Gray Matter Volume and Cognitive Performance During ...
文章推薦指數: 80 %
In terms of brain anatomy, normal aging is associated with structural changes, on account of extensive gray matter (GM) atrophy (Raz et al., ... Articles AurelPopa-Wagner UniversityofMedicineandPharmacyofCraiova,Romania Jean-FrancoisDemonet CentreHospitalierUniversitaireVaudois(CHUV),Switzerland VincentKoppelmans TheUniversityofUtah,UnitedStates Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction MaterialsandMethods Results Discussion Conclusion AuthorContributions Funding ConflictofInterestStatement Acknowledgments Footnotes References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData ORIGINALRESEARCHarticle Front.AgingNeurosci.,03August2018 |https://doi.org/10.3389/fnagi.2018.00235 GrayMatterVolumeandCognitivePerformanceDuringNormalAging.AVoxel-BasedMorphometryStudy StephenRamanoël1*,ElenaHoyau2,LouiseKauffmann2,3,FélixRenard4,CédricPichat2,NaïlaBoudiaf2,AlexandreKrainik4,5,AssiaJaillard4andMonicaBaciu2 1INSERM/CNRS,InstitutVision,SorbonneUniversity,PierreandMarieCurieUniversities(UPMC)Paris06,Paris,France 2CNRSLPNCUMR5105,UniversityofGrenobleAlpes,Grenoble,France 3CNRS,GrenobleINP,GIPSA-lab,UniversityofGrenobleAlpes,Grenoble,France 4UMSIRMaGeGrenobleHospital,UniversityofGrenobleAlpes,Grenoble,France 5GrenobleInstituteofNeuroscience,UniversityofGrenobleAlpes,Grenoble,France Normalagingischaracterizedbydeclineincognitivefunctioninginconjunctionwithextensivegraymatter(GM)atrophy.AfirstaimofthisstudywastodetermineGMvolumedifferencesrelatedtoagingbycomparingtwogroupsofparticipants,middle-agedgroup(MAG,meanage41years,N=16)andolderadults(OG,meanage71years,N=14)whounderwentanmagneticresonanceimages(MRI)voxel-basedmorphometry(VBM)evaluation.TheVBManalysesincludedtwooptimizedpipelines,forthecortexandforthecerebellum.Participantswerealsoevaluatedonawiderangeofcognitivetestsassessingbothdomain-generalandlanguage-specificprocesses,inordertoexaminehowGMvolumedifferencesbetweenOGandMAGrelatetocognitiveperformance.OurresultsshowsmallerbilateralGMvolumeintheOGrelativetotheMAG,inseveralcerebralandrightcerebellarregionsinvolvedinlanguageandexecutivefunctions.Importantly,ourresultsalsorevealedsmallerGMvolumeintherightcerebelluminOGrelativetoMAG,supportingtheideaofacomplexcognitiveroleforthisstructure.Thisstudyprovidesabroadpictureofcerebral,butalsocerebellarandcognitivechangesassociatedwithnormalaging. Introduction Normalagingisassociatedwithvariousbehavioral,cognitiveandcerebralchangesthataffectmultiplefunctionssuchasattention(Geerligsetal.,2014),workingmemory(Nybergetal.,2012),processingspeed(Seidleretal.,2010)andcognitivecontrol(Coppinetal.,2006;Salthouse,2010;Marchandetal.,2011).Thedegreeofcognitivedeclineisnotidenticalforallcognitiveprocesses,i.e.,somefunctionsundergomoreseverechangethanothers.Forexample,whileexecutivefunctionsaretypicallythefirsttoshowimpairmentduringnormalaging,languageabilitiesremainrelativelyintact(MeyerandFedermeier,2010),orevenimproveintermsofvocabulary,semanticsandspeechprocessing(Kavéetal.,2009;VerhaegenandPoncelet,2013;citedinBaciuetal.,2016).Cognitiveabilitiescanbegenerallyclassifiedasdomain-general(e.g.,executivefunctioning)anddomain-specificfunctions(e.g.,languageabilities;Fedorenko,2014;Karmiloff-Smith,2015;Karmiloff-Smithetal.,2016).Alargebodyofevidenceindicatesthatagingmodifiesthecerebralrepresentationofdomain-generalanddomain-specificcognitiveprocessesintermsoffunctionalreorganization.Forinstance,severalstudieshavereportedincreasedinvolvementofanteriorfrontalareas,relativetoposterioroccipitalandmedialtemporalareasduringtasksinvolvingbothdomain-generalanddomain-specificcognitiveprocessesassociatedwithaging(Gutchessetal.,2005;Davisetal.,2008;seeWingfieldandGrossman,2006;MorcomandJohnson,2015;Helderetal.,2016),suggestingsupplementalrecruitmentofexecutiveareastoperformagiventask.Themodulationofcerebralactivitybyperformanceisanotherimportantagingeffect.Aging,however,isnotauniformprocess,oldadultsvaryinthedegreeoftheircognitiveabilities’decline.Forexample,Wierengaetal.