Bayesian probability - Wikipedia
文章推薦指數: 80 %
Bayesian probability is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is ... Bayesianprobability FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Forbroadercoverageofthistopic,seeBayesianstatistics. PartofaseriesonBayesianstatistics Theory Admissibledecisionrule Bayesianefficiency Bayesianepistemology Bayesianprobability Probabilityinterpretations Bayes'theorem Bayesfactor Bayesianinference Bayesiannetwork Prior Posterior Likelihood Conjugateprior Posteriorpredictive Hyperparameter Hyperprior Principleofindifference Principleofmaximumentropy EmpiricalBayesmethod Cromwell'srule Bernstein–vonMisestheorem Schwarzcriterion Credibleinterval Maximumaposterioriestimation Radicalprobabilism Techniques Bayesianlinearregression Bayesianestimator ApproximateBayesiancomputation MarkovchainMonteCarlo IntegratednestedLaplaceapproximations MathematicsportalvteInterpretationofprobabilityBayesianprobabilityisaninterpretationoftheconceptofprobability,inwhich,insteadoffrequencyorpropensityofsomephenomenon,probabilityisinterpretedasreasonableexpectation[1]representingastateofknowledge[2]orasquantificationofapersonalbelief.[3] TheBayesianinterpretationofprobabilitycanbeseenasanextensionofpropositionallogicthatenablesreasoningwithhypotheses;[4][5]thatis,withpropositionswhosetruthorfalsityisunknown.IntheBayesianview,aprobabilityisassignedtoahypothesis,whereasunderfrequentistinference,ahypothesisistypicallytestedwithoutbeingassignedaprobability. Bayesianprobabilitybelongstothecategoryofevidentialprobabilities;toevaluatetheprobabilityofahypothesis,theBayesianprobabilistspecifiesapriorprobability.This,inturn,isthenupdatedtoaposteriorprobabilityinthelightofnew,relevantdata(evidence).[6]TheBayesianinterpretationprovidesastandardsetofproceduresandformulaetoperformthiscalculation. ThetermBayesianderivesfromthe18th-centurymathematicianandtheologianThomasBayes,whoprovidedthefirstmathematicaltreatmentofanon-trivialproblemofstatisticaldataanalysisusingwhatisnowknownasBayesianinference.[7]: 131 MathematicianPierre-SimonLaplacepioneeredandpopularizedwhatisnowcalledBayesianprobability.[7]: 97–98 Contents 1Bayesianmethodology 2ObjectiveandsubjectiveBayesianprobabilities 3History 4JustificationofBayesianprobabilities 4.1Axiomaticapproach 4.2Dutchbookapproach 4.3Decisiontheoryapproach 5Personalprobabilitiesandobjectivemethodsforconstructingpriors 6Seealso 7References 8Bibliography Bayesianmethodology[edit] Bayesianmethodsarecharacterizedbyconceptsandproceduresasfollows: Theuseofrandomvariables,ormoregenerallyunknownquantities,[8]tomodelallsourcesofuncertaintyinstatisticalmodelsincludinguncertaintyresultingfromlackofinformation(seealsoaleatoricandepistemicuncertainty). Theneedtodeterminethepriorprobabilitydistributiontakingintoaccounttheavailable(prior)information. ThesequentialuseofBayes'theorem:asmoredatabecomeavailable,calculatetheposteriordistributionusingBayes'theorem;subsequently,theposteriordistributionbecomesthenextprior. Whileforthefrequentist,ahypothesisisaproposition(whichmustbeeithertrueorfalse)sothatthefrequentistprobabilityofahypothesisiseither0or1,inBayesianstatistics,theprobabilitythatcanbeassignedtoahypothesiscanalsobeinarangefrom0to1ifthetruthvalueisuncertain. ObjectiveandsubjectiveBayesianprobabilities[edit] Broadlyspeaking,therearetwointerpretationsofBayesianprobability.Forobjectivists,whointerpretprobabilityasanextensionoflogic,probabilityquantifiesthereasonableexpectationthateveryone(evena"robot")whosharesthesameknowledgeshouldshareinaccordancewiththerulesofBayesianstatistics,whichcanbejustifiedbyCox'stheorem.