Prior probability - Wikipedia
文章推薦指數: 80 %
In Bayesian statistical inference, a prior probability distribution, often simply called the prior, of an uncertain quantity is the probability distribution ... Priorprobability FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Distributionofanuncertainquantity PartofaseriesonBayesianstatistics Theory Admissibledecisionrule Bayesianefficiency Bayesianepistemology Bayesianprobability Probabilityinterpretations Bayes'theorem Bayesfactor Bayesianinference Bayesiannetwork Prior Posterior Likelihood Conjugateprior Posteriorpredictive Hyperparameter Hyperprior Principleofindifference Principleofmaximumentropy EmpiricalBayesmethod Cromwell'srule Bernstein–vonMisestheorem Schwarzcriterion Credibleinterval Maximumaposterioriestimation Radicalprobabilism Techniques Bayesianlinearregression Bayesianestimator ApproximateBayesiancomputation MarkovchainMonteCarlo IntegratednestedLaplaceapproximations Mathematicsportalvte NottobeconfusedwithAprioriprobability. InBayesianstatisticalinference,apriorprobabilitydistribution,oftensimplycalledtheprior,ofanuncertainquantityistheprobabilitydistributionthatwouldexpressone'sbeliefsaboutthisquantitybeforesomeevidenceistakenintoaccount.Forexample,thepriorcouldbetheprobabilitydistributionrepresentingtherelativeproportionsofvoterswhowillvoteforaparticularpoliticianinafutureelection.Theunknownquantitymaybeaparameterofthemodeloralatentvariableratherthananobservablevariable. Bayes'theoremcalculatestherenormalizedpointwiseproductofthepriorandthelikelihoodfunction,toproducetheposteriorprobabilitydistribution,whichistheconditionaldistributionoftheuncertainquantitygiventhedata. Similarly,thepriorprobabilityofarandomeventoranuncertainpropositionistheunconditionalprobabilitythatisassignedbeforeanyrelevantevidenceistakenintoaccount. Priorscanbecreatedusinganumberofmethods.[1]: 27–41 Apriorcanbedeterminedfrompastinformation,suchaspreviousexperiments.Apriorcanbeelicitedfromthepurelysubjectiveassessmentofanexperiencedexpert.Anuninformativepriorcanbecreatedtoreflectabalanceamongoutcomeswhennoinformationisavailable.Priorscanalsobechosenaccordingtosomeprinciple,suchassymmetryormaximizingentropygivenconstraints;examplesaretheJeffreyspriororBernardo'sreferenceprior.Whenafamilyofconjugatepriorsexists,choosingapriorfromthatfamilysimplifiescalculationoftheposteriordistribution. Parametersofpriordistributionsareakindofhyperparameter.Forexample,ifoneusesabetadistributiontomodelthedistributionoftheparameterpofaBernoullidistribution,then: pisaparameteroftheunderlyingsystem(Bernoullidistribution),and αandβareparametersofthepriordistribution(betadistribution);hencehyperparameters. Hyperparametersthemselvesmayhavehyperpriordistributionsexpressingbeliefsabouttheirvalues.ABayesianmodelwithmorethanonelevelofpriorlikethisiscalledahierarchicalBayesmodel. Contents 1Informativepriors 2Weaklyinformativepriors 3Uninformativepriors 4Improperpriors 4.1Examples 5Seealso 6Notes 7References