(2008)showedthat,inadditiontothepredominantleft-hemisphericactivationclassicallyelicitedduringwordretrieval,olderadultstendtoexhibitsupplementaryrighthemisphericactivationthatismodulatedbytheirperformance:thehighertheperformance,thehighertheactivationinrightinferiorfrontalcortex.Otherstudiesalsopointtoadissociationbetweenhigh-andlow-performingolderadults,withthelatterexhibitinglesshemisphericasymmetryreductionthantheformer(Cabezaetal.,2002). Intermsofbrainanatomy,normalagingisassociatedwithstructuralchanges,onaccountofextensivegraymatter(GM)atrophy(Razetal.,2005;Driscolletal.,2009).Itisworthnotingthat,asisthecasewithcognitivefunctions,thespatiallocalizationanddegreeofatrophyarenothomogeneousacrossthebraininolderadults(forareviewseeFjelletal.,2014).ThefrontalandtemporallobesexhibitthehighestdegreeofGMatrophy.Substantialchangeshavealsobeenobservedintheparietallobe,whereastheoccipitallobeappearstoremainrelativelyintact.RecentfindingshavealsoreportedGMvolumereductioninthecerebellum(Goodetal.,2001;Alexanderetal.,2006;Abeetal.,2008)includinganumberofcerebellarregionsthataremainlyinvolvedincognitiveratherthanmotorfunctions(Buckner,2013). Inordertononinvasivelyassessthestructuralcerebralchangesassociatedwithnormalaginginvivo,voxel-basedmorphometry(VBM)hasnowbecomearoutinemethodintheneuroimagingcommunity.TheVBMmethodenablesanautomated,quantitativeandobjectiveevaluationofthetissuevolume(GMvolume)acrossthebrain(Kurthetal.,2015).Cross-sectionalandlongitudinalstudieshavedemonstratedclearrelationshipsbetweencognitivedeclineandtheatrophyofspecificbrainregions.Forexample,reducedperformanceinepisodicmemory(EM)innormalolderadultsiscorrelatedwithreducedvolumeoftheentorhinalcortexofthemedialtemporallobe(Jessenetal.,2006).Similarly,executivedeficitsinnormalagingareassociatedwithgreateratrophyofprefrontalregions(RazandRodrigue,2006).However,onlyalimitednumberoflongitudinalstudieshaveevaluatedthelinkbetweencognitioningeneralandGM(Nybergetal.,2010;Lovdenetal.,2013;Pudasetal.,2013;Gorbachetal.,2017;Leongetal.,2017)andonlyafewwerelanguage-specific(Shaftoetal.,2010). Inthepresentstudy,weevaluatedtheeffectofage(oldergroup,OGrelativetomiddle-agedgroup,MAG)onGMvolume,usingawholebrainvoxel-relatedGManalysis,inconjunctionwithacognitive-scoreevaluation.Tothisend,wefocusedonhowGMvolumediffersbetweenMAGandOGindomain-specificregionsinvolvedinlanguageandsemanticmemorybutalsointhedomain-generalregionsinvolvedintransversalcognitiveprocessesandexecutivefunctions(i.e.,thehigh-levelcognitiveabilitiesnecessaryforsuccessfuladaptivebehaviortocopewithcomplexsituations).Moreover,giventhefactthatcerebellaratrophyoccurswithage(Goodetal.,2001;Alexanderetal.,2006;Abeetal.,2008)andasmoreandmorestudieshaveemphasizedtheimportantroleofthisstructureforcognition(seeforexampleSokolovetal.,2017)wealsoincludedaspecificpipelineforcerebellumanalyses.Incomparisonwithstandardpipelinesforwholebrainanalyses,thepresentoneallowedustoimprovetheaccuracyofinter-subjectalignmentduringnormalizationstepandremovalofsupra-tentorialGMwhichcouldbiasfinalresults.Wecarriedoutawhole-brainanalysisandspecificcerebellaranalysistoevaluateGMdifferencesbetweenmiddle-agedandolderadultsrelativetomiddle-agedadults,weexpectedoldadultstoexhibitsmallerGMvolumeincerebralandcerebellarregionsinvolvedinbothdomain-generalandspecificprocesses,suchasfrontalareasinvolvedinlanguageprocessesandexecutivefunctioning.Furthermore,weexpectedthisreducedGMvolumetobeassociatedwithdifferencesinperformanceincognitivetestsevaluatingtherespectiveprocesses. MaterialsandMethods Participants