[2][9]Forsubjectivists,probabilitycorrespondstoapersonalbelief.[3]Rationalityandcoherenceallowforsubstantialvariationwithintheconstraintstheypose;theconstraintsarejustifiedbytheDutchbookargumentorbydecisiontheoryanddeFinetti'stheorem.[3]TheobjectiveandsubjectivevariantsofBayesianprobabilitydiffermainlyintheirinterpretationandconstructionofthepriorprobability. History[edit] Mainarticle:Historyofstatistics§ Bayesianstatistics ThetermBayesianderivesfromThomasBayes(1702–1761),whoprovedaspecialcaseofwhatisnowcalledBayes'theoreminapapertitled"AnEssaytowardssolvingaProblemintheDoctrineofChances".[10]Inthatspecialcase,thepriorandposteriordistributionswerebetadistributionsandthedatacamefromBernoullitrials.ItwasPierre-SimonLaplace(1749–1827)whointroducedageneralversionofthetheoremandusedittoapproachproblemsincelestialmechanics,medicalstatistics,reliability,andjurisprudence.[11]EarlyBayesianinference,whichuseduniformpriorsfollowingLaplace'sprincipleofinsufficientreason,wascalled"inverseprobability"(becauseitinfersbackwardsfromobservationstoparameters,orfromeffectstocauses).[12]Afterthe1920s,"inverseprobability"waslargelysupplantedbyacollectionofmethodsthatcametobecalledfrequentiststatistics.[12] Inthe20thcentury,theideasofLaplacedevelopedintwodirections,givingrisetoobjectiveandsubjectivecurrentsinBayesianpractice. HaroldJeffreys'TheoryofProbability(firstpublishedin1939)playedanimportantroleintherevivaloftheBayesianviewofprobability,followedbyworksbyAbrahamWald(1950)andLeonardJ.Savage(1954).TheadjectiveBayesianitselfdatestothe1950s;thederivedBayesianism,neo-Bayesianismisof1960scoinage.[13][14][15]Intheobjectiviststream,thestatisticalanalysisdependsononlythemodelassumedandthedataanalysed.[16]Nosubjectivedecisionsneedtobeinvolved.Incontrast,"subjectivist"statisticiansdenythepossibilityoffullyobjectiveanalysisforthegeneralcase. Inthe1980s,therewasadramaticgrowthinresearchandapplicationsofBayesianmethods,mostlyattributedtothediscoveryofMarkovchainMonteCarlomethodsandtheconsequentremovalofmanyofthecomputationalproblems,andtoanincreasinginterestinnonstandard,complexapplications.[17]Whilefrequentiststatisticsremainsstrong(asdemonstratedbythefactthatmuchofundergraduateteachingisbasedonit[18]),Bayesianmethodsarewidelyacceptedandused,e.g.,inthefieldofmachinelearning.[19] JustificationofBayesianprobabilities[edit] TheuseofBayesianprobabilitiesasthebasisofBayesianinferencehasbeensupportedbyseveralarguments,suchasCoxaxioms,theDutchbookargument,argumentsbasedondecisiontheoryanddeFinetti'stheorem. Axiomaticapproach[edit] RichardT.CoxshowedthatBayesianupdatingfollowsfromseveralaxioms,includingtwofunctionalequationsandahypothesisofdifferentiability.[9]Theassumptionofdifferentiabilityorevencontinuityiscontroversial;HalpernfoundacounterexamplebasedonhisobservationthattheBooleanalgebraofstatementsmaybefinite.