Informativepriors[edit] Aninformativepriorexpressesspecific,definiteinformationaboutavariable. Anexampleisapriordistributionforthetemperatureatnoontomorrow. Areasonableapproachistomaketheprioranormaldistributionwithexpectedvalueequaltotoday'snoontimetemperature,withvarianceequaltotheday-to-dayvarianceofatmospherictemperature, oradistributionofthetemperatureforthatdayoftheyear. Thisexamplehasapropertyincommonwithmanypriors, namely,thattheposteriorfromoneproblem(today'stemperature)becomesthepriorforanotherproblem(tomorrow'stemperature);pre-existingevidencewhichhasalreadybeentakenintoaccountispartofthepriorand,asmoreevidenceaccumulates,theposteriorisdeterminedlargelybytheevidenceratherthananyoriginalassumption,providedthattheoriginalassumptionadmittedthepossibilityofwhattheevidenceissuggesting.Theterms"prior"and"posterior"aregenerallyrelativetoaspecificdatumorobservation. Weaklyinformativepriors[edit] Aweaklyinformativepriorexpressespartialinformationaboutavariable.Anexampleis,whensettingthepriordistributionforthetemperatureatnoontomorrowinSt.Louis,touseanormaldistributionwithmean50degreesFahrenheitandstandarddeviation40degrees,whichverylooselyconstrainsthetemperaturetotherange(10degrees,90degrees)withasmallchanceofbeingbelow-30degreesorabove130degrees.Thepurposeofaweaklyinformativepriorisforregularization,thatis,tokeepinferencesinareasonablerange. Uninformativepriors[edit] Anuninformative,flat,ordiffusepriorexpressesvagueorgeneralinformationaboutavariable.[2]Theterm"uninformativeprior"issomewhatofamisnomer.Suchapriormightalsobecalledanotveryinformativeprior,oranobjectiveprior,i.e.onethat'snotsubjectivelyelicited. Uninformativepriorscanexpress"objective"informationsuchas"thevariableispositive"or"thevariableislessthansomelimit".Thesimplestandoldestrulefordetermininganon-informativeprioristheprincipleofindifference,whichassignsequalprobabilitiestoallpossibilities.Inparameterestimationproblems,theuseofanuninformativepriortypicallyyieldsresultswhicharenottoodifferentfromconventionalstatisticalanalysis,asthelikelihoodfunctionoftenyieldsmoreinformationthantheuninformativeprior. Someattemptshavebeenmadeatfindingaprioriprobabilities,i.e.probabilitydistributionsinsomesenselogicallyrequiredbythenatureofone'sstateofuncertainty;theseareasubjectofphilosophicalcontroversy,withBayesiansbeingroughlydividedintotwoschools:"objectiveBayesians",whobelievesuchpriorsexistinmanyusefulsituations,and"subjectiveBayesians"whobelievethatinpracticepriorsusuallyrepresentsubjectivejudgementsofopinionthatcannotberigorouslyjustified(Williamson2010).PerhapsthestrongestargumentsforobjectiveBayesianismweregivenbyEdwinT.Jaynes,basedmainlyontheconsequencesofsymmetriesandontheprincipleofmaximumentropy. Asanexampleofanaprioriprior,duetoJaynes(2003),considerasituationinwhichoneknowsaballhasbeenhiddenunderoneofthreecups,A,B,orC,butnootherinformationisavailableaboutitslocation.Inthiscaseauniformpriorofp(A) =p(B) =p(C) =1/3seemsintuitivelyliketheonlyreasonablechoice.Moreformally,wecanseethattheproblemremainsthesameifweswaparoundthelabels("A","B"and"C")ofthecups.Itwouldthereforebeoddtochooseapriorforwhichapermutationofthelabelswouldcauseachangeinourpredictionsaboutwhichcuptheballwillbefoundunder;theuniformprioristheonlyonewhichpreservesthisinvariance.Ifoneacceptsthisinvarianceprinciplethenonecanseethattheuniformprioristhelogicallycorrectpriortorepresentthisstateofknowledge.Thisprioris"objective"inthesenseofbeingthecorrectchoicetorepresentaparticularstateofknowledge,butitisnotobjectiveinthesenseofbeinganobserver-independentfeatureoftheworld:inrealitytheballexistsunderaparticularcup,anditonlymakessensetospeakofprobabilitiesinthissituationifthereisanobserverwithlimitedknowledgeaboutthesystem. Asamorecontentiousexample,Jaynespublishedanargument(Jaynes1968)basedontheinvarianceofthepriorunderachangeofparametersthatsuggeststhatthepriorrepresentingcompleteuncertaintyaboutaprobabilityshouldbetheHaldanepriorp−1(1 − p)−1.TheexampleJaynesgivesisoffindingachemicalinalabandaskingwhetheritwilldissolveinwaterinrepeatedexperiments.TheHaldaneprior[3]givesbyfarthemostweightto p = 0 {\displaystylep=0} and p = 1 {\displaystylep=1} ,indicatingthatthesamplewilleitherdissolveeverytimeorneverdissolve,withequalprobability.However,ifonehasobservedsamplesofthechemicaltodissolveinoneexperimentandnottodissolveinanotherexperimentthenthispriorisupdatedtotheuniformdistributionontheinterval[0,1].ThisisobtainedbyapplyingBayes'theoremtothedatasetconsistingofoneobservationofdissolvingandoneofnotdissolving,usingtheaboveprior.TheHaldanepriorisanimproperpriordistribution(meaningthatithasaninfinitemass).HaroldJeffreysdevisedasystematicwayfordesigninguninformativepriorsase.g.,Jeffreyspriorp−1/2(1 − p)−1/2fortheBernoullirandomvariable. PriorscanbeconstructedwhichareproportionaltotheHaarmeasureiftheparameterspaceXcarriesanaturalgroupstructurewhichleavesinvariantourBayesianstateofknowledge(Jaynes,1968).Thiscanbeseenasageneralisationoftheinvarianceprincipleusedtojustifytheuniformprioroverthethreecupsintheexampleabove.Forexample,inphysicswemightexpectthatanexperimentwillgivethesameresultsregardlessofourchoiceoftheoriginofacoordinatesystem.ThisinducesthegroupstructureofthetranslationgrouponX,whichdeterminesthepriorprobabilityasaconstantimproperprior.Similarly,somemeasurementsarenaturallyinvarianttothechoiceofanarbitraryscale(e.g.,whethercentimetersorinchesareused,thephysicalresultsshouldbeequal).Insuchacase,thescalegroupisthenaturalgroupstructure,andthecorrespondingprioronXisproportionalto1/x.Itsometimesmatterswhetherweusetheleft-invariantorright-invariantHaarmeasure.Forexample,theleftandrightinvariantHaarmeasuresontheaffinegrouparenotequal.Berger(1985,p. 413)arguesthattheright-invariantHaarmeasureisthecorrectchoice. Anotheridea,championedbyEdwinT.Jaynes,istousetheprincipleofmaximumentropy(MAXENT).ThemotivationisthattheShannonentropyofaprobabilitydistributionmeasurestheamountofinformationcontainedinthedistribution.Thelargertheentropy,thelessinformationisprovidedbythedistribution.Thus,bymaximizingtheentropyoverasuitablesetofprobabilitydistributionsonX,onefindsthedistributionthatisleastinformativeinthesensethatitcontainstheleastamountofinformationconsistentwiththeconstraintsthatdefinetheset.Forexample,themaximumentropyprioronadiscretespace,givenonlythattheprobabilityisnormalizedto1,isthepriorthatassignsequalprobabilitytoeachstate.Andinthecontinuouscase,themaximumentropypriorgiventhatthedensityisnormalizedwithmeanzeroandunitvarianceisthestandardnormaldistribution.Theprincipleofminimumcross-entropygeneralizesMAXENTtothecaseof"updating"anarbitrarypriordistributionwithsuitableconstraintsinthemaximum-entropysense. Arelatedidea,referencepriors,wasintroducedbyJosé-MiguelBernardo.Here,theideaistomaximizetheexpectedKullback–Leiblerdivergenceoftheposteriordistributionrelativetotheprior.ThismaximizestheexpectedposteriorinformationaboutXwhenthepriordensityisp(x);thus,insomesense,p(x)isthe"leastinformative"prioraboutX.Thereferencepriorisdefinedintheasymptoticlimit,i.e.,oneconsidersthelimitofthepriorssoobtainedasthenumberofdatapointsgoestoinfinity.Inthepresentcase,theKLdivergencebetweenthepriorandposteriordistributionsisgivenby K L = ∫ p ( t ) ∫ p ( x ∣ t ) log p ( x ∣ t ) p ( x ) d x d t . {\displaystyleKL=\intp(t)\intp(x\midt)\log{\frac{p(x\midt)}{p(x)}}\,dx\,dt.