Amongthe31healthyparticipantsinitiallyincluded,weretained30whoweredividedintotwoagegroups:aMAG(N=16;11males;meanage±standarddeviation(SD):40.8±8.6years;range30–57years,andanoldergroup(OG,N=14;10males;meanage±SD:70.5±6.6years;range59–84).Theexcludedparticipantwas84yearsoldandshowedaberrant(superiorto2*SDOG)GM(543cm3)andcerebrospinalfluid(CSF)volume(706cm3)valuesrelativetothemeanCSFandGMvolumesoftheOG(CSF;mean=389cm3;SD:107cm3;GM:mean=664cm3;SD:57cm3).AllparticipantswerenativeFrenchspeakers;hadahighlevelofeducation(mean±SDMAG:4±0;OG:3.85±0.36;low-performingOG(lOG):3.85±0.36;high-performingOG(hOG):3.85±0.36)asmeasuredbythePoitrenaudquestionnaire(Kalafatetal.,2003).Therewasnodifferenceineducationlevelbetweengroups(MAGvs.OGandlOGvs.hOG).Participantswereright-handed(EdinburghHandednessInventory;Oldfield,1971);hadnormalorcorrected-to-normalvision;andreportednohistoryofneurologicaldisorderorsensorimotordysfunctions.Theotherinclusioncriteriaweretheabsenceofgeneralcognitive(MiniMentalStateExamination,MMSE;Folsteinetal.,1975)orEM(“5words”test;Duboisetal.,2002)deficits,aswellastheabsenceofanxietyanddepression(HospitalAnxietyandDepressionscale,HAD;ZigmondandSnaith,1983).Participantsgavetheirwritteninformedconsenttoparticipateinthestudywhichwasapprovedbythelocalethicscommittee(CPPN°:2014-A00569-38;ComitédeprotectiondespersonnesSudEst(SouthEastPeople’sProtectionCommittee)).ThedemographicandinclusioncriteriaarereportedinTable1. TABLE1 Table1.Demographicinformationandinclusioncriteriaforallparticipants. CognitiveAssessment Severalcognitivetestswereadministeredtoevaluatethecognitivelevelofeachparticipantintermsofdomain-generalanddomain-specificprocesses.Thedomain-generalevaluationsincludedshort-termmemory(DigitSpanMemorytest;Weschler,2008);processingspeedandmentalflexibility(TrailMakingTestpartB,TMT-B;Tombaugh,2004);visualscanningandmotorprocesses(TrailMakingTestpartA;TMT-A;Tombaugh,2004);andaglobalevaluationofexecutivefunctionsandfrontalefficiency(FrontalAssessmentBattery,FAB;DartinetandMartinaud,2005).Domain-specificevaluationsconcernedmainlylanguageandsemanticmemoryandincludedassessmentsofvocabularyandverbalintelligence(Mill-Hillvocabularyscale;Deltour,1993);lexicalretrievalandgeneration(picturenaming,PN;DO-80,Metz-Lutzetal.,1991);semanticprocessing(PyramidandPalmTreetest,PPT;HowardandPatterson,1992)andtheVerbalAutomatismstest(Beauregard,1971),whichwasusedtodeterminelevelsofoverlearnedsemanticinformation.Asthistestissensitivetoaging,olderadultsgenerallyperformbetterthanyoungerparticipants.Finally,wetestedwordfluencyusingacategoricalfluencytest(Cardebatetal.,1990),whichassessesthefollowing:integrityoflexico-semanticprocesses;strategicprocessesforsearchingandretrieval;andtheintegrityofphoneticandarticulatoryprocesses.CognitivescoresandsignificantdifferencesbetweengroupsarereportedinTable2.Basedonthesescores,theOGwasthensubdividedintohOGandlOGsubgroups(see“Results”section,Table3). TABLE2 Table2.Mean(Mean_MAG;Mean_OG)andstandarddeviation(SD_MAG;SD_OG)ofscoresobtainedoncognitivetestsineachgroupandstatisticalvalues(F,p)fortheinter-groupcomparisons. TABLE3 Table3.Cerebralregionsexhibitinganeffectofageonthegraymatter(GM)bycomparing(a)middle-aged(MAG)>older(OG)adults;and(b)older(OG)>middle-aged(MAG)adultsusingtwo-samplet-tests. MRIAcquisition Magneticresonanceimages(MRI)wereacquiredusingawhole-body3TAchievaPhilipsscanner(PhilipsMedicalSystems,Netherlands)witha32-channelheadcoilattheMRIfacilityIRMaGeinFrance.WeacquiredaT1-weightedhigh-resolutionthree-dimensionalanatomicalvolume,byusinga3DModifiedDrivenEquilibriumFourierTransform(MDEFT)sequence(numberofslices=160,echotime(TE)=3.98ms,repetitiontime(TR)=25ms,flipangle=15°,fieldofview(FOV)=256×240×160mm,acquisitionresolution0.94×0.96×1.00mm,acquisitionmatrix272×249,reconstructionmatrix288×288,resolutionreconstruction0.89×0.83×1).Noneoftheparticipantsexhibitedabnormalitiesinbrainstructures. DataProcessing CognitiveScores TheeffectofageoncognitivescoreswasdeterminedbyperformingaMANOVAanalysisontheperformanceobtainedforeachtestinMAGandinOGcontrolledforgenderandsocio-educationaleffect(see“Results”section,Table2).CognitivescoreswerenormalizedbasedonthemeanandSDconsideringallparticipants.InordertoevaluatehowcognitiveperformancevariesamongolderadultsandclassifyOGparticipantsinthehOGandlOG,wefirstevaluatedthenormaldistribution(Kolmogorov-Smirnov)ofthescoresforeachtest.Wecontrolledforoutliersbyexaminingthatscoresdidnotexceedthreetimestheinterquartileinterval. MRIData WholeBrainAnalyses DataprocessingwasperformedusingSPM12release6685(WellcomeDepartmentofImagingNeuroscience,London,UK1)implementedinMATLAB7(MathworksInc.,Natick,MA,USA).WeprocessedthedataviaDiffeomorphicAnatomicalRegistration,usingtheExponentialLiealgebraalgorithm(DARTEL,AshburnerandFriston,2005;Ashburner,2007)forthesegmentationandnormalizationsteps.TheDARTELsegmentationproceduremakesuseofanumberoftissueprobabilitymapsincludingGM,whitematter(WM),CSF,softtissue,skullandnon-brainregionsoftheimage.Aftersegmentation,weperformedavisualinspectionandaqualitycheckofthedata,byapplyingthemodules“displayonesliceforallimages”and“checksamplehomogeneityusingcovariance”implementedintheVBM12toolbox2.Next,theGM,WMandCSFtissueclassesobtainedduringthesegmentationstep,wereusedtocreateacustomtemplatebasedonoursample.Foreachparticipant,flow-fieldswerecomputedduringtemplatecreationtoprovidethetransformationmatrixfromeachnativeimagetothetemplate.Finally,imagesobtainedinthepreviousstepwerenormalizedtotheMNIspace(voxelsizeof1mmisotropic),modulatedandsmoothedusingan8-mmfullwidthathalfmaximum(FWHM)Gaussiankernel.Importantlyforsubsequentstatisticalanalyses,thetotalintracranialvolume(TICV)wascomputedfromtheGM,WMandCSFmodulatedimages.Morphologicalanalyseswereperformedwiththegenerallinearmodel(Fristonetal.,1995)withSPM12implementedinMATLAB7.WeperformedawholebrainanalysisusingtheGMimagesinatwo-samplet-testtocompareGMvolumebetweenMAGandOG.Weusedanabsoluteimplicitmaskwitharecommendedthresholdvaluefixedatp>0.2forGMvoxelanalyses(Callaertetal.,2014).Inaddition,inordertopreventpotentialbiasrelatedtobrainsizeandgenderdifferencesbetweengroups,theTICVandgenderwereincludedinthestatisticalmodel,ascovariatesofnointerest.DifferencesinGMvolumewereconsideredsignificantiftheyexceededavoxel-wisethresholdofp<0.05family-wiseerror(FWE)corrected,withaminimumclusterextentof20voxels.Finally,weconvertedtheMNIcoordinatesofvoxelswithmaximalstatisticalsignificancesintoTalairach(TalairachandTournoux,1988)coordinates,byusingtheMNi2TALfunctionMatthewBrett3tofacilitatecomparisonswithotherstudies. CerebellumAnalyses Basedonresultsreportedbypreviousstudiesshowingtheroleofthecerebelluminseveralcognitivedomains(Buckner,2013)andtodealwiththepooralignmentperformanceforcerebellarstructuresduringspatialprocessingstepsofthewhole-brainanalysis,weperformedaspecificcerebellumGMvoxelbasedanalysisusingtheSPMtoolboxSUIT(Diedrichsen,2006;Diedrichsenetal.,2009;SpatiallyUnbiasedAtlasTemplate4).Thiscerebellar-specificpipelinealsoallowedustobetterremovesupra-tentorialGMwhichcouldbiasfinalresults.First,foreachparticipant,theanatomicalscansweremanuallyreorientedinordertosetthemtotheorigin(0,0,0;anteriorcommissure).Next,theIsolatefunctionofSUITwasusedtoobtainsegmentationmapsofthecerebellum.Then,GMisolatedmapswerecorrectedtoexcludeimageswiththeGMlocatedoutsidethecerebellum.Finally,theimageswerenormalizedtotheSUITspaceusingthenewDARTELflowfieldsobtainedfromtheSUITtoolbox,modulatedandsmoothed,usinga6mmFWHMGaussiankernel. Results CognitiveScores AgingEffect AsshowninTable2,andrelativetotheOG,theMAGwerefasterforTMT-A(visualscanningandprocessingspeed;F(1,30)=−9.5p=0.005)andPPT(semanticprocessing;F(1,30)=−51.834,p<0.05).TheOGalsoproducedmorewordsthantheMAGforcategoricalfluency(F(1,30)=6.624,p=0.016).ForTMT-B(mentalflexibility)theOGhadlowerscoresthantheMAG(TMT-B,F(1,30)=23.737,p<0.05).WedidnotobserveddifferencebetweenMAGandOGontheFAB(globalfrontalfunctioning;F(1,30)=2.494,p=0.126)andonthePN(F(1,30)=0.814,p=0.375).Asexpected,theOGhadhigherscoresforverbalautomatisms(F(1,30)=10.975,p=0.003)thantheMAG.Thecognitive-testresultssuggestthatagingismainlyassociatedwithlowerperformancesfordomain-generalprocesses—and,toalesserextent,fordomain-specificprocesses. MRIMorphologicalResults WholeBrain Thewholebrainvoxel-basedGManalysesandcomparisonsbetweengroupsrevealedsignificantlysmallerGMvolumeforOGcomparedtoMAGinfrontal,parietal,temporalandoccipitalregions,aswellasofthecerebellum(Table3andFigure1).Morespecifically,weobservedbilateralGMdecreasedofthemiddle(BA10)andinferior(BA45,47)frontalgyri,insula,supramarginal(BA40),superioroccipital(BA18),cerebellum,aswellasoftherightangular(BA39),superiortemporal(BA41),leftpostero-superiortemporal(BA22)andpost-central(BA3,2,1)gyri. FIGURE1 