Future Trends in Synthetic Biology—A Report - Frontiers

文章推薦指數: 80 %
投票人數:10人

Synthetic Biology offers innovative approaches for engineering new biological systems or re-designing existing ones for useful purposes (see ... ThisarticleispartoftheResearchTopic 4thAppliedSyntheticBiologyinEurope Viewall 14 Articles Articles JeanMarieFrançois InstitutBiotechnologiquedeToulouse(INSA),France ChrisJ.Myers DepartmentofElectrical,ComputerandEnergyEngineering,CollegeofEngineeringandAppliedScience,UniversityofColoradoBoulder,UnitedStates VijaiSingh IndrashilUniversity,India Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction AdvancesinSyntheticBiology:TheStateofPlay TacklingtheChallenges TacklingRisk ConclusionsandRecommendations Author'sNote AuthorContributions ConflictofInterestStatement Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData PERSPECTIVEarticle Front.Bioeng.Biotechnol.,07August2019 |https://doi.org/10.3389/fbioe.2019.00175 FutureTrendsinSyntheticBiology—AReport MeriemElKaroui1*,MonicaHoyos-Flight2andLizFletcher1 1SynthSys-CentreforSyntheticandSystemsBiology,SchoolofBiologicalSciences,UniversityofEdinburgh,Edinburgh,UnitedKingdom 2InnogenInstitute,SchoolofSocialandPoliticalSciences,UniversityofEdinburgh,Edinburgh,UnitedKingdom LeadingresearchersworkingonsyntheticbiologyanditsapplicationsgatheredattheUniversityofEdinburghinMay2018todiscussthelatestchallengesandopportunitiesinthefield.Inadditiontothepotentialsocio-economicbenefitsofsyntheticbiology,theyalsoexaminedtheethicsandsecurityrisksarisingfromthedevelopmentofthesetechnologies.Speakersfromindustry,academiaandnot-for-profitorganizationspresentedtheirvisionforthefutureofthefieldandprovidedguidancetofundingandregulatorybodiestoensurethatsyntheticbiologyresearchiscarriedoutresponsiblyandcanrealizeitsfullpotential.Thisreportaimstocapturethecollectiveviewsandrecommendationsthatemergedfromthediscussionsthattookplace.ThemeetingwasheldundertheChathamHouseRule(i.e.,aprivateinvite-onlymeetingwherecommentscanbefreelyusedbutnotattributed)topromoteopendiscussion;thefindingsandquotesincludedinthereportarethereforenotattributedtoindividuals.Thegoalofthemeetingwastoidentifyresearchprioritiesandbottlenecks.Italsoprovidedtheopportunitytodiscusshowbesttomanageriskandearnpublicacceptanceofthisemerginganddisruptivetechnology. Introduction SyntheticBiologyoffersinnovativeapproachesforengineeringnewbiologicalsystemsorre-designingexistingonesforusefulpurposes(seeFigure1).Ithasbeendescribedasadisruptivetechnologyattheheartoftheso-calledBioeconomy,capableofdeliveringnewsolutionstoglobalhealthcare,agriculture,manufacturing,andenvironmentalchallenges(Cameronetal.,2014;BuesoandTangney,2017;French,2019).However,despitesuccessesintheproductionofsomehighvaluechemicalsanddrugs,thereisaperceptionthatsyntheticbiologyisstillnotyetdeliveringonitspromise. FIGURE1 Figure1.Syntheticbiologyisdevelopingintoabiodesignplatformwhereitwillbepossibletoapplythe“design-build-test-iterate(ordeploy)”topredictablycreatecellsororganismsabletoproduceawidevarietyofnovelmolecules,materialsorevencellsformultipleapplications. Moreover,therearesomeconcernsfromgovernmentsthatsyntheticbiologyexpandsthepoolofagentsofconcern,whichincreasestheneedtodevelopdetection,identificationandmonitoringsystems,andproactivelybuildcountermeasuresagainstchemicalandbiologicalthreats(WangandZhang,2019).Theparticipationofrepresentativesfromvariousgovernmentorganizationsatthismeetingistestamenttotheircommitmenttomaintaininganactivedialoguewiththesyntheticbiologycommunity.Inthisway,theyaimtokeepabreastofthechangingnatureofthreatsandprovidethebestadvicetogovernmentaboutinvestmentinscienceandtechnologyandtheintroductionoramendmentofregulatoryprocesses. ThecostofDNAsequencingandsynthesishavedecreaseddramatically(Carlson,2014;KosuriandChurch,2014)andwehaveaccesstomoregeneticinformationandmorepowerfulgeneticengineeringcapabilitiesthaneverbefore.Criticalinvestmentsininfrastructurearebearingfruitand,asisdescribedbelow,syntheticbiologyisincreasinglybecoming,atleastpartof,thesolutiontomanyofourpresentandfutureneedsinmedicine,foodandenergyproduction,remediation,manufacturing,andnationalsecurity.Sowhatisthepotentialofsyntheticbiologyandwhatchallengesdoesitstillfacetorealizethis? AdvancesinSyntheticBiology:TheStateofPlay