[20]Otheraxiomatizationshavebeensuggestedbyvariousauthorswiththepurposeofmakingthetheorymorerigorous.[8] Dutchbookapproach[edit] Mainarticle:Dutchbook BrunodeFinettiproposedtheDutchbookargumentbasedonbetting.AcleverbookmakermakesaDutchbookbysettingtheoddsandbetstoensurethatthebookmakerprofits—attheexpenseofthegamblers—regardlessoftheoutcomeoftheevent(ahorserace,forexample)onwhichthegamblersbet.Itisassociatedwithprobabilitiesimpliedbytheoddsnotbeingcoherent. However,IanHackingnotedthattraditionalDutchbookargumentsdidnotspecifyBayesianupdating:theyleftopenthepossibilitythatnon-BayesianupdatingrulescouldavoidDutchbooks.Forexample,Hackingwrites[21][22]"AndneithertheDutchbookargument,noranyotherinthepersonalistarsenalofproofsoftheprobabilityaxioms,entailsthedynamicassumption.NotoneentailsBayesianism.SothepersonalistrequiresthedynamicassumptiontobeBayesian.ItistruethatinconsistencyapersonalistcouldabandontheBayesianmodeloflearningfromexperience.Saltcouldloseitssavour." Infact,therearenon-BayesianupdatingrulesthatalsoavoidDutchbooks(asdiscussedintheliteratureon"probabilitykinematics"[23]followingthepublicationofRichardC.Jeffrey'srule,whichisitselfregardedasBayesian[24]).Theadditionalhypothesessufficientto(uniquely)specifyBayesianupdatingaresubstantial[25]andnotuniversallyseenassatisfactory.[26] Decisiontheoryapproach[edit] Adecision-theoreticjustificationoftheuseofBayesianinference(andhenceofBayesianprobabilities)wasgivenbyAbrahamWald,whoprovedthateveryadmissiblestatisticalprocedureiseitheraBayesianprocedureoralimitofBayesianprocedures.[27]Conversely,everyBayesianprocedureisadmissible.[28] Personalprobabilitiesandobjectivemethodsforconstructingpriors[edit] FollowingtheworkonexpectedutilitytheoryofRamseyandvonNeumann,decision-theoristshaveaccountedforrationalbehaviorusingaprobabilitydistributionfortheagent.JohannPfanzaglcompletedtheTheoryofGamesandEconomicBehaviorbyprovidinganaxiomatizationofsubjectiveprobabilityandutility,ataskleftuncompletedbyvonNeumannandOskarMorgenstern:theiroriginaltheorysupposedthatalltheagentshadthesameprobabilitydistribution,asaconvenience.[29]Pfanzagl'saxiomatizationwasendorsedbyOskarMorgenstern:"VonNeumannandIhaveanticipated...[thequestionwhetherprobabilities]might,perhapsmoretypically,besubjectiveandhavestatedspecificallythatinthelattercaseaxiomscouldbefoundfromwhichcouldderivethedesirednumericalutilitytogetherwithanumberfortheprobabilities(cf.p.19ofTheTheoryofGamesandEconomicBehavior).Wedidnotcarrythisout;itwasdemonstratedbyPfanzagl...withallthenecessaryrigor".[30] RamseyandSavagenotedthattheindividualagent'sprobabilitydistributioncouldbeobjectivelystudiedinexperiments.Proceduresfortestinghypothesesaboutprobabilities(usingfinitesamples)areduetoRamsey(1931)anddeFinetti(1931,1937,1964,1970).BothBrunodeFinetti[31][32]andFrankP.Ramsey[32][33]acknowledgetheirdebtstopragmaticphilosophy,particularly(forRamsey)toCharlesS.Peirce.[32][33] The"Ramseytest"forevaluatingprobabilitydistributionsisimplementableintheory,andhaskeptexperimentalpsychologistsoccupiedforahalfcentury.[34] ThisworkdemonstratesthatBayesian-probabilitypropositionscanbefalsified,andsomeetanempiricalcriterionofCharlesS.Peirce,whoseworkinspiredRamsey.