Figure1.Cerebralregions(wholebrainanalysis)showingthesignificantdifferencesbetweengroups(olderadultsvs.middle-agedadults)onthegraymatter(GM)volume(inmm3)of(A)thefrontalcortex;(B)thetemporalandparietalcortices;and(C)theoccipitalcortexandcerebellum.Thesignificancethresholdforclustersandindividualvoxellevelwasdefinedasp<0.05family-wiseerror(FWE),correctedformultiplecomparisons(T>5.77),withextentthresholddefinedas20voxels(voxelsize=1mm3). Cerebellum Thecerebellumvoxel-wiseGManalysisusingtheSUITtoolbox(Diedrichsen,2006;Diedrichsenetal.,2009)revealedasignificantcluster(340mm3)intherightcerebellarhemisphere(p<0.05FWEcorrected)reflectingdecreasedGMvolumeintheOG.ThelocationofthisregioncorrespondstothelobulecrusIoftherightcerebellarhemisphere(Figure2).Thisresultwasdisplayedonatwo-dimensionalcerebellumtemplateimplementedintheSUITtoolbox(DiedrichsenandZotow,2015).Figure3showsacomparisonofthetwospatialprocessingpipelinesused. FIGURE2 Figure2.Cerebellumregion(cerebellaranalysis)showingsignificantdifferencesbetweengroups(olderadultsvs.middle-agedadults)ontheGM(inmm3),andrepresentedonatwo-dimensionaltemplatewithlobulesindicatedbyromannumeralsfromItoXwithaprependedHandVforthehemisphericandvernalcompartment,respectively.Onthisimage,thelargestlobuleHVIIisdividedintoCrusI,CrusII(bothcorrespondingtoHVIIa)andHVIIb.Statisticalsignificancethresholdfortheclusterlevelwassetatp<0.05FWEcorrectedformultiplecomparisons.Wereportedonlyonesignificantcluster(T=4.99)belongingtotheCrusIoftherightcerebellum,withextentthresholddefinedas20voxels(voxelsize=1mm3). FIGURE3 Figure3.Visualcomparisonofco-registrationduringspatialprocessingusing(A)theSPM-DARTELpipeline;and(B)theSUIT-DARTELpipeline. Discussion Thepresentstudyaimedtoassess:(1)howagingimpactsGMvolume;inrelationto;(2)howagingimpactsperformanceintasksinvolvingbothdomain-general(i.e.,executivefunctioning)anddomain-specificfunctions(i.e.,languageandsemanticmemory). Theolderadultsincludedinthisstudyexhibited:(a)decreasedperformanceontestsreflectingexecutivefunctioning,frontalefficiencyandprocessingspeed;and(b)difficultyinretrievingandgeneratingwordsandperformingsemanticprocessing.Olderadultsalsoshowedagreaterfrequencyofverbalautomatisms.Thesefindingsareconsistentwithpreviousstudies(Bhereretal.,2004;Zelazoetal.,2004;Huizingaetal.,2006;ColletteandSalmon,2014;Baciuetal.,2016;Boudiafetal.,2016;Hoyauetal.,2017)showingagenerallylowercognitiveperformanceinthecourseofnormalaging. Atthecerebrallevel,VBManalysescomparingtheOGtotheMAGrevealedthatagingwasalsoassociatedwithsignificantlysmallerbilateralGMvolumeinfrontal,temporal,parietalandoccipitalregions.SmallerGMvolumeinthefrontallobeconcernedfirstthemiddlefrontalgyrus,withagreaterextentintherighthemisphere.Thisregionisknowntobeinvolvedincognitivecontrolandtoplayakeyroleinreorientingattentionaccordingtothetaskdemands(Rossietal.,2009;Japeeetal.,2015).Thispatternisconsistentwithanumberofstudiesreportingchangesinthecapacitytoswitchbetweentasksortodisregarddistractorsinolderparticipants(Rajahetal.,2008,2010).GMvolumedifferencesalsoconcernedthebilateralinferiorfrontalgyrus,aswellastheleftsuperiortemporalgyrus.Theseregionsareinvolvedinmotorplanningandarticulation,andinexecutiveprocessingrelatedtoaccessingphonologicalrepresentations(Hickok,2009).Finally,significantlysmallerGMvolumeofthebilateralinsula,involvedinwordretrievalandgeneration(Abeletal.,2009)wasobservedinOGascomparedtoMAG,withanextensiveclusterinthelefthemisphere.Interestingly,theOGinthepresentstudyexhibitedlowercognitiveperformanceforanumberoflanguagetestsreflectinglexicalretrievalandgenerationandsemanticprocessing,andrecruitingexecutivefunctionssuchasswitching,inhibitionandstrategicsearchabilities,aswellasworkingmemoryprocesses(Troyeretal.,1997;BryanandLuszcz,2000).Togetherwithbehavioralresults,thesmallerGMvolumeoffrontalareasinagingobservedherethereforeappearstobeconsistentwithpreviousstudiessuggestingarelationshipbetweenexecutivedeclineandGMvolumeofthefrontallobe(Goodetal.,2001;Tisserandetal.,2004;Lemaitreetal.,2012;Manardetal.,2016). Theage-relatedsmallerGMvolumeobservedinourstudyalsopertainedtoregionsthatarepartofalargerfronto-parietalnetworkinvolvedinattentionalprocesses,includingtherightsupramarginalandangulargyri.Theseregionsareinvolvedinattentionprocessesrelatedtoexecutivefunctions(Seghier,2012)andthecontrolofattentionalshiftsinspace(Chenetal.,2012)andexerttop-downattention-switchingcontrolsignalstovisualareas(Rossietal.,2009).Thisnetwork,includingnotablytheleftfrontalcortexasahub,inrelationtothedorsalattentionalnetwork(DAN)andthedefault-mode-network(DMN),havebeenalsoreportedtoplayakeyroletomaintainthememoryperformanceinnormalandpathologicalaging(Franzmeieretal.,2017a,b).Finally,diminishedGMvolumeofthebilateralsuperioroccipitalgyriandtransversetemporalgyrus(primaryauditorycortex)wasalsoobservedintheOG.Thisresultisconsistentwithapreviousfindingthatreportedglobalthinningofthecerebralcortex,includingthecerebralregionsdedicatedtoperceptualprocessingwithage(Salatetal.,2004).Tosumup,ourfindingsofage-relatedsmallerGMvolumeinfrontal,temporalandoccipitalcorticalareasconsistentwithpreviousresults,whichsuggestthatdecreasedGMvolumeoftheseareasisassociatedwithdiminishedexecutiveefficiency(Tisserandetal.,2004).AlthoughpreviousstructuralandfunctionalstudiesoncognitiveandGMchangesinnormalagingmostlyfocusedonthecerebralcortex,thepresentstudyalsoaddressedGMchangesinthecerebellum,byusingaspecificanalysispipelineoptimizedforthisstructure.VBManalysesinthecerebellumrevealedsignificantlysmallerGMvolumeintheOGintherightlobuleHVIIa,includingthecrusIandcrusIIregions(x=−36;y=12;z=4;t-value=7.13).Overthepastdecades,evidencehasindicatedthatcerebellarfunctioningextendsbeyondthescopeofclassicalsensorimotorcontrolandisrelatedtodomainssuchasattention,language,executivefunctionandsocialcognition.Inarecentopinionarticle,Sokolovetal.(2017)assertthatcerebellarcomputations—basedonoftheirextensivereciprocalconnectionswiththefrontal,parietalandtemporalassociativecortices—areuniversalacrosssensorimotorandassociativeprocesses,alongwithtwokeyphenomena,predictionanderror-basedlearning.Recentresultsshowthatthemosthumancerebellummapsarerelatedtocerebralassociationnetworks.Furthermore,KellyandStrick(2003)foundthatlargeregionsnearcrusIandcrusIIexhibitconnectionswithprefrontalcortexarea46(whichisinvolvedinexecutiveprocesses)innon-humanprimates.Importantly,thiscorticalcircuitbetweenthecerebellumandprefrontalcortexoverlapswithregionsdedicatedtomotorcontrol(Buckner,2013).AnotherstudyrevealedthatlobuleHVIIa,includingcrusI,isconnectedtoalargeassociationnetworkinvolvedinexecutivecontrol(Habasetal.,2009).Thecerebellumisalsosignificantlyinvolvedinlanguage,socialcognitionandcognitioningeneral(Buckner,2013).RightcrusIatrophyinolderadultsmayberelatedtotheirlowersemanticcognitivescores,giventhatthisregionisconnectedtotheleftcerebralregionsthatarethoughttobeinvolvedinthesemanticdemandsoftaskprocessing(Petersenetal.,1989;Stoodley,2012).Overall,thesmallerGMvolumeinthecerebellumobservedintheOGextendspreviousfindingsonGMatrophyinnormalagingrelatedtocognitiveabilities(Lemaîtreetal.,2005;Razetal.,2005;Driscolletal.,2009)andparticularlytoexecutivefunctions. ThepresentVBMstudyhasanumberoflimitations.Inparticular,asthisanalysisisexclusivelycross-sectionalitprovidesnoinformationconcerningcausalityandtemporalchanges.ThisissueremainsparticularlyrelevantforgainingagreaterunderstandingoftheconcurrentchangesincognitivescoresandGMvolumeastheyrelatetocognitiveperformance.Indeed,onecriticalquestionremainsregardingtheextenttowhichsmallerGMvolumeinolderrelativetomiddle-agedparticipantalsovariesaccordingtocognitiveperformance.ItisforexamplepossiblethatolderadultswithhighercognitiveperformanceexhibitlessGMvolumereductionthanthosewithlowercognitiveperformance.Forexample,arecentstudyadoptedacross-sectionalapproachtostructuralMRItoinvestigatedifferencesinGMvolumeinrelationtocognitiveperformance(Nissimetal.,2017).Usingalongitudinalapproach,anotherstudy(Tisserandetal.,2004)carriedouta