:無氧呼吸(食物在無氧情況下,轉換成能量的化學過程,如發酵)。了解更多。
- 2What is Anaerobic Respiration? The Definitive Guide - Biology Online
- 3Anaerobic Respiration: Definition, Equation & Examples - Study.com
- 4Aerobic And Anaerobic Respiration - Major Differences - Byju's
Anaerobic means “without air”. Therefore, this type of cellular respiration does not use oxygen t...
- 5Anaerobic Respiration | BioNinja
Anaerobic cell respiration gives a small yield of ATP from glucose AND Lactate production in huma...