(Thisfalsifiability-criterionwaspopularizedbyKarlPopper.[35][36]) Modernworkontheexperimentalevaluationofpersonalprobabilitiesusestherandomization,blinding,andBoolean-decisionproceduresofthePeirce-Jastrowexperiment.[37]Sinceindividualsactaccordingtodifferentprobabilityjudgments,theseagents'probabilitiesare"personal"(butamenabletoobjectivestudy). Personalprobabilitiesareproblematicforscienceandforsomeapplicationswheredecision-makerslacktheknowledgeortimetospecifyaninformedprobability-distribution(onwhichtheyarepreparedtoact).Tomeettheneedsofscienceandofhumanlimitations,Bayesianstatisticianshavedeveloped"objective"methodsforspecifyingpriorprobabilities. Indeed,someBayesianshavearguedthepriorstateofknowledgedefinesthe(unique)priorprobability-distributionfor"regular"statisticalproblems;cf.well-posedproblems.Findingtherightmethodforconstructingsuch"objective"priors(forappropriateclassesofregularproblems)hasbeenthequestofstatisticaltheoristsfromLaplacetoJohnMaynardKeynes,HaroldJeffreys,andEdwinThompsonJaynes.Thesetheoristsandtheirsuccessorshavesuggestedseveralmethodsforconstructing"objective"priors(Unfortunately,itisnotclearhowtoassesstherelative"objectivity"ofthepriorsproposedunderthesemethods): Maximumentropy Transformationgroupanalysis Referenceanalysis Eachofthesemethodscontributesusefulpriorsfor"regular"one-parameterproblems,andeachpriorcanhandlesomechallengingstatisticalmodels(with"irregularity"orseveralparameters).EachofthesemethodshasbeenusefulinBayesianpractice.Indeed,methodsforconstructing"objective"(alternatively,"default"or"ignorance")priorshavebeendevelopedbyavowedsubjective(or"personal")BayesianslikeJamesBerger(DukeUniversity)andJosé-MiguelBernardo(UniversitatdeValència),simplybecausesuchpriorsareneededforBayesianpractice,particularlyinscience.[38]Thequestfor"theuniversalmethodforconstructingpriors"continuestoattractstatisticaltheorists.[38] Thus,theBayesianstatisticianneedseithertouseinformedpriors(usingrelevantexpertiseorpreviousdata)ortochooseamongthecompetingmethodsforconstructing"objective"priors. Seealso[edit] Mathematicsportal Bertrandparadox—aparadoxinclassicalprobability DeFinetti'sgame—aprocedureforevaluatingsomeone'ssubjectiveprobability QBism—aninterpretationofquantummechanicsbasedonsubjectiveBayesianprobability Referenceclassproblem AnEssaytowardssolvingaProblemintheDoctrineofChances MontyHallproblem Bayesianepistemology References[edit] ^Cox,R.T.(1946)."Probability,Frequency,andReasonableExpectation".AmericanJournalofPhysics.14(1):1–10.Bibcode:1946AmJPh..14....1C.doi:10.1119/1.1990764. ^abJaynes,E.T.(1986)."BayesianMethods:GeneralBackground".InJustice,J.H.(ed.).Maximum-EntropyandBayesianMethodsinAppliedStatistics.Cambridge:CambridgeUniversityPress.CiteSeerX 10.1.1.41.1055. ^abcdeFinetti,Bruno(2017).TheoryofProbability:Acriticalintroductorytreatment.Chichester:JohnWiley&SonsLtd.ISBN 9781119286370. ^Hailperin,Theodore(1996).SententialProbabilityLogic:Origins,Development,CurrentStatus,andTechnicalApplications.London:AssociatedUniversityPresses.ISBN 0934223459. ^Howson,Colin(2001)."TheLogicofBayesianProbability".InCorfield,D.;Williamson,J.