} Here, t {\displaystylet} isasufficientstatisticforsomeparameter x {\displaystylex} .TheinnerintegralistheKLdivergencebetweentheposterior p ( x ∣ t ) {\displaystylep(x\midt)} andprior p ( x ) {\displaystylep(x)} distributionsandtheresultistheweightedmeanoverallvaluesof t {\displaystylet} .Splittingthelogarithmintotwoparts,reversingtheorderofintegralsinthesecondpartandnotingthat log [ p ( x ) ] {\displaystyle\log\,[p(x)]} doesnotdependon t {\displaystylet} yields K L = ∫ p ( t ) ∫ p ( x ∣ t ) log [ p ( x ∣ t ) ] d x d t − ∫ log [ p ( x ) ] ∫ p ( t ) p ( x ∣ t ) d t d x . {\displaystyleKL=\intp(t)\intp(x\midt)\log[p(x\midt)]\,dx\,dt\,-\,\int\log[p(x)]\,\intp(t)p(x\midt)\,dt\,dx.} Theinnerintegralinthesecondpartistheintegralover t {\displaystylet} ofthejointdensity p ( x , t ) {\displaystylep(x,t)} .Thisisthemarginaldistribution p ( x ) {\displaystylep(x)} ,sowehave K L = ∫ p ( t ) ∫ p ( x ∣ t ) log [ p ( x ∣ t ) ] d x d t − ∫ p ( x ) log [ p ( x ) ] d x . {\displaystyleKL=\intp(t)\intp(x\midt)\log[p(x\midt)]\,dx\,dt\,-\,\intp(x)\log[p(x)]\,dx.} Nowweusetheconceptofentropywhich,inthecaseofprobabilitydistributions,isthenegativeexpectedvalueofthelogarithmoftheprobabilitymassordensityfunctionor H ( x ) = − ∫ p ( x ) log [ p ( x ) ] d x . {\displaystyleH(x)=-\intp(x)\log[p(x)]\,dx.} Usingthisinthelastequationyields K L = − ∫ p ( t ) H ( x ∣ t ) d t + H ( x ) . {\displaystyleKL=-\intp(t)H(x\midt)\,dt+\,H(x).} Inwords,KListhenegativeexpectedvalueover t {\displaystylet} oftheentropyof x {\displaystylex} conditionalon t {\displaystylet} plusthemarginal(i.e.unconditional)entropyof x {\displaystylex} .Inthelimitingcasewherethesamplesizetendstoinfinity,theBernstein-vonMisestheoremstatesthatthedistributionof x {\displaystylex} conditionalonagivenobservedvalueof t {\displaystylet} isnormalwithavarianceequaltothereciprocaloftheFisherinformationatthe'true'valueof x {\displaystylex} .Theentropyofanormaldensityfunctionisequaltohalfthelogarithmof 2 π e v {\displaystyle2\piev} where v {\displaystylev} isthevarianceofthedistribution.Inthiscasetherefore H = log 2 π e / [ N I ( x ∗ ) ] {\displaystyleH=\log{\sqrt{2\pie/[NI(x*)]}}} where N {\displaystyleN} isthearbitrarilylargesamplesize(towhichFisherinformationisproportional)and x ∗ {\displaystylex*} isthe'true'value.Sincethisdoesnotdependon t {\displaystylet} itcanbetakenoutoftheintegral,andasthisintegralisoveraprobabilityspaceitequalsone.HencewecanwritetheasymptoticformofKLas K L = − log [ 1 k I ( x ∗ ) ] − ∫ p ( x ) log [ p ( x ) ] d x . {\displaystyleKL=-\log[1{\sqrt{kI(x*)}}]-\,\intp(x)\log[p(x)]\,dx.} where k {\displaystylek} isproportionaltothe(asymptoticallylarge)samplesize.Wedonotknowthevalueof x ∗ {\displaystylex*} .Indeed,theveryideagoesagainstthephilosophyofBayesianinferenceinwhich'true'valuesofparametersarereplacedbypriorandposteriordistributions.Soweremove x ∗ {\displaystylex*} byreplacingitwith x {\displaystylex} andtakingtheexpectedvalueofthenormalentropy,whichweobtainbymultiplyingby p ( x ) {\displaystylep(x)} andintegratingover x {\displaystylex} .Thisallowsustocombinethelogarithmsyielding K L = − ∫ p ( x ) log [ p ( x ) / k I ( x ) ] d x . {\displaystyleKL=-\intp(x)\log[p(x)/{\sqrt{kI(x)}}]\,dx.