3-yearcomparisonofGMdensitybetweena“stable”anda“decliner”group.ThesestudiessuggestedalinkbetweenGMvolumeofthefrontallobeandcognitiveperformance,suggestingthatGMvolumeinthisregionmightbeapredictorofcognitivefunctioninginolderadults.Whenitcomestonormalorpathologicalaging,cerebralreserve(Katzman,1993;Satz,1993)andcognitivereserve(Stern,2002,2009)arekeyconceptsthatneedtobetakenintoconsideration.Cerebralreservedesignatestheamountofcerebraldeteriorationthatcanbetoleratedbeforeacriticalthresholdisreachedwhoseclinicalorfunctionalconsequencesareinevitable,whereascognitivereservereferstotheabilitytousetheavailablecerebralreservetoperformataskflexiblyandefficiently.Withrespecttothisconceptualframework,severalresearchesonanimalandhumanspositthebeneficroleforsuccessfulagingofarichenvironmentandagreatereducationtomaintaincognitiveperformancerelativelywellinfaceofage-relatedbrainmodificationsandpathology(Freretetal.,2015;Franzmeieretal.,2017a,b;Gelfoetal.,2018).However,duetotherelativelysmallsampleofolderparticipant,furtheranalysescomparingGMvolumebetweenlow-andhighperformerscouldnotbeperformedinthepresentstudy.Moreover,oursamplesizeremainstooweektodiscernsubtleGMdifferencesoradistinctpatternofresultsdependingonthesexoftheparticipants(Weineretal.,2017).Furtherstudiesincludingalargersamplewouldthusallowtopreciselytestthesehypotheses.Furtherresearch,includingthecollectionofgenetic,structuralandfunctionalbrainconnectivityinformation,isalsoneededontheindividualtrajectoriesofthebrainstructureinnormalaging,andinrelationtocognitivescores.Suchresearchwouldhelptomakethedistinctionbetweentransitionalphasesandnormalcognitiveandbrainagingpatternsinpathologicalsettings. Conclusion ThepresentVBMstudyaimedtoassesstheeffectofagingonGMandtointerpretresultsinrelationtothecognitiveperformance.Overall,thisstudyprovidedabroadpictureondomain-generalcognitivefunctioning,butalsolanguage-specificprocessesinnormalaging,aswellastheassociatedanatomicaldifferencesinthewholebrain,includingthecerebellum.AdecreaseofGMvolumewasobservedinseveralregionsinoldercomparedtomiddle-agedadults,interpretedinrelationtolowercognitivescoresintestsassessingeitherdomaingeneralorspecificprocesses.TheseresultsreplicateandfurthersupportpreviousfindingssuggestingageneraldeclineincognitiveprocessesassociatedwithsmallerGMvolumeinthecourseofnormalaging.Moreover,theseresultsemphasizetheimportanceoftakingintoaccountthecerebellumstructurewhenstudyingchangesassociatedwithnormalaging,whichclearlyextendbeyondthecerebralcortex.Thesefindingsopenupnewperspectivesforthedevelopmentandapplicationofinnovativetrainingmethodsandprogramsthataimtopromotesuccessfulnormalaging. AuthorContributions MBandNB:conceivedthestudy.NB,CP,AKandAJ:dataacquisition.SR,EHandFR:dataprocessing.SR,EH,MBandLK:manuscriptwriting. Funding ThisresearchwasfundedbyARC2“QualitédeVie&Vieillissement”RégionRhôneAlpes,FranceandbyInstitutUniversitairedeFrance(IUF).TheGrenobleMRIfacilityIRMaGewaspartlyfundedbytheFrenchprogram“Investissementd’Avenir”runbythe“AgenceNationalepourlaRecherche”:Grant“Infrastructured’AvenirenBiologieSanté”(ANR-11-INBS-0006). ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments Wethanktheparticipantsofthisstudyfortheirvaluablecontributions.WethanktheGrenobleMRIIRMaGEunitforenablingustoperformtheMRIacquisitions. Footnotes ^www.fil.ion.ucl.ac.uk/spm/ ^http://www.neuro.uni-jena.de ^http://www.mrc-cbu.cam.ac.uk/imaging ^http://www.diedrichsenlab.org/imaging/suit.htm References Abe,O.,Yamasue,H.,Aoki,S.,Suga,M.,Yamada,H.,Kasai,K.,etal.(2008).AgingintheCNS:comparisonofgrey/whitemattervolumeanddiffusiontensordata.Neurobiol.Aging29,102–116.doi:10.1016/j.neurobiolaging.2006.09.003 PubMedAbstract|CrossRefFullText|GoogleScholar Abel,S.,Dressel,K.,Kümmerer,D.,Saur,D.,Mader,I.,Weiller,C.,etal.(2009).Correctanderroneouspicturenamingresponsesinhealthysubjects.Neurosci.Lett.463,167–171.doi:10.1016/j.neulet.2009.07.077 PubMedAbstract|CrossRefFullText|GoogleScholar Alexander,G.E.,Chen,K.,Merkley,T.L.,Reiman,E.M.,Caselli,R.J.,Aschenbrenner,M.,etal.