(eds.).FoundationsofBayesianism.Dordrecht:Kluwer.pp. 137–159.ISBN 1-4020-0223-8. ^Paulos,JohnAllen(5August2011)."TheMathematicsofChangingYourMind[bySharonBertschMcGrayne]".BookReview.NewYorkTimes.Archivedfromtheoriginalon2022-01-01.Retrieved2011-08-06. ^abStigler,StephenM.(March1990).Thehistoryofstatistics.HarvardUniversityPress.ISBN 9780674403413. ^abDupré,MauriceJ.;Tipler,FrankJ.(2009)."NewaxiomsforrigorousBayesianprobability".BayesianAnalysis.4(3):599–606.CiteSeerX 10.1.1.612.3036.doi:10.1214/09-BA422. ^abCox,RichardT.(1961).Thealgebraofprobableinference(Reprint ed.).Baltimore,MD;London,UK:JohnsHopkinsPress;OxfordUniversityPress[distributor].ISBN 9780801869822. ^McGrayne,SharonBertsch(2011).TheTheorythatWouldnotDie.[https://archive.org/details/theorythatwouldn0000mcgr/page/1010 ],p.10,atGoogleBooks. ^Stigler,StephenM.(1986)."Chapter 3".TheHistoryofStatistics.HarvardUniversityPress. ^abFienberg,Stephen.E.(2006)."WhendidBayesianInferencebecome"Bayesian"?"(PDF).BayesianAnalysis.1(1):5,1–40.doi:10.1214/06-BA101.Archivedfromtheoriginal(PDF)on10September2014. ^Harris,MarshallDees(1959)."Recentdevelopmentsoftheso-calledBayesianapproachtostatistics".AgriculturalLawCenter.Legal-EconomicResearch.UniversityofIowa:125(fn.#52),126.TheworksofWald,StatisticalDecisionFunctions(1950)andSavage,TheFoundationofStatistics(1954)arecommonlyregardedstartingpointsforcurrentBayesianapproaches ^AnnalsoftheComputationLaboratoryofHarvardUniversity.Vol. 31.1962.p. 180.Thisrevolution,whichmayormaynotsucceed,isneo-Bayesianism.Jeffreystriedtointroducethisapproach,butdidnotsucceedatthetimeingivingitgeneralappeal. ^Kempthorne,Oscar(1967).TheClassicalProblemofInference—GoodnessofFit.FifthBerkeleySymposiumonMathematicalStatisticsandProbability.p. 235.Itiscuriousthateveninitsactivitiesunrelatedtoethics,humanitysearchesforareligion.Atthepresenttime,thereligionbeing'pushed'thehardestisBayesianism. ^Bernardo,J.M.(2005)."Referenceanalysis".BayesianThinking-ModelingandComputation.HandbookofStatistics.Vol. 25.pp. 17–90.doi:10.1016/S0169-7161(05)25002-2.ISBN 9780444515391. ^Wolpert,R.L.(2004)."AconversationwithJamesO.Berger".StatisticalScience.9:205–218.doi:10.1214/088342304000000053. ^Bernardo,JoséM.(2006).ABayesianmathematicalstatisticsprimer(PDF).ICOTS-7.Bern. ^Bishop,C.M.(2007).PatternRecognitionandMachineLearning.Springer. ^Halpern,J.(1999)."AcounterexampletotheoremsofCoxandFine"(PDF).JournalofArtificialIntelligenceResearch.10:67–85.doi:10.1613/jair.536.S2CID 1538503. ^Hacking(1967),Section3,page316 ^Hacking(1988,page124) ^Skyrms,Brian(1January1987)."DynamicCoherenceandProbabilityKinematics".PhilosophyofScience.54(1):1–20.CiteSeerX 10.1.1.395.5723.doi:10.1086/289350.JSTOR 187470. ^Joyce,James(30September2003)."Bayes'Theorem".TheStanfordEncyclopediaofPhilosophy.stanford.edu. ^Fuchs,ChristopherA.;Schack,Rüdiger(1January2012).Ben-Menahem,Yemima;Hemmo,Meir(eds.).ProbabilityinPhysics.TheFrontiersCollection.SpringerBerlinHeidelberg.pp. 233–247.arXiv:1103.5950.doi:10.1007/978-3-642-21329-8_15.ISBN 9783642213281.S2CID 119215115. ^vanFrassen,Bas(1989).LawsandSymmetry.OxfordUniversityPress.ISBN 0-19-824860-1. ^Wald,Abraham(1950).StatisticalDecisionFunctions.Wiley. ^Bernardo,JoséM.;Smith,AdrianF.M.