Prior Probability Definition - Investopedia
文章推薦指數: 80 %
Bayes' Theorem TableofContents Expand TableofContents WhatIsPriorProbability? UnderstandingPriorProbability Bayes'Theorem FAQs BusinessLeaders MathandStatistics WhatIsPriorProbability? Priorprobability,inBayesianstatistics,istheprobabilityofaneventbeforenewdataiscollected.Thisisthebestrationalassessmentoftheprobabilityofanoutcomebasedonthecurrentknowledgebeforeanexperimentisperformed. Priorprobabilitycanbecomparedwithposteriorprobability. KeyTakeaways Apriorprobability,inBayesianstatistics,istheex-antelikelihoodofaneventoccurringbeforetakingintoconsiderationanynew(posterior)information.TheposteriorprobabilityiscalculatedbyupdatingthepriorprobabilityusingBayes'theorem.Instatisticalterms,thepriorprobabilityisthebasisforposteriorprobabilities. UnderstandingPriorProbability Thepriorprobabilityofaneventwillberevisedasnewdataorinformationbecomesavailable,toproduceamoreaccuratemeasureofapotentialoutcome.ThatrevisedprobabilitybecomestheposteriorprobabilityandiscalculatedusingBayes'theorem.Instatisticalterms,theposteriorprobabilityistheprobabilityofeventAoccurringgiventhateventBhasoccurred. Example Forexample,threeacresoflandhavethelabelsA,B,andC.Oneacrehasreservesofoilbelowitssurface,whiletheothertwodonot.ThepriorprobabilityofoilbeingfoundonacreCisonethird,or0.333.ButifadrillingtestisconductedonacreB,andtheresultsindicatethatnooilispresentatthelocation,thentheposteriorprobabilityofoilbeingfoundonacresAandCbecome0.5,aseachacrehasoneoutoftwochances. Bayes'theoremisoftenappliedtodataminingandmachinelearning. Bayes'Theorem P ( A ∣ B ) = P ( A ∩ B ) P ( B ) = P ( A ) × P ( B ∣ A ) P ( B ) where: P ( A ) = the prior probability of A occurring P ( A ∣ B ) = the conditional probability of A given that B occurs P ( B ∣ A ) = the conditional probability of B given that A occurs \begin{aligned}&P(A\midB)\=\\frac{P(A\capB)}{P(B)}\=\\frac{P(A)\\times\P(B\midA)}{P(B)}\\&\textbf{where:}\\&P(A)\=\\text{thepriorprobabilityof}A\text{occurring}\\&P(A\midB)=\\text{theconditionalprobabilityof}A\\&\qquad\qquad\quad\\text{giventhat}B\text{occurs}\\&P(B\midA)\=\\text{theconditionalprobabilityof}B\\&\qquad\qquad\quad\\\text{giventhat}A\text{occurs}\\&P(B)\=\\text{theprobabilityof}B\text{occurring}\end{aligned} P(A∣B) = P(B)P(A∩B) = P(B)P(A) × P(B∣A)where:P(A) = the prior probability of A occurringP(A∣B)= the conditional probability of A given that B occursP(B∣A) = the conditional probability of B given that A occurs Ifweareinterestedintheprobabilityofaneventofwhichwehavepriorobservations;wecallthisthepriorprobability.We'lldeemthiseventA,anditsprobabilityP(A).IfthereisasecondeventthataffectsP(A),whichwe'llcalleventB,thenwewanttoknowwhattheprobabilityofAisgivenBhasoccurred.Inprobabilisticnotation,thisisP(A|B),andisknownasposteriorprobabilityorrevisedprobability.Thisisbecauseithasoccurredaftertheoriginalevent,hencethepostinposterior.ThisishowBaye’stheoremuniquelyallowsustoupdateourpreviousbeliefswithnewinformation. WhatIstheDifferenceBetweenPriorandPosteriorProbability? Priorprobabilityrepresentswhatisoriginallybelievedbeforenewevidenceisintroduced,andposteriorprobabilitytakesthisnewinformationintoaccount. HowIsBayes'TheoremUsedinFinance? Infinance,Bayes'theoremcanbeusedtoupdateapreviousbeliefoncenewinformationisobtained.Thiscanbeappliedtostockreturns,observedvolatility,andsoon.Bayes'Theoremcanalsobeusedtoratethe risk oflendingmoneytopotentialborrowersbyupdatingthelikelihoodofdefaultbasedonpastexperience. HowIsBayes'TheoremUsedinMachineLearning? BayesTheoremprovidesausefulmethodforthinkingabouttherelationshipbetweenadatasetandaprobability.Itisthereforeusefulinfittingdataandtrainingalgorithms,wheretheseareabletoupdatetheirposteriorprobabilitiesgiveneachroundoftraining. CompareAccounts AdvertiserDisclosure × TheoffersthatappearinthistablearefrompartnershipsfromwhichInvestopediareceivescompensation.Thiscompensationmayimpacthowandwherelistingsappear.Investopediadoesnotincludealloffersavailableinthemarketplace. Provider Name Description RelatedTerms Bayes'TheoremDefinition Bayes'theoremisamathematicalformulafordeterminingconditionalprobabilityofanevent.LearnhowtocalculateBayes'theoremandseeexamples. more UnderstandingPosteriorProbability Posteriorprobabilityistherevisedprobabilityofaneventoccurringaftertakingintoconsiderationnewinformation. more ConditionalProbability Conditionalprobabilityisthelikelihoodofaneventoroutcomeoccurringbasedontheoccurrenceofsomeotherpreviouseventoroutcome. more EmpiricalProbabilityDefinition Empiricalprobabilityusesthenumberofoccurrencesofanoutcomewithinasamplesetasabasisfordeterminingtheprobabilityofthatoutcome. more Chi-Square(χ2)StatisticDefinition Achi-square(χ2)statisticisatestthatmeasureshowexpectationscomparetoactualobserveddata(ormodelresults). more WhatIsSkewnessinStatistics? Skewnessreferstodistortionorasymmetryinasymmetricalbellcurve,ornormaldistribution,inasetofdata. more PartnerLinks RelatedArticles Tools HowtoUsetheBayesianMethodofFinancialForecasting Tools HowtoCalculateaZ-Score FinancialRatios HowtoCalculatetheRequiredRateofReturn(RRR) InvestingEssentials WhattheDowMeansandHowItIsCalculated FinancialRatios AnalyzeInvestmentsQuicklyWithRatios RiskManagement LearntheCommonWaystoMeasureRiskinInvestmentManagement
延伸文章資訊
- 1Priors in Whole-Genome Regression: The Bayesian Alphabet ...
It follows that Bayes B assigns, a priori, the same mean and variance to all marker effects and t...
- 2[2204.05615] Normalized Power Prior Bayesian Analysis - arXiv
However, in the original form of the joint power prior Bayesian approach, certain positive consta...
- 3第40 章貝葉斯統計入門 - Bookdown
A Bayesian statistician is one who, vaguely expecting a horse and ... 利用貝葉斯定理,我們將先驗隨機概率分佈(prior p...
- 4The truth about Bayesian priors and overfitting
The truth about Bayesian priors and overfitting. Have you ever thought about how strong a prior i...
- 5The use of Bayesian priors in Ecology: The good, the bad and ...
Bayesian data analysis (BDA) is a powerful tool for making inference from ecological data, but it...