SmallMolecules:ProductiononDemandaReality Despitethelackofpredictabilityinbiology,andcurrenttechnicalconstraintsthatlimitdatacollectionandanalyses,wecannowproducesmallmoleculesondemandusingsyntheticbiologyapproaches. ProbablythemostimpressiveexamplescomefromtheFoundryattheBroadInstituteofMITandHarvard.WhentheDefenseAdvancedResearchProjectsAgency(DARPA)puttheMIT-BroadInstituteFoundry'sdesigncapabilitiestothetest,itsresearcherswereabletodeliver6outof10moleculesofinteresttotheUSDepartmentofDefensein90days.This“pressuretest”confirmsthepotentialofsyntheticbiologytoaddressshortagesofkeycompoundsquickly(Casinietal.,2018). Indeed,manylabscannowdesignandconstructrelativelycomplexgenenetworkscapableofgeneratingawidevarietyof“designer”moleculesinarangeofhostcells;however,thisisoftenaslowiterativeprocessoftrialanderror. Asyet,veryfewsmallmoleculesinmedicinearemanufacturedusingasyntheticbiologyprocess;itremainsverydifficulttoengineermicrobestocarryoutprocessesthatNaturedidnotintend.Thisistobeexpected:theperformanceofmicrobesis“goodenough”fromanevolutionaryperspective.Microbesevolvedtoaddressthespecificneedsandchallengesoftheirnaturalenvironmentsnotthoseofindustrialfermentersandbioreactors.GeneTransferfromonesystemtoanothermaysoundeasybutinpracticeishardworkandrarelygeneratessufficientreward(i.e.,increasedyield)tojustifytheinvestmentmade.Theapplicationofautomationandartificialintelligence(e.g.,indesigningandbuildingplasmids)mayhelptoreducethetimeandcost—andimprovereturnoninvestment—inthefuture(Zhangetal.,2018). “Scaleupisproductspecific–weneedmoresyntheticbiologyintheproductionprocess” Plantsmakealternativeproductionplatforms.Improvementsinminingplantgenomesandthedevelopmentofeffectivetransientexpressionsystemshaveenabledlarge-scaleproductionof,forexample,vaccinesintobaccoplantsinjustafewweeks(Dirisalaetal.,2017;Emmanueletal.,2018).Directingtheproductionofsyntheticbiologicalmaterialstoplantchloroplastsalsoshowspromise(BoehmandBock,2019). Thephotosyntheticreducingpowergeneratedinplantchloroplastscanbeharnessedforthelight-drivensynthesisofbioactivemoleculessuchasdhurrin,whichprotectsplantsagainstinsects(Gnanasekaranetal.,2016). However,underlyingalltheseplatformsisaknowledgegapinourunderstandinginhownatureworks.Thismakesitveryhardtoapplythedesign/build/test/learncyclesusedinconventionalengineeringtotheproductionofsyntheticbiologicalmaterialswhatevertheproductionplatform(yeast,bacteria,plants,orhumancells)iftheplatformitselfisnotwell-understood(Sauroetal.,2006). Whatweneednowareinstrumentsabletomeasureandcharacterizeoutputs,assistedbyprogressinroboticsandautomation,andtheapplicationofmachinelearningapproachestoanalysethedatagenerated.Thiswillhelpustogeneratemorerobustmodelsofbiologicalsystems,sowecanimproveexperimentaldesignforfutureengineeringstrategies. “Wecando‘build’.‘Test’isthechallengewhenwewanttolearnfromtheiterativedesignprocess” Healthcare:ReimaginingMedicine Syntheticbiologyisdrivingsignificantadvancesinbiomedicine,whichwillleadtotransformationalimprovementsinhealthcare.Already,patientsarebenefitingfromso-calledCAR(forchimericantigenreceptor)technology,whichengineerstheimmunecells(T-cells)ofthepatienttorecognizeandattackcancercells(Juneetal.,2018). GeneticallyengineeredvirusesarebeingusedtocorrectdefectivegenesinpatientswithinheriteddiseasessuchasSevereCombinedImmuneDeficiency(SCID)orepidermolysisbullosa(Dunbaretal.,2018). Theabilitytoreprogrammesomaticcellsfrompatientsintoinducedpluripotentstemcellsisfurtheringourunderstandingoftheirdisease,reducingtheuseofanimalsinresearch,andpavingthewayforthedevelopmentofpersonalizedmedicinesandcelltherapies.Inprincipleatleast,wecouldengineerapatient'sowncellstomultiply,differentiateintodifferentcelltypesandevenself-assembleintonewtissues,orevenorgans,torepairthosedamagedthroughdiseaseorinjury(DaviesandCachat,2016;Satoshietal.,2018). Workonnewvectorsthatareabletodeliverlargegeneticloadstotargettissuesishelpingtoproducemoreefficienttherapeuticsandvaccinesthatwillhavefewersideeffectsandasmallerriskofresistance.Furthermore,optimizingantibodyorvaccineproduction,orexample,sothattheyareinanedibleformat(e.g.,plantbased),couldgreatlyreducethecostandincreasethespeedofvaccineproductioninanepidemic. “Wehavethetoolsbutneedthecreativitytomakestuffthatcan'tbemadewithoutsyntheticbiology” Inthenextfewyears,geneticallyengineeringpigstobevirusresistantandhavehuman-likeimmuneprofilescouldmakexenotransplantationaclinicalreality(Burkardetal.,2018).Engineeringthemicrobiomeisexpectedtoleadtothedevelopmentofsyntheticprobiotics(DouandBennett,2018). ThesyntheticbiologyinitiativeknownasHumanGenomeProject-write(HGP-write)hassetitssightsevenhigher,rallyingscientiststobuildentirehumanchromosomes(Boekeetal.,2016).Concernshavebeenraisedabouttheethicsofcreating“synthetichumans”andindeedthescientificandcommercialvalueofsuchaproject.Morerecently,HGP-writechampionshaveproposedamorefocusedprojecttobuildavirus-resistantchromosome,makingatleast400,000changestothehumangenometoremoveDNAsequencesthatvirusesusetohijackcellsandreplicate(Dolgin,2018). Oneofthemanyexcitingopportunitiesthatsyntheticbiologyoffersmedicineisintheproductionoftheranosticcelllinesthatcansenseadiseasestateandproduceanappropriatetherapeuticresponse(TeixeiraandFussenegger,2019).Severalobstaclesneedtobeovercometoachievethisgoal:first,toexpandtherangeofmoleculesthatcanberecognizedbycellular“sensors”asinputs;andsecond,tobetterunderstandthegeneticcontrolfactorsthatregulategeneexpressioninspaceandtimesowecanengineerbetteractivatorsystems. “Atpresentweneedpillsbecausewecan'tswallowachemistrykit” Metabolomicsissheddinglightonmanydiseasebiomarkers.Becausesomebiomarkersaresharedbetweenseeminglyunrelateddiseases,anaccuratediagnosiswillrequirethedetectionofmultiplemarkerstoprovideamoreunique“diseasefingerprint.”Workinwholecellandcellfreesystemstodevelopsensorsofmultipledisease-specificbiomarkerscouldassistinearlierdetectionofdiseaseandprognosticmonitoring. Toexpandtherangeofbiologicallydetectablemolecules,itispossibletodesignmetabolicpathwaysthattransformcurrentlyundetectablemoleculesofinterest(e.g.,hippuricacid,theprostatecancerbiomarker)intomoleculesforwhichsensorsalreadyexist(inthiscasebenzoicacid)(Libisetal.,2016). Cybergeneticsisanemergingfieldthatisdevelopingexperimentaltoolsforthecomputercontrolofcellularprocessesatthegenelevelinrealtime.Cybergeneticcontrolcanbeachievedbyinterfacinglivingcellswithadigitalcomputerthatswitchesonorofftheembedded“geneticswitch”usinglight(optogenetics)orchemicals(Gabrieleetal.,2018;Maysametal.,2019).Suchsystemscouldhelptomaintaincellularhomeostasisbymonitoringthestateofthebodyandtriggeringanappropriateresponseuponthedetectionofdysregulation;forexample,theycouldtriggerthereleaseofinsulinwhenbloodglucoselevelsriseasdetectedbyawirelessdiagnostictool(Yeetal.,2011). AdvancedMaterials:InspiredbyNature,ImprovedbySyntheticBiology Syntheticbiologyofferstheopportunitytocreateresponsiveandmultifunctionalmaterials(LeFeuvreandScrutton,2018).Theintegrationofbiochemicalcomponentsfromlivingsystemswithinorganiccomponentscanleadtonewmaterialsthatareabletosensetheenvironment(orinternalsignals)andchangetheirproperties.Thesefeaturescouldbeparticularlyusefulforimprovingprotectiveclothingorbuildingmaterials. Anissuewhenusingmicrobestoproducecompositematerialsisregulatingtheassemblyofthesematerialstoachievespecificdesiredproperties.Byunderstandinghowmicrobescommunicatewitheachother,itispossibletomakethemworkbettertogetherandcombinethemwithotherproductionsystemssothatthepropertiesofmaterialscanbetailoredforparticularfunctions. Interestingly,ratherthanmodifying,orimprovingexistingprotein-basedmaterials,analternativeapproachinvolvesusingcomputationaltechniquestodesigncompletelynovelproteinsthatself-assembleintopredictedshapes(Ljubetičetal.,2017).Such“programmable”proteinsopenupevenfurtheropportunitiesforsyntheticbiologynotonlyformaterialssciencebutalsoformedicineandchemistry. “Thetoolsarethere,wejustdon'tknowwhatwewanttomake” TacklingtheChallenges Regardlessoftheresearchareasinvolved,therearesomecommonchallengesforthecommunitytoaddress. DesignWiththeEndinMind Therewasconsensusthatwhiletheproductionofsmallmoleculesusingsyntheticallyengineeredcellsatthebenchisbecomingmoretractable,theseprocessesoftendonottranslatewellintomassproduction.Scalabilityneedstobeincorporatedintotheinitialdesignprocessbyincludingfeatures,forexample,thatreducetoxicityofthemoleculetotheproductionhostor“chassis”and/orbyintroducingmodificationsthatfavoritsextraction.Carefulconsiderationoftherightchassiscouldalsogreatlyimproveyieldsandsignificantlyreducecostofproduction. “Naturehasdevelopeditsownwaystoconcentrateandsolubilisechemicals…wearenotlearningfromthis” ExpandingtheHostRepertoire ThenumberofmicrobesthatarecurrentlyinusefortheproductionofsyntheticbiologicalmaterialsisonlyatinyfractionofthetotaldiversitythatexistsinNature;onlytenmicrobesare“domesticated”forindustrialuse.Toidentifythemostappropriatechassis,itisworthturningtonaturetoidentifyspeciesthathaveuniquemetabolicnetworkssuitedtohostparticulartypesofchemicalreactions.Forexample,thesoilbacteriumPseudomonasputida,whichhasadaptedtoharshenvironmentalconditions,isideallysuitedtohostredox-intensivereactions(PabloanddeLorenzo,2018).Atreasuretroveof,asyet,unexplorednaturalproducts,withnovelandbeneficialproperties,existintheplantkingdom.Inaddition,asnotedabove,plantsarenaturallyexcellentproductionhostsanditisnowpossibleto“plugandplay”combinationsofplantpathwaystogeneratenovelmolecules(SainsburyandLomonossoff,2014;EvangelosandO'connor,2016). DevelopingaUniversalProductionSystem Tocircumventtheproblemoftheimpactofdifferenthostchassisonsyntheticgenecircuits,researcherswouldbenefitfromauniversalsyntheticexpressionsystemthatpermitsthetestingofnewconstructs.Thiswouldaidintheidentificationofoptimalproductionplatformsanddecreasetheneedfororganism-specifictechnologies.CombiningthistechnologywithDNAeditingtechniques,suchasCRISPR/Cas9,willmaketheestablishmentofhostproductionplatformsandthegenerationofcomplexbiosyntheticproductseasierandfaster.Onearticulationofthiscouldbeincell-freeformats,inwhichtheessentialcellularmachineryisreconstitutedinvitroandusedasamanufacturingplatform(VillarrealandTan,2017;Kochetal.,2018). “Weneedtoreducetheburdenofsyntheticnetworksonendogenouscircuits” MovetoCell-FreeEnvironments Cell-freeenvironments,interfacedwithsemiconductors,offerapowerfulrouteforflexibleandcontrollableproductionsystems. Forexample,nanoparticlesmadeofsemiconductormaterialsorquantumdotscanbeusedtoenhanceenzymeactivityinacellfreeenvironmentwithaminimalsetofingredients.Multistepenzymaticpathwayscanbetetheredtonanoparticlesurfacesand,byavoidingthediffusioneffectthattakesplaceincells,reactionratescanbeincreased100-fold(Wangetal.,2017).Thisapproachcanbeusedtoaccessnon-naturalmaterialsandcircumventsthepotentialissueoftoxicityincells(aswellastheregulatoryissuesofgeneticallymodifiedcells). Researchonsiliconchipscontainingimmobilizedgenesandcelllysatesallowsdetailedexaminationofgeneexpressioninspaceandtime.WhenthecompartmentsinwhichDNA-drivenreactionstakeplacearelinked,withmaterialsflowingintoanddiffusingbetweenthecompartments,itispossibletorecreateoscillatingproteinexpressionpatternsandproteingradientsakintothoseobservedincells(Karzbrunetal.,2014).Geneexpressioninthese“artificialcells”canbecontrolledwithelectrodesthatpreventtheassemblyofproteinsbyribosomes.Bystandardizingoutputs,thisstrategyisimprovingthepredictabilityofengineeredgeneticcircuits. SystemsModeling,Standards,andMetrology Whateverthesystembeingexplored,arobustmodelofthatbiologicalsystemisneededifpredictablemodificationsofgeneticcircuitsaretobedesignedandimplementedwithanyconfidence.Tocreatesuchmodels,largesetsofdataarisingfrommeasuringmultipleparametersofcellbehaviorunderdifferentconditionsareessential(Fletcheretal.,2016). Thereisgreatexpectationthatimprovementsinhigh-throughputdatameasurementandcollectionsystemswillgenerateexactlythelargedatasetsneeded.Thesecanbeanalyzedusingartificialintelligenceoramachinelearningapproachtooptimizethedesignofsyntheticbiologicalproductsandmoveawayfromtheinefficienttrialanderrorprocess(Decoeneetal.,2018). Finally,agreementonstandardsofdesign,assembly,datatransfer,datameasurementandregulatoryrules,aswellasonthelanguagethatisused,willhelptoimprovetheinterdisciplinaryandinternationalcollaborationsthatarerequiredtodrivethefieldforward.Thisischallengingforacommunitywithsuchdiverseinterestsandperspectives,andwheredatasharing,curatingandqualitycontrolisnotcommonpractice. However,withoutsomeformofagreedstandards,manyoftheproductsandprocessesofsyntheticbiologywillnottranslatewelltoindustrialsettingsdependentonreproducibleprocessesandbeholdentoexactingregulatoryrequirements. Typically,academicresearchersaredrivenbyaneedtounderstandthecomplexityofnature(andpublishtheirworkinhighimpactjournals).Standardizationandscalingupproductionareimportant,buthavelessofanacademicpullthandiscoveringanewproduct.Accesstofunding,industrialpartnerships,andacademicrecognitionareexamplesofpotentialincentivesforcarryingoutthistypeofresearch. “Standardsrestrictflexibilitybutenableinteroperability” TacklingRisk