結構化與非結構化資料| Seagate 台灣
文章推薦指數: 80 %
裝置或軟體將移往資料湖的原始格式資訊收集後,原始的輸出資料便是非結構化資料。
結構化資料會以數值或文字格式整理妥當,可在預先定義的參數內將資料分門別類、重組分析。
RelatedTopics
OptimisedArchitecturesWhitepaper
DownloadWhitepaper
CloudConfidenceReport
CloudConfidenceReport
Datasphere2021-CORTX
WatchonDemand
BigDataAnalyticsSolutions
Structuredvs.UnstructuredData
Structuredvs.UnstructuredData
Inthisarticlewereviewthetwotypesofdataandthedifferentuses.Unstructureddataistherawoutputofdevicesorsoftwarethatcollectinformationwhichismovedintodatalakesinitsoriginalformat.Structureddataisorganisedinnumericalortextformat,andcanbecatalogued,organised,reorganisedandanalysedwithinpre-definedparameters.
DefiningStructuredvs.UnstructuredDataMainImage
DefiningStructuredvs.UnstructuredDataTherearetwowaysinwhichdataisclassifiedforthepurposesofstorage,analysis,andbusinessdecision-making:structuredandunstructured.Thedifferencebetweenstructuredandunstructureddependsonwhetherornottheinformationisorganisedforthepurposesofdatausageandanalysis.Structureddatatypicallyconsistsofclearlydefinedinformation(likehardtextandnumbers)thatiseasilysearchableandmaintainedinortrackableviaahighlyorganisedtableordatabase.Meanwhile,unstructureddatacomesinavarietyoffileormediaformatsandisn'tintrinsicallyneatlygroupedorclassified.Butthedifferencesbetweenstructuredandunstructureddataextendbeyondhowtheinformationiscollated.Forthepurposesofanalysis,eachrequiresadifferentsetoftechnologytoolsandanalyticalmethodologiesdeployedbydataprofessionalswithvariedknowledgeandskillsets.Organisationstendtoutilisestructureddatamorethantheydounstructured.About43%ofalldatathatorganisationscapturegoesunutilised,representingenormousuntappedvalueinregardtounstructureddata.Butbothdatatypesarevaluableandcanbeexploitedaslongasorganisationsunderstandhowtheydiffer,andthecapabilitiesrequiredtomakeuseofthem.WhatisUnstructuredData?Unstructureddataisinformationinitsrawformat;itoftenlivesinorneartheoriginallocationinwhichitwascollected,orindatalakes—relativelyundifferentiatedpoolsofdata.Becauseitrepresentsalltypesofrawdatathat’scollected,eventhatwhichhasn’tbeencataloguedoranalysed,itrepresentsmassivequantitiesofpotentialvalueandthusrequiresrobustdatacentreandcloudarchitecturesdeployingveryhigh-capacitydatastoragesystems.Thus,unstructureddataishard-driveintensive.Theneedtouncovergreatervaluebyretainingvastquantitiesofunstructureddatainaneconomicalwaymeansthereishigher-than-everdemandformass-capacitystoragesystemscentredaroundharddrives—whichcontinuetoprovidesignificantTCOadvantages,asadvancesinHDDtechnologycontinuetomakeever-highercapacitiespossible.Theneedtoaccessunstructureddatanearitssourceandtomoveit,asneeded,toavarietyofprivateandpublicclouddatacentrestobeusedfordifferentpurposes,isalsodrivingtheshiftfromclosed,proprietary,andsiloedITarchitecturestoopen,composable,hybridarchitectureswheredatamovesfreelyandefficientlyacrossthedistributedenterprise.Unstructuredinformationisalsoreferredtoasqualitativedata,meaningthatitsimplyinformationthatisobservedorrecorded.InternetofThings(IoT)sensorsinafactory,forinstance,mightcollectdataabouttheongoingperformanceofequipment.Theinformationisthensenttoserverstobestoredinanunstructuredformat,suchasaPDFandvideofiles.Otherexamplesofunstructureddataincludesatellitephotos,weatherreports,patients’biosignaldatainahospital,anddigitalcameraimagerythathavenotyetbeentaggedorcataloguedinanorganisedway.Thecommondenominatoristhatdataispassivelygatheredandtransmittedwithoutanypre-definedorganisationalformatting.Whileunstructureddatahastheopportunitytobeextremelyusefulinspottinglargertrendsandconstructingpredictivemodelswhenithasbeenreviewedandunderstoodaspartofamassivedataset,it'sdifficulttoreadilysearchandanalyseforthepurposesofbusinessanalytics.WhatisStructuredData?Structureddataisorganised,quantitativedata—mostcommonlynumericalortext-baseddata—thatexistsinsomekindofstandardformattinginafixedfieldwithinafileorrecord.Informationthatexistsinspreadsheetsorrelationaldatabasesarecommonexamplesofstructureddata.Thisorganisationmakesitsimpletoquerythedatawhenlookingforspecificpiecesofdataorgroupsofinformation.Forexample,agriculturalsensorsonafarmmightcollectrawweatherdatatodeterminewhencropsshouldbewateredandhowmuchwatertheyneed.Inorderforthedatatobestructured,itneedstobecategorisedandformatted.Thistypeofdatainastructuredformatmightlooklikeatablewithcolumnsentitled“timeofday,"“temperature"and“humidity."Thestructurefacilitatessearching,sortingandanalysing.Structuredvs.UnstructuredDataThemaindifferencebetweenstructuredandunstructureddataistheformatting.Unstructureddataisstoredinitsnativeformats,suchasaPDF,videoorsensoroutput.Structureddataispresentedstrictlyinapredefinedformorwithpredefinedsignifiersthatdescribeit,inastandardizedformatsothatitcanbeeasilyplacedintoatable,spreadsheetorrelationaldatabase.Unstructureddataisoftenhousedinwhat'scalledadatalake,whichisessentiallyarepositorythatstoresrawdatainvariousformats.Structureddataresidesindatawarehouses,repositoriesthatonlyacceptdataformattedtopre-definedspecifications.Adatalakeislikeareservoirthatstoresunstructureddataandmayalsostorestructureddata,whileadatawarehousehousesonlyorganisedandformattedstructureddata.Whetherdataisinalakeorawarehouse,theinformationisstoredinsomeformofadatabase.Themaindifferenceisthatstructureddataisstoredinarelationaldatabase,storedinrowsandcolumnsusingorganisedformatslikeStructuredQueryLanguage(SQL),PostgreSQLorMongoDB.Theseformatsmakestructureddatafareasierforusers—ormachines—tosearch,sortandworkwith.Unstructureddata,bycontrast,isstoredinanon-relationaldatabasesuchasNoSQL.Thetwotypesofdataalsodifferinhowtheymaybeanalysed,aswellasthetoolsandpersonnelneededforworkingwithandmanipulatingthem.Unstructureddataistypicallyanalysedbyusingtechniquessuchasdatastackinganddatamining,whichhavebeendevelopedtoworkwithmetadataandcometomoregeneralconclusions.Whenitcomestostructureddata,moremathematicalformsofanalysis—suchasdataclassification,clustering,andregressionanalysis—canbeused.Intermsoftoolsandtechnologies,structureddatafacilitatestheuseofmanagementandanalyticstools.Examplesoftoolsusedtoworkwithstructureddataare:RelationalDatabaseManagementSystems(RDBMS)CustomerRelationshipManagement(CRM)OnlineAnalyticalProcessing(OLAP)OnlineTransactionalProcessing(OLTP)Softwarethatcanworkwithlargedatasetsexistinginmultipleformatsaretypicallyusedformanagingandanalysingunstructureddata.Examplesoftoolsformanagingunstructureddatainclude:NoSQLDatabaseManagementSystems(DBMS)AI-DrivenDataAnalysisToolsDataVisualisationToolsUnstructureddataoftenrequiresmanagementbyawell-trainedexpert,andsoftwaretoolsthathavemoreadvancedAIandpredictivemodellingcapabilities,thanthoseusedforstructureddata.Machinelearningisoneofthestrategiesusedfortheanalysisofunstructureddata.Becausestructureddataisalreadysortedandorganised,thesoftwaretoolsusedtoworkwiththesedatasetsaremoreaccessiblefornon-expertbusinessusers.Forexample,inputs,searches,queries,andmanipulationofdataareoftendoneinaself-servicefashionviaahighlyorganiseduserinterface.UseCasesOneillustrationofhowunstructureddatacanbeemployedisinthewaysensordatafromIoTdevicesmaybeusedforpredictivemodelling.Sensorsonafarm,forexample,areconstantlycollectinganddisseminatingdataabouttheclimate,healthofcrops,andfunctionalityofagriculturalequipment.AItoolscanthenanalysethedataandbuildpredictivemodelsforbettermanagementanddecision-making.AIwithmachinelearningcapabilitiescanlearnfromthesepatternsovertime,producingmoreaccuratemodelswitheachsubsequentanalysis.Unstructureddataintheformofweatherandcropgrowthpatternscanbeanalysedtopredicthowmuchwaterornutrientstheautomatedmachineryshoulddeliverinthefuture.Then,theAIsoftwareconductsanautomatedanalysisandconstructsapredictivemodeltoinformbetterfarmmanagementgoingforward.ThisanalysisisbasedonpatternstheAIrecognisesemergingasitsiftsthroughunstructureddatainmultipleformats,likecropgrowthandsoilnutrientpatternscollectedfromsensors.Structureddataisusedinscenariosthatinvolvequantitativeanalysis.Logisticsandinventorymanagementareareasinwhichstructureddataisusefulinimprovingefficiencyanddecision-making.Warehouseinventoryistypicallyhousedintheformofstructureddatawithcolumnsandrowsinarelationaldatabase.Thisdatacantheninterfacewithinventorymanagementorbusinessanalyticssystemstoinformbothbusinessanddatascienceusers.Users,andtheirsoftwaretools,canplacehardvaluesonmetricsliketheprofitabilityofcertainproductlinesandtheoverheadassociatedwithprocurementandshipping.Companiescanthenmakedecisionsbasedonquantifiableoutputs.Today,thetwotypesofdatahavedifferentuses.Unstructureddataistherawoutputofdevicesorsoftwarethatcollectinformationwhichismovedintodatalakesinitsoriginalformat.Structureddataisorganisedinnumericalortextformat,andcanbecatalogued,organised,reorganisedandanalysedwithinpre-definedparameters.AsAIandMLcontinuetoadvance,newcapabilitiestomine,analyse,learnfromandmakeimmediateuseofunstructureddataarelikelytoemerge.
RelatedProducts
LyveCloud:StorageasaService
LearnMore
LyveRack:ConvergedInfrastructure
LearnMore
BigDataAnalyticsSolutions
LearnMore
ASeagateReport RethinkData:PutMoreofYourBusinessDatatoWork
AboutSeagateOurStoryGlobalCitizenshipTrustCentreQualityAssurance
SupportProductSupportSoftwareDownloadsWarranty&ReplacementsContactUs
PressCentreNewsMediaKitsBrandPortal
Investors
PartnersIndirectPartners&ResellersSeagateChampionsSeagateDirect&SuppliersSeagateTechnologyAllianceProgram
JobsLifeatSeagateDiversity,EquityandInclusionUniversityProgrammes
WheretoBuyProductFinder
©2022 SeagateTechnologyLLCLegal&PrivacyVulnerabilityDisclosure
CookiesSettings
LaCieMaxtorLyveLabsSeagateGovernmentSolutionsSiteMap
×
延伸文章資訊
- 1結構化思維 - MBA智库百科
結構化思維(Structured Thinking)結構化思維是指在思考分析解決問題時,以一定的範式、流程順序進行,首先以假設為先導,對問題進行正確的界定,假設並羅列問題構成的 ...
- 2結構化資料vs. 非結構化資料
- 3Page 79 - 金融科技力
非結構化資料(Unstructured Data) 非結構化資料指的是資料本身格式相對不固定, ... 例如一篇文章、一段音樂、 一支影片、一個網頁等,內容則具備有完整的意思表現。
- 4結構化信息 - MBA智库百科
結構化信息(Structured Information)結構化信息是指信息經過分析後可分解成多個互相關聯的組成部分,各組成部分間有明確的層次結構,其使用和維護通過資料庫進行管理 ...
- 5结构化分析- 维基百科,自由的百科全书
結構化分析(Structured Analysis,簡稱SA)是軟體工程中的一種方法,結構化分析和結構化設計可以分析商業的需求(英语:requirements),再轉換為規格文件,最後再 ...