} Thisisaquasi-KLdivergence("quasi"inthesensethatthesquarerootoftheFisherinformationmaybethekernelofanimproperdistribution).Duetotheminussign,weneedtominimisethisinordertomaximisetheKLdivergencewithwhichwestarted.Theminimumvalueofthelastequationoccurswherethetwodistributionsinthelogarithmargument,improperornot,donotdiverge.ThisinturnoccurswhenthepriordistributionisproportionaltothesquarerootoftheFisherinformationofthelikelihoodfunction.Henceinthesingleparametercase,referencepriorsandJeffreyspriorsareidentical,eventhoughJeffreyshasaverydifferentrationale. Referencepriorsareoftentheobjectivepriorofchoiceinmultivariateproblems,sinceotherrules(e.g.,Jeffreys'rule)mayresultinpriorswithproblematicbehavior.[clarificationneededAJeffreyspriorisrelatedtoKLdivergence?] Objectivepriordistributionsmayalsobederivedfromotherprinciples,suchasinformationorcodingtheory(seee.g.minimumdescriptionlength)orfrequentiststatistics(seefrequentistmatching).SuchmethodsareusedinSolomonoff'stheoryofinductiveinference.Constructingobjectivepriorshavebeenrecentlyintroducedinbioinformatics,andspeciallyinferenceincancersystemsbiology,wheresamplesizeislimitedandavastamountofpriorknowledgeisavailable.Inthesemethods,eitheraninformationtheorybasedcriterion,suchasKLdivergenceorlog-likelihoodfunctionforbinarysupervisedlearningproblems[4]andmixturemodelproblems.[5] Philosophicalproblemsassociatedwithuninformativepriorsareassociatedwiththechoiceofanappropriatemetric,ormeasurementscale.Supposewewantapriorfortherunningspeedofarunnerwhoisunknowntous.Wecouldspecify,say,anormaldistributionasthepriorforhisspeed,butalternativelywecouldspecifyanormalpriorforthetimehetakestocomplete100metres,whichisproportionaltothereciprocalofthefirstprior.Theseareverydifferentpriors,butitisnotclearwhichistobepreferred.Jaynes'often-overlooked[bywhom?]methodoftransformationgroupscananswerthisquestioninsomesituations.[6] Similarly,ifaskedtoestimateanunknownproportionbetween0and1,wemightsaythatallproportionsareequallylikely,anduseauniformprior.Alternatively,wemightsaythatallordersofmagnitudefortheproportionareequallylikely,thelogarithmicprior,whichistheuniformprioronthelogarithmofproportion.TheJeffreyspriorattemptstosolvethisproblembycomputingapriorwhichexpressesthesamebeliefnomatterwhichmetricisused.TheJeffreyspriorforanunknownproportionpisp−1/2(1 − p)−1/2,whichdiffersfromJaynes'recommendation. Priorsbasedonnotionsofalgorithmicprobabilityareusedininductiveinferenceasabasisforinductioninverygeneralsettings. Practicalproblemsassociatedwithuninformativepriorsincludetherequirementthattheposteriordistributionbeproper.Theusualuninformativepriorsoncontinuous,unboundedvariablesareimproper.Thisneednotbeaproblemiftheposteriordistributionisproper.Anotherissueofimportanceisthatifanuninformativeprioristobeusedroutinely,i.e.,withmanydifferentdatasets,itshouldhavegoodfrequentistproperties.NormallyaBayesianwouldnotbeconcernedwithsuchissues,butitcanbeimportantinthissituation.Forexample,onewouldwantanydecisionrulebasedontheposteriordistributiontobeadmissibleundertheadoptedlossfunction.Unfortunately,admissibilityisoftendifficulttocheck,althoughsomeresultsareknown(e.g.,BergerandStrawderman1996).TheissueisparticularlyacutewithhierarchicalBayesmodels;theusualpriors(e.g.,Jeffreys'prior)maygivebadlyinadmissibledecisionrulesifemployedatthehigherlevelsofthehierarchy. Improperpriors[edit] Letevents A 1 , A 2 , … , A n {\displaystyleA_{1},A_{2},\ldots,A_{n}} bemutuallyexclusiveandexhaustive.IfBayes'theoremiswrittenas P ( A i ∣ B ) = P ( B ∣ A i ) P ( A i ) ∑ j P ( B ∣ A j ) P ( A j ) , {\displaystyleP(A_{i}\midB)={\frac{P(B\midA_{i})P(A_{i})}{\sum_{j}P(B\midA_{j})P(A_{j})}}\,,} thenitisclearthatthesameresultwouldbeobtainedifallthepriorprobabilitiesP(Ai)andP(Aj)weremultipliedbyagivenconstant;thesamewouldbetrueforacontinuousrandomvariable.Ifthesummationinthedenominatorconverges,theposteriorprobabilitieswillstillsum(orintegrate)to1evenifthepriorvaluesdonot,andsothepriorsmayonlyneedtobespecifiedinthecorrectproportion.Takingthisideafurther,inmanycasesthesumorintegralofthepriorvaluesmaynotevenneedtobefinitetogetsensibleanswersfortheposteriorprobabilities.Whenthisisthecase,theprioriscalledanimproperprior.However,theposteriordistributionneednotbeaproperdistributionifthepriorisimproper.ThisisclearfromthecasewhereeventBisindependentofalloftheAj. Statisticianssometimes[7]useimproperpriorsasuninformativepriors.Forexample,iftheyneedapriordistributionforthemeanandvarianceofarandomvariable,theymayassumep(m, v) ~ 1/v(forv > 0)whichwouldsuggestthatanyvalueforthemeanis"equallylikely"andthatavalueforthepositivevariancebecomes"lesslikely"ininverseproportiontoitsvalue.Manyauthors(Lindley,1973;DeGroot,1937;KassandWasserman,1996)[citationneeded]warnagainstthedangerofover-interpretingthosepriorssincetheyarenotprobabilitydensities.Theonlyrelevancetheyhaveisfoundinthecorrespondingposterior,aslongasitiswell-definedforallobservations.(TheHaldanepriorisatypicalcounterexample.[clarificationneeded][citationneeded]) Bycontrast,likelihoodfunctionsdonotneedtobeintegrated,andalikelihoodfunctionthatisuniformly1correspondstotheabsenceofdata(allmodelsareequallylikely,givennodata):Bayes'rulemultipliesapriorbythelikelihood,andanemptyproductisjusttheconstantlikelihood1.However,withoutstartingwithapriorprobabilitydistribution,onedoesnotendupgettingaposteriorprobabilitydistribution,andthuscannotintegrateorcomputeexpectedvaluesorloss.SeeLikelihoodfunction§ Non-integrabilityfordetails. Examples[edit] Examplesofimproperpriorsinclude: Theuniformdistributiononaninfiniteinterval(i.e.,ahalf-lineortheentirerealline). Beta(0,0),thebetadistributionforα=0,β=0(uniformdistributiononlog-oddsscale). Thelogarithmicprioronthepositivereals(uniformdistributiononlogscale).[citationneeded] Notethatthesefunctions,interpretedasuniformdistributions,canalsobeinterpretedasthelikelihoodfunctionintheabsenceofdata,butarenotproperpriors. Seealso[edit] Baserate Bayesianepistemology Strongprior Notes[edit] ^Carlin,BradleyP.;Louis,ThomasA.(2008).BayesianMethodsforDataAnalysis(Third ed.).CRCPress.ISBN 9781584886983. ^Zellner,Arnold(1971)."PriorDistributionstoRepresent'KnowingLittle'".AnIntroductiontoBayesianInferenceinEconometrics.NewYork:JohnWiley&Sons.pp. 41–53.ISBN 0-471-98165-6. ^ThispriorwasproposedbyJ.B.S.Haldanein"Anoteoninverseprobability",MathematicalProceedingsoftheCambridgePhilosophicalSociety28,55–61,1932,doi:10.1017/S0305004100010495.SeealsoJ.Haldane,"Theprecisionofobservedvaluesofsmallfrequencies",Biometrika,35:297–300,1948,doi:10.2307/2332350,JSTOR 2332350. ^Esfahani,M.S.;Dougherty,E.R.(2014)."IncorporationofBiologicalPathwayKnowledgeintheConstructionofPriorsforOptimalBayesianClassification-IEEEJournals&Magazine".IEEE/ACMTransactionsonComputationalBiologyandBioinformatics.11(1):202–18.doi:10.1109/TCBB.2013.143.PMID 26355519.S2CID 10096507. ^Boluki,Shahin;Esfahani,MohammadShahrokh;Qian,Xiaoning;Dougherty,EdwardR(December2017)."IncorporatingbiologicalpriorknowledgeforBayesianlearningviamaximalknowledge-driveninformationpriors".BMCBioinformatics.18(S14):552.doi:10.1186/s12859-017-1893-4.ISSN 1471-2105.PMC 5751802.PMID 29297278. ^Jaynes(1968),pp.17,seealsoJaynes(2003),chapter12.Notethatchapter12isnotavailableintheonlinepreprintbutcanbepreviewedviaGoogleBooks. ^Christensen,Ronald;Johnson,Wesley;Branscum,Adam;Hanson,TimothyE.(2010).BayesianIdeasandDataAnalysis :AnIntroductionforScientistsandStatisticians.Hoboken:CRCPress.p. 69.ISBN 9781439894798. References[edit] Bauwens,Luc;Lubrano,Michel;Richard,Jean-François(1999)."PriorDensitiesfortheRegressionModel".BayesianInferenceinDynamicEconometricModels.OxfordUniversityPress.pp. 94–128.ISBN 0-19-877313-7. Rubin,DonaldB.;Gelman,Andrew;JohnB.Carlin;Stern,Hal(2003).BayesianDataAnalysis(2nd ed.).BocaRaton:Chapman&Hall/CRC.ISBN 978-1-58488-388-3.MR 2027492. Berger,JamesO.(1985).StatisticaldecisiontheoryandBayesiananalysis.Berlin:Springer-Verlag.ISBN 978-0-387-96098-2.MR 0804611. Berger,JamesO.;Strawderman,WilliamE.(1996)."Choiceofhierarchicalpriors:admissibilityinestimationofnormalmeans".AnnalsofStatistics.24(3):931–951.doi:10.1214/aos/1032526950.MR 1401831.Zbl 0865.62004. Bernardo,JoseM.(1979)."ReferencePosteriorDistributionsforBayesianInference".JournaloftheRoyalStatisticalSociety,SeriesB.41(2):113–147.JSTOR 2985028.MR 0547240. JamesO.Berger;JoséM.Bernardo;DongchuSun(2009)."Theformaldefinitionofreferencepriors".AnnalsofStatistics.37(2):905–938.arXiv:0904.0156.Bibcode:2009arXiv0904.0156B.doi:10.1214/07-AOS587.S2CID 3221355. Jaynes,EdwinT.(Sep1968)."PriorProbabilities"(PDF).IEEETransactionsonSystemsScienceandCybernetics.4(3):227–241.doi:10.1109/TSSC.1968.300117.Retrieved2009-03-27. ReprintedinRosenkrantz,RogerD.(1989).E.T.Jaynes:papersonprobability,statistics,andstatisticalphysics.Boston:KluwerAcademicPublishers.pp. 116–130.ISBN 978-90-277-1448-0. Jaynes,EdwinT.(2003).ProbabilityTheory:TheLogicofScience.CambridgeUniversityPress.ISBN 978-0-521-59271-0. Williamson,Jon(2010)."reviewofBrunodiFinetti.PhilosophicalLecturesonProbability"(PDF).PhilosophiaMathematica.18(1):130–135.doi:10.1093/philmat/nkp019.Archivedfromtheoriginal(PDF)on2011-06-09.Retrieved2010-07-02. Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Prior_probability&oldid=1095868801" Categories:BayesianstatisticsProbabilityassessmentHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataWikipediaarticlesneedingclarificationfromSeptember2015Articleswithspecificallymarkedweasel-wordedphrasesfromAugust2019AllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromDecember2008WikipediaarticlesneedingclarificationfromMay2011ArticleswithunsourcedstatementsfromMay2011ArticleswithunsourcedstatementsfromOctober2010 Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages DeutschEspañolفارسیFrançais한국어Italianoעברית日本語PortuguêsРусскийTürkçeУкраїнська粵語中文 Editlinks
延伸文章資訊
- 1Relationship between Bayesian prior, posterior, and data. Prior...
Download scientific diagram | Relationship between Bayesian prior, posterior, and data. Prior kno...
- 2第40 章貝葉斯統計入門 - Bookdown
A Bayesian statistician is one who, vaguely expecting a horse and ... 利用貝葉斯定理,我們將先驗隨機概率分佈(prior p...
- 3Bayesian method (1). The prior distribution | by Xichu Zhang
The most intuitive and easiest prior is a uniform prior distribution if the value of the paramete...
- 4The use of Bayesian priors in Ecology: The good, the bad and ...
Bayesian data analysis (BDA) is a powerful tool for making inference from ecological data, but it...
- 5Prior distribution - Columbia Statistics
The prior distribution is a key part of Bayesian infer- ence (see Bayesian methods and modeling) ...