Syntheticbiologyisanexampleofadual-usetechnology:itpromisesnumerousbeneficialapplications,butitcanalsocauseharm.Thishasledtofearsthatitcould,intentionallyorunintentionally,harmhumansordamagetheenvironment.Forexample,thereishugevalueinourabilitytoengineervirusestobemoreeffectiveandspecificshuttlesforgenetherapiesofdevastatinginheriteddisorders;however,engineeringvirusesmayalsoleadtothecreationofevenmoredeadlypathogensbythoseintentonharm. “Syntheticbiologyshouldberegardedasanextensionofearlierdevelopmentsandtechnologies” Somewouldarguethatsyntheticbiologyposesanexistentialriskandneedstobetreatedwithextremecaution.However,manynewtechnologicaladvancesacrossthedecadeshavemetsimilarconcerns.Theuncertaintyandremotepossibilityofsuchriskscouldhamperthedevelopmentofusefultechnology.Scientists,theirhostinstitutionsandfundingbodiesshould(andindeedalreadydo)considerwhethertheresearchplannedcouldbemisused.Measuresthatreducethelikelihoodofmisuseanditsconsequencesshouldbeimplementedandclearlycommunicated.Thesyntheticbiologycommunityneedstobeawareof,andrespondto,thesechallengesbyengaginginhorizonscanningexercisesaswellasopendialoguewithregulatorybodiesandthemedia. “Don'tavoidrisk–manageit” Beingmoreopenaboutrisks,andhowtheyarecontrolled,providesanopportunitytoshiftdiscoursetowardthebenefitsofsyntheticbiologyinaddressingurgentglobalneeds,suchastheproductionofbiofuels,foodsecurityandmoreeffectivemedicines,andpotentiallyimprovepublicacceptance. “Thequestionsshouldnotbe‘what’sthenextbigthingforsyntheticbiology'but‘whereisthegreatestunmetneed’.” Despitetheeffortsbyindividualcountriestoestablishsyntheticbiologyresearchroadmaps,broader,internationalagreementoncommonstandards(andredlines)acrossthefieldmayhelpestablishtrustandtoadvancethebestpre-competitiveresearchintousefulapplications. Meetingparticipantshighlightedtheimportanceoftraininginresponsibleresearchconductandethics.Givenstudents'futureroleasscienceambassadorsandinfluencers,theirtrainingshouldnotonlyconveyskillsandknowledgebutalsoawarenessandcriticalthinkingabouttheprospectsandpotentialfordualuseofsyntheticbiology.Allresearchersmustremainvigilantregardlessofthemanypressuresanddistractionsofrunningasuccessfulresearchlab;theymaynothavespecialisttraininginidentifyingtherisksofmisusebuttheyarethepeoplebestplacedtomaintaininformedoversightofrisks. Oneexampleofcurrentsyntheticbiologyresearchwithpotentialdualuseisgenedrivetechnology,whichcanbeusedtopropagateaparticularsuiteofgenesthroughoutapopulation.Thebenefitsofusinggenedrivetechnologyincludetheeradicationofdisease-carryinginsectpopulationsandtheeliminationofinvadingpestspeciesbutithasraisedconcernsabouttheunintendedecologicalimpactsofreducingoreliminatingapopulation(Callaway,2018;Collins,2018). Similarreleaseconcernssurroundresearchthatisharnessingtheabilityofpathogenstotargetparticulartissuesinthebodyorparticularchemicalsintheenvironment,whichcouldgreatlyaideffortstodelivertargetedtherapiesorclean-upcontaminatedsites.Todate,suchlarge-scalereleaseforenvironmentalbioremediationinterventionshasnotbeenpossible. “WeneedtomindthegapbetweenR&Dscaleupandcommunications….Onebadblogcankillacommercialproduct” Therewasconsensusthattheneedforregulationoverthiscommunityremainsimportant.Regulationneedstokeepuptospeedwiththeemergingtechnologiesandshouldfocusontheproductratherthantheprocessusedtocreateit(Taitetal.,2017).Unsuitableregulatoryframeworks(aswellasunfavorablepublicperception)coulddiscourageprivatesectorinvestmentinsyntheticbiology. Openandbalancedtwo-waycommunicationbetweenresearchers,funders,companiesandgovernmentsandthepublicwillbevital.Consumersandactivistsmayhavenointerestinthedifferencebetweenmakingachemical(e.g.,aflavororfragrance)syntheticallyandonemadeusinggeneticallymodifiedbacteriabuttheymayinstinctivelydistrustthelatter. ConclusionsandRecommendations