(1994).BayesianTheory.JohnWiley.ISBN 0-471-92416-4. ^Pfanzagl(1967,1968) ^Morgenstern(1976,page65) ^Galavotti,MariaCarla(1January1989)."Anti-RealisminthePhilosophyofProbability:BrunodeFinetti'sSubjectivism".Erkenntnis.31(2/3):239–261.doi:10.1007/bf01236565.JSTOR 20012239.S2CID 170802937. ^abcGalavotti,MariaCarla(1December1991)."ThenotionofsubjectiveprobabilityintheworkofRamseyanddeFinetti".Theoria.57(3):239–259.doi:10.1111/j.1755-2567.1991.tb00839.x.ISSN 1755-2567. ^abDokic,Jérôme;Engel,Pascal(2003).FrankRamsey:TruthandSuccess.Routledge.ISBN 9781134445936. ^Davidsonetal.(1957) ^Thornton,Stephen(7August2018)."KarlPopper".StanfordEncyclopediaofPhilosophy. ^Popper,Karl(2002)[1959].TheLogicofScientificDiscovery(2nd ed.).Routledge.p. 57.ISBN 0-415-27843-0–viaGoogleBooks.(translationof1935original,inGerman). ^Peirce&Jastrow(1885) ^abBernardo,J.M.(2005)."ReferenceAnalysis".InDey,D.K.;Rao,C.R.(eds.).HandbookofStatistics(PDF).Vol. 25.Amsterdam:Elsevier.pp. 17–90. Bibliography[edit] Berger,JamesO.(1985).StatisticalDecisionTheoryandBayesianAnalysis.SpringerSeriesinStatistics(Second ed.).Springer-Verlag.ISBN 978-0-387-96098-2. Bessière,Pierre;Mazer,E.;Ahuacatzin,J.-M.;Mekhnacha,K.(2013).BayesianProgramming.CRCPress.ISBN 9781439880326. Bernardo,JoséM.;Smith,AdrianF.M.(1994).BayesianTheory.Wiley.ISBN 978-0-471-49464-5. Bickel,PeterJ.;Doksum,KjellA.(2001)[1976].Basicandselectedtopics.MathematicalStatistics.Vol. 1(Second ed.).PearsonPrentice–Hall.ISBN 978-0-13-850363-5.MR 0443141.(updatedprinting,2007,ofHolden-Day,1976) Davidson,Donald;Suppes,Patrick;Siegel,Sidney(1957).Decision-Making:anExperimentalApproach.StanfordUniversityPress. deFinetti,Bruno(1937)."LaPrévision:sesloislogiques,sessourcessubjectives"[Foresight:Itslogicallaws,itssubjectivesources].Annalesdel'InstitutHenriPoincaré(inFrench). deFinetti,Bruno(September1989)[1931]."Probabilism:Acriticalessayonthetheoryofprobabilityandonthevalueofscience".Erkenntnis.31.(translationofde Finetti,1931) deFinetti,Bruno(1964)[1937]."Foresight:Itslogicallaws,itssubjectivesources".InKyburg,H.E.;Smokler,H.E.(eds.).StudiesinSubjectiveProbability.NewYork,NY:Wiley.(translationofde Finetti,1937,above) deFinetti,Bruno(1974–1975)[1970].TheoryofProbability:Acriticalintroductorytreatment.TranslatedbyMachi,A.;Smith,AFM.Wiley.ISBN 0-471-20141-3.,ISBN 0-471-20142-1,twovolumes. Goertz,GaryandJamesMahoney.2012.ATaleofTwoCultures:QualitativeandQuantitativeResearchintheSocialSciences.PrincetonUniversityPress. DeGroot,Morris(2004)[1970].OptimalStatisticalDecisions.WileyClassicsLibrary.Wiley.ISBN 0-471-68029-X.. Hacking,Ian(December1967)."Slightlymorerealisticpersonalprobability".PhilosophyofScience.34(4):311–325.doi:10.1086/288169.JSTOR 186120.PartlyreprintedinGärdenfors,Peter;Sahlin,Nils-Eric(1988).Decision,Probability,andUtility:SelectedReadings.CambridgeUniversityPress.ISBN 0-521-33658-9. Hajek,A.;Hartmann,S.(2010)[2001]."BayesianEpistemology".InDancy,J.;Sosa,E.;Steup,M.(eds.).ACompaniontoEpistemology(PDF).Wiley.ISBN 978-1-4051-3900-7.Archivedfromtheoriginal(PDF)on2011-07-28. Hald,Anders(1998).AHistoryofMathematicalStatisticsfrom1750to1930.NewYork:Wiley.ISBN 978-0-471-17912-2. Hartmann,S.;Sprenger,J.(2011)."BayesianEpistemology".InBernecker,S.;Pritchard,D.