Theshorttalkspresentedatthis2-daymeetingsuggestthatsyntheticbiologyisatthecuspofmanymajorbreakthroughsandthatitisperhapstimelytore-definethemeaningof“success”insyntheticbiology. Therearemanyhurdlestoovercomebutthepotentialforsyntheticbiologytodeliversolutionstomanyglobalchallenges—improvinghealthcare,limitingenvironmentaldamage,andcreatingawidevarietyofmoresustainableprocesses—isgreat. Meetingparticipantssuggestedthatasacommunitytheyshouldsupportthemeasureslistedbelowtohelpsyntheticbiologymovebeyondtheproof-of-conceptstageandtoensurethatpotentialrisksareminimizedanddialogwiththepubliccanbeoptimized. •Largerandlongerinvestmentinbetterbigdatamanagementandprocessing(ArtificialIntelligenceandMachineLearning)systems,andinfundamentalresearchonbiosystemsmodeling,chassisdevelopment,andgenomemining. •Supportstandardizationinitiatives;whilearguablynotattractiveacademically,thecommunityneedstoagreeandsupporteffortstowardcreatinginteroperabilityaroundbiosystemmodeling,andstandardsaroundDNAdesign(ifnotDNAbioparts).Withoutsomedegreeof“standardization”theabilitytopooldataandmodels,essentialforimprovingaccuracyandreproducibility,willbechallenging. •Thecreationandfunding(ideallyinternationally)ofa“GrandChallenge,”suchasthedevelopmentofgenericsensorsorthecreationofprotein-basedelectroniccomponents,couldhelpfocusthecommunitytowardatargetgoal. •Improvetheassessment,communication,andmanagementofriskandharmamongallaudiences. •EnsurethatearlycareerresearchersaretrainedinresponsibleresearchconductandethicsaswellasbeingcognizantofexistingrulesandregulationsaroundGM(regionallydependent)andtheissueofmisuseandharm. •Coordinatetheeffortsofacademia,governmentandindustrythroughfocusedmeetingsthatfosterinterdisciplinarycollaborationsaroundsharedobjectives. •Improveplatformsforknowledgesharingandrecognizethevalueoffailures. TheworkshophighlightedjusthowmuchmorewehavetolearnfromNatureitself.Syntheticbiologyisgivingusinsightsofthecriteriaandprocessesthatunderpinalllivingsystems;inturn,wecantakethisinsightanddesignanduseittobuilda“betterbiology.”However,weneedtotakethepublicwithusonthisjourney,createmeaningfulandconsidereddialogueabouttheworkwemaydoandtheimpactitmighthaveonourworld. Author'sNote ThemeetingwashostedbytheUKCenterforMammalianSyntheticBiology(theCenter),basedattheUniversityofEdinburgh.TheCenterisbuildingexpertiseincellengineeringtoolgeneration,whole-cellmodeling,computer-assisteddesignandconstructionofDNAandhigh-throughputphenotypingtoenablesyntheticbiologyformedicineandhealthcare.TheCentre'sresearchwillnotonlyadvancebasicunderstandingofmammalianbiologyandpathologybutalsogenerateproductsandservicesfornear-termcommercialexploitationbythepharmaceuticalanddrugtestingindustries,suchasdiagnostics,noveltherapeutics,protein-baseddrugs,andregenerativemedicines.TheCenterisfundedthroughtheResearchCouncil'sUK“SyntheticBiologyforGrowth”programmeandbytheBiologicalandBiotechnologySciencesResearchCouncil(BBSRC),theEngineeringandPhysicalSciencesResearchCouncilandtheMedicalResearchCouncil. AuthorContributions ThisisameetingreportandwasdraftedbyMH-FwithsupportfromMEandLF. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WearegratefultoallcolleaguesthatcontributedtodiscussionsattheworkshopheldinEdinburghinMay2018andwhoseviewshelpedinformthisreport.WealsogratefullyacknowledgesponsorshipforthisworkshopfromtheOfficeofNavalResearchGlobalandtheUKCentreforMammalianSyntheticBiology(BBSRCGrantBB/M018040/1). References Boehm,C.R.,andBock,R.(2019).Recentadvancesandcurrentchallengesinsyntheticbiologyoftheplastidgeneticsystemandmetabolism.PlantPhysiol.179,794–802.doi:10.1104/pp.18.00767 PubMedAbstract|CrossRefFullText|GoogleScholar Boeke,J.D.,Church,G.,Hessel,A.,Kelley,N.J.,Arkin,A.,Cai,Y.,etal.(2016).Genomeengineering:thegenomeproject-write.Science8,126–127.doi:10.1126/science.aaf6850 CrossRefFullText|GoogleScholar Bueso,Y.F.,andTangney,M.(2017).Syntheticbiologyinthedrivingseatofthebioeconomy.TrendsBiotechnol.35,373–378.doi:10.1016/j.tibtech.2017.02.002 CrossRefFullText|GoogleScholar Burkard,C.G.,Opriessnig,T.,Mileham,A.J.,Stadejek,T.,Ait-Ali,T.,Lillico,S.G.,etal.(2018).Pigslackingthescavengerreceptorcysteine-richdomain5ofCD163areresistanttoporcinereproductiveandrespiratorysyndromevirus1infection.J.Virol.92,00415–00418.doi:10.1128/JVI.00415-18 PubMedAbstract|CrossRefFullText|GoogleScholar Callaway,E.(2018).Banon‘GeneDrives'isbackontheUN'sagenda-worryingscientists.Nature563,454–455.doi:10.1038/d41586-018-07436-4 PubMedAbstract|CrossRefFullText|GoogleScholar Cameron,D.E.,Bashor,C.J.,andCollins,J.J.(2014).Abriefhistoryofsyntheticbiology.Nat.Rev.Microbiol.12,381–390.doi:10.1038/nrmicro3239 PubMedAbstract|CrossRefFullText|GoogleScholar Carlson,R.(2014).TimeforNewDNASequencingAndSynthesisCostCurves.Availableonlineat:https://synbiobeta.com/time-new-dna-synthesis-sequencing-cost-curves-rob-carlson/ Casini,A.,Chang,F.Y.,Eluere,R.,King,A.M.,Young,E.M.,Dudley,Q.M.,etal.(2018).Apressuretesttomake10moleculesin90days:externalevaluationofmethodstoengineerbiology.JAmChemSoc.140,4302–4316.doi:10.1021/jacs.7b13292 PubMedAbstract|CrossRefFullText|GoogleScholar Collins,J.(2018).Genedrivesinourfuture:challengesofandopportunitiesforusingaself-sustainingtechnologyinpestandvectormanagement.BMCProc.12,37–41.doi:10.1186/s12919-018-0110-4 PubMedAbstract|CrossRefFullText|GoogleScholar Davies,J.A.,andCachat,E.(2016).Syntheticbiologymeetstissueengineering.Biochem.Soc.Transac.44,696–701.doi:10.1042/BST20150289 PubMedAbstract|CrossRefFullText|GoogleScholar Decoene,T.,DePaepe,B.,Maertens,J.,Coussement,P.,Peters,G.,deMaeseneire,S.,etal.(2018).Standardizationinsyntheticbiology:anengineeringdisciplinecomingofage.Crit.Rev.Biotechnol.38,647–656.doi:10.1080/07388551.2017.1380600 PubMedAbstract|CrossRefFullText|GoogleScholar Dirisala,V.R.,Nair,R.R.,Srirama,K.,Reddy,P.N.,Rao,K.R.S.S.,andKumar,P.G.(2017).Recombinantpharmaceuticalproteinproductioninplants:unravelingthetherapeuticpotentialofmolecularpharming.ActaPhysiol.Plant39,18–26.doi:10.1007/s11738-016-2315-3 CrossRefFullText|GoogleScholar Dolgin,E.(2018).ScientistsdownsizeboldplantomakehumangenomefromScratch.Nature557,16–17doi:10.1038/d41586-018-05043-x PubMedAbstract|CrossRefFullText|GoogleScholar Dou,J.,andBennett,M.R.(2018).Syntheticbiologyandthegutmicrobiome.BiotechnolJ.13:1700159.doi:10.1002/biot.201700159 PubMedAbstract|CrossRefFullText|GoogleScholar Dunbar,C.E.,High,K.A.,Joung,J.K.,Kohn,D.B.,Ozawa,K.,andSadelain,M.(2018).Genetherapycomesofage.Science359:6175doi:10.1126/science.aan4672 PubMedAbstract|CrossRefFullText Emmanuel,M.,Chapman,R.,Williamson,A.L.,Rybicki,E.P.,andMeyers,E.(2018).Productionofcomplexviralglycoproteinsinplantsasvaccineimmunogens.PlantBiotechnol.J.16,1531–1545.doi:10.1111/pbi.12963 CrossRefFullText|GoogleScholar Evangelos,T.C.,andO'connor,S.E.(2016).Newdevelopmentsinengineeringplantmetabolicpathways.Curr.Opin.Biotechnol.42,126–132.doi:10.1016/j.copbio.2016.04.012 CrossRefFullText|GoogleScholar Fletcher,E.,Krivoruchko,A.,andNielsen,J.(2016).Industrialsystemsbiologyanditsimpactonsyntheticbiologyofyeastcellfactories.Biotechnol.Bioeng.113,1164–1170.doi:10.1002/bit.25870 PubMedAbstract|CrossRefFullText|GoogleScholar French,K.E.(2019).Harnessingsyntheticbiologyforsustainabledevelopment.Nat.Sustain.2,250–252.doi:10.1038/s41893-019-0270-x CrossRefFullText|GoogleScholar Gabriele,L.,Benenson,Y.,andKhammash,M.(2018).Syntheticcontrolsystemsforhighperformancegeneexpressioninmammaliancells.NucleicAcidsRes.46,9855–9863.doi:10.1093/nar/gky795 CrossRefFullText|GoogleScholar Gnanasekaran,T.,Karcher,D.,Nielsen,A.Z.,Martens,H.J.,Ruf,S.,Olsen,C.E.,etal.(2016).TransferofthecytochromeP450-dependentdhurrinpathwayfromsorghumbicolorintoNicotianatabacumchloroplastsforlight-drivensynthesis.J.Exp.Botany67,2495–2506.doi:10.1093/jxb/erw067 PubMedAbstract|CrossRefFullText|GoogleScholar June,C.H.,O'Connor,R.S.,Kawalekar,O.U.,Ghassemi,S.,Milone,M.C.,etal.(2018).CARTcellimmunotherapyforhumancancer.Science359,1361–1365doi:10.1126/science.aar6711 PubMedAbstract|CrossRefFullText|GoogleScholar Karzbrun,E.,Tayar,A.M.,Noireaux,V.,andBar-Ziv,R.H.(2014).Syntheticbiology.ProgrammableOn-chipDNAcompartmentsasartificialcells.Science345,829–832.doi:10.1126/science.1255550 PubMedAbstract|CrossRefFullText|GoogleScholar Koch,M.,Faulon,J.-L.,andBorkowski,O.(2018).Modelsforcell-freesyntheticbiology:makeprototypingeasier,better,andfaster.Front.Bioeng.Biotech.6:182doi:10.3389/fbioe.2018.00182 PubMedAbstract|CrossRefFullText|GoogleScholar Kosuri,S.,andChurch,G.