(eds.).RoutledgeCompaniontoEpistemology(PDF).Routledge.ISBN 978-0-415-96219-3.Archivedfromtheoriginal(PDF)on2011-07-28. "Bayesianapproachtostatisticalproblems",EncyclopediaofMathematics,EMSPress,2001[1994] Howson,C.;Urbach,P.(2005).ScientificReasoning:TheBayesianapproach(3rd ed.).OpenCourtPublishingCompany.ISBN 978-0-8126-9578-6. Jaynes,E.T.(2003).ProbabilityTheory:Thelogicofscience.C.UniversityPress.ISBN 978-0-521-59271-0.("LinktofragmentaryeditionofMarch1996". McGrayne,S.B.(2011).TheTheorythatwouldnotDie:HowBayes'rulecrackedtheEnigmacode,hunteddownRussiansubmarines,andemergedtriumphantfromtwocenturiesofcontroversy.NewHaven,CT:YaleUniversityPress.ISBN 9780300169690.OCLC 670481486. Morgenstern,Oskar(1978)."SomeReflectionsonUtility".InSchotter,Andrew(ed.).SelectedEconomicWritingsofOskarMorgenstern.NewYorkUniversityPress.pp. 65–70.ISBN 978-0-8147-7771-8. Peirce,C.S.&JastrowJ.(1885)."OnSmallDifferencesinSensation".MemoirsoftheNationalAcademyofSciences.3:73–83. Pfanzagl,J(1967)."SubjectiveProbabilityDerivedfromtheMorgenstern-vonNeumannUtilityTheory".InMartinShubik(ed.).EssaysinMathematicalEconomicsInHonorofOskarMorgenstern.PrincetonUniversityPress.pp. 237–251. Pfanzagl,J.;Baumann,V.&Huber,H.(1968)."Events,UtilityandSubjectiveProbability".TheoryofMeasurement.Wiley.pp. 195–220. Ramsey,FrankPlumpton(2001)[1931]."ChapterVII:TruthandProbability".TheFoundationsofMathematicsandotherLogicalEssays.Routledge.ISBN 0-415-22546-9."ChapterVII:TruthandProbability"(PDF).Archivedfromtheoriginal(PDF)on2008-02-27. Stigler,S.M.(1990).TheHistoryofStatistics:TheMeasurementofUncertaintybefore1900.BelknapPress;HarvardUniversityPress.ISBN 978-0-674-40341-3. Stigler,S.M.(1999).StatisticsontheTable:Thehistoryofstatisticalconceptsandmethods.HarvardUniversityPress.ISBN 0-674-83601-4. Stone,J.V.(2013).Bayes'Rule:AtutorialintroductiontoBayesiananalysis.England:SebtelPress."Chapter1ofBayes'Rule". Winkler,R.L.(2003).IntroductiontoBayesianInferenceandDecision(2nd ed.).Probabilistic.ISBN 978-0-9647938-4-2.Updatedclassictextbook.Bayesiantheoryclearlypresented Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Bayesian_probability&oldid=1095534332" Categories:BayesianstatisticsJustification(epistemology)ProbabilityinterpretationsPhilosophyofmathematicsPhilosophyofscienceHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataCS1French-languagesources(fr) Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages العربيةCatalàЧӑвашлаDeutschEestiEspañolEuskaraفارسی한국어HrvatskiItalianoעבריתNederlands日本語NorsknynorskPolskiPortuguêsРусскийSimpleEnglishСрпски/srpskiSrpskohrvatski/српскохрватскиไทยTürkçeУкраїнська粵語中文 Editlinks
延伸文章資訊
- 1Indices of Effect Existence and Significance in the Bayesian ...
Thus, this study describes and compares several Bayesian indices, ... Bayesian inference allows m...
- 2Bayes theorem in Artificial Intelligence - Javatpoint
- 3Probability concepts explained: Bayesian inference for ...
Bayesian inference is therefore just the process of deducing properties about a population or pro...
- 4Bayesian Statistics Explained in Simple English For Beginners
- 5Bayesian Probability - Predicting Likelihood of Future Events
Bayesian probability is the process of using probability to try to predict the likelihood of cert...