(2014).Large-scaledenovoDNAsynthesis:technologiesandapplications.Nat.Methods11,499–507doi:10.1038/nmeth.2918 PubMedAbstract|CrossRefFullText|GoogleScholar LeFeuvre,R.,andScrutton,N.(2018).Alivingfoundryforsyntheticbiologicalmaterials:asyntheticbiologyroadmaptonewadvancedmaterials.Synthet.Syst.Biotechnol.3,105–112.doi:10.1016/j.synbio.2018.04.002 PubMedAbstract|CrossRefFullText|GoogleScholar Libis,V.,Baudoin,D.,andFaulon,J.L.(2016).Expandingbiosensingabilitiesthroughcomputer-aideddesignofmetabolicpathways.ACSSynthet.Biol.5,1076–1085.doi:10.1021/acssynbio.5b00225 PubMedAbstract|CrossRefFullText|GoogleScholar Ljubetič,A.,Gradišar,H.,andJerala,R.(2017).Advancesindesignofproteinfoldsandassemblies.Curr.Opin.Chem.Biol.40,65–71.doi:10.1016/j.cbpa.2017.06.020 PubMedAbstract|CrossRefFullText|GoogleScholar Maysam,M.,Strittmatter,T.,andFussenegger,M.(2019).Light-controlledmammaliancellsandtheirtherapeuticapplicationsinsyntheticbiology.Adv.Sci.6:1800952doi:10.1002/advs.201800952 CrossRefFullText|GoogleScholar Pablo,N.,anddeLorenzo,V.(2018).Pseudomonasputidaasafunctionalchassisforindustrialbiocatalysis:fromnativebiochemistrytotrans-metabolism.Metabol.Eng.50,142–155.doi:10.1016/j.ymben.2018.05.005 CrossRefFullText|GoogleScholar Sainsbury,F.,andLomonossoff,G.(2014).Transientexpressionsofsyntheticbiologyinplants.Curr.Opin.PlantBiol.19,1–7doi:10.1016/j.pbi.2014.02.003 PubMedAbstract|CrossRefFullText|GoogleScholar Satoshi,T.,Blauch,L.R.,Tang,S.K.Y.,Morsut,L.,andLim,W.(2018).Programmingself-organizingmulticellularstructureswithsyntheticcell-cellsignaling.Science361,156–162.doi:10.1126/science.aat0271 CrossRefFullText|GoogleScholar Sauro,H.M.,Hare,D.,Kwiatkowska,M.,Uhrmacher,A.M.,Hucka,M.,Mendes,P.,etal.(2006).“Challengesformodelingandsimulationmethodsinsystemsbiology,”inProceedingsofthe2006WinterSimulationConference(2006).Availableonlineat:http://qav.comlab.ox.ac.uk/papers/winter_sim06_panel.pdf GoogleScholar Tait,G.,Banda,A.,andWatkins,A.(2017).ProportionateandAdaptiveGovernanceofInnovativeTechnologies(PAGIT):AFrameworktoGuidePolicyandRegulatoryDecisionMaking.InnogenInstitute.Availableonlineat:https://www.innogen.ac.uk/reports/1222 Teixeira,P.,andFussenegger,M.(2019).Engineeringmammaliancellsfordiseasediagnosisandtreatment.Curr.Opin.Biotechnol.55,87–94.doi:10.1016/j.copbio.2018.08.008 CrossRefFullText|GoogleScholar Villarreal,F.,andTan,C.(2017).Cell-freesystemsinthenewageofsyntheticbiology.Front.Chem.Sci.Eng.11,58–65.doi:10.1007/s11705-017-1610-x CrossRefFullText|GoogleScholar Wang,F.,andZhang,W.(2019).Syntheticbiology:recentprogress,biosafetyandbiosecurityconcerns,andpossiblesolutions.J.BiosafetyBiosecur.1,22–30doi:10.1016/j.jobb.2018.12.003 CrossRefFullText|GoogleScholar Wang,P.,Chang,A.Y.,Novosad,V.,Chupin,V.V.,Schaller,R.D.,andRozhkova,E.A.(2017).Cell-freesyntheticbiologychassisfornanocatalyticphoton-to-hydrogenconversion.ACSNano.11,6739–6745.doi:10.1021/acsnano.7b01142 PubMedAbstract|CrossRefFullText|GoogleScholar Ye,H.,Daoud-ElBaba,M.,Peng,R.-W.,andFussenegger,M.(2011).ASyntheticoptogenetictranscriptiondeviceenhancesblood-glucosehomeostasisinmice.Science332,1565–1568.doi:10.1126/science.1203535 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,R.,Li,C.,Wang,J.,Yang,Y.,andYan,Y.(2018).Microbialproductionofsmallmedicinalmoleculesandbiologics:fromnaturetosyntheticpathways.BiotechnolAdv.36,2219–2231.doi:10.1016/j.biotechadv.2018.10.009 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:syntheticbiology,biosystem,futuretrendsanddevelopments,biodesignautomation,responsibleresearchandinnovation(RRI) Citation:ElKarouiM,Hoyos-FlightMandFletcherL(2019)FutureTrendsinSyntheticBiology—AReport.Front.Bioeng.Biotechnol.7:175.doi:10.3389/fbioe.2019.00175 Received:28May2019;Accepted:08July2019;Published:07August2019. Editedby:JeanMarieFrançois,UMR5504Laboratoired'IngénieriedesSystèmesBiologiquesetdesProcédés(LISBP),France Reviewedby:VijaiSingh,IndrashilUniversity,IndiaChrisJohnMyers,TheUniversityofUtah,UnitedStates Copyright©2019ElKaroui,Hoyos-FlightandFletcher.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:MeriemElKaroui,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?