(2006).Regionalnetworkofmagneticresonanceimaginggreymattervolumeinhealthyaging.Neuroreport17,951–956.doi:10.1097/01.wnr.0000220135.16844.b6 PubMedAbstract|CrossRefFullText|GoogleScholar Ashburner,J.(2007).Afastdiffeomorphicimageregistrationalgorithm.Neuroimage38,95–113.doi:10.1016/j.neuroimage.2007.07.007 PubMedAbstract|CrossRefFullText|GoogleScholar Ashburner,J.,andFriston,K.J.(2005).Voxel-basedmorphometry—themethods.Neuroimage26,839–851.doi:10.1016/j.neuroimage.2005.02.018 CrossRefFullText Baciu,M.,Boudiaf,N.,Cousin,E.,Perrone-Bertolotti,M.,Pichat,C.,Fournet,N.,etal.(2016).FunctionalMRIevidenceforthedeclineofwordretrievalandgenerationduringnormalaging.Age38:3.doi:10.1007/s11357-015-9857-y PubMedAbstract|CrossRefFullText|GoogleScholar Beauregard,A.(1971).LeTestdesAutomatismesVerbaux.Issy-les-Moulineaux:EditionsScientifiquesetPsychotechniques. Bherer,L.,Belleville,S.,andHudon,C.(2004).Ledéclindesfonctionsexécutivesaucoursduvieillissementnormal,danslamaladied’Alzheimeretdansladémencefrontotemporale.Psychol.Neuropsychiatr.Vieil.2,181–189. PubMedAbstract|GoogleScholar Boudiaf,N.,Laboissière,R.,Cousin,É.,Fournet,N.,Krainik,A.,andBaciu,M.(2016).Behavioralevidenceforadifferentialmodulationofsemanticprocessingandlexicalproductionbyaging:afulllinearmixed-effectsmodelingapproach.AgingNeuropsychol.Cogn.25,1–22.doi:10.1080/13825585.2016.1257100 PubMedAbstract|CrossRefFullText|GoogleScholar Bryan,J.,andLuszcz,M.A.(2000).Measuresoffluencyaspredictorsofincidentalmemoryamongolderadults.Psychol.Aging15,483–489.doi:10.1037/0882-7974.15.3.483 PubMedAbstract|CrossRefFullText|GoogleScholar Buckner,R.L.(2013).Perspectivethecerebellumandcognitivefunction:25yearsofinsightfromanatomyandneuroimaging.Neuron80,807–815.doi:10.1016/j.neuron.2013.10.044 PubMedAbstract|CrossRefFullText|GoogleScholar Cabeza,R.,Anderson,N.D.,Locantore,J.K.,andMcIntosh,A.R.(2002).Aginggracefully:compensatorybrainactivityinhigh-performingolderadults.Neuroimage17,1394–1402.doi:10.1006/nimg.2002.1280 PubMedAbstract|CrossRefFullText|GoogleScholar Callaert,D.V.,Ribbens,A.,Maes,F.,Swinnen,S.P.,andWenderoth,N.(2014).Assessingage-relatedgreymatterdeclinewithvoxel-basedmorphometrydependssignificantlyonsegmentationandnormalizationprocedures.Front.AgingNeurosci.6:124.doi:10.3389/fnagi.2014.00124 PubMedAbstract|CrossRefFullText|GoogleScholar Cardebat,D.,Doyon,B.,Puel,M.,Goulet,P.,andJoanette,Y.(1990).Formalandsemanticlexicalevocationinnormalsubjects.Performanceanddynamicsofproductionasafunctionofsex,ageandeducationallevel.ActaNeurol.Belg.90,207–217. PubMedAbstract|GoogleScholar Chen,Q.,Weidner,R.,Vossel,S.,Weiss,P.H.,andFink,G.R.(2012).Neuralmechanismsofattentionalreorientinginthree-dimensionalspace.J.Neurosci.32,13352–13362.Availableonlineat:http://www.jneurosci.org/content/32/39/13352.abstract GoogleScholar Collette,F.,andSalmon,E.(2014).Fonctionnementexécutifetréseauxcérébraux.Neuropsychologie6,256–266.doi:10.1684/nrp.2014.0321 CrossRefFullText|GoogleScholar Coppin,A.K.,Shumway-Cook,A.,Saczynski,J.S.,Patel,K.V.,Ble,A.,Ferrucci,L.,etal.(2006).Associationofexecutivefunctionandperformanceofdual-taskphysicaltestsamongolderadults:analysesfromtheInChiantistudy.AgeAgeing35,619–624.doi:10.1093/ageing/afl107 PubMedAbstract|CrossRefFullText|GoogleScholar Dartinet,V.,andMartinaud,O.(2005).LaBREF,unebatterierapided’évaluationfrontale.NPGNeurol.Psychiatr.Geriatr.5,43–46.doi:10.1016/s1627-4830(05)82606-6 CrossRefFullText|GoogleScholar Davis,S.W.,Dennis,N.A.,Daselaar,S.M.,Fleck,M.S.,andCabeza,R.(2008).QuePASA?Theposterior-anteriorshiftinaging.Cereb.Cortex18,1201–1209.doi:10.1093/cercor/bhm155 PubMedAbstract|CrossRefFullText|GoogleScholar Deltour,J.J.(1993).EchelledeVocabulairedeMillHillJ.C.Raven.AdaptationFrançaiseetNormesEuropeenesduMillHilletduStandardProgressiveMatricedeRaven(PM38).Braine-le-Chateau:Editionsl’applicationdestechniquesmodernes. Diedrichsen,J.(2006).Aspatiallyunbiasedatlastemplateofthehumancerebellum.Neuroimage33,127–138.doi:10.1016/j.neuroimage.2006.05.056 PubMedAbstract|CrossRefFullText|GoogleScholar Diedrichsen,J.,Balsters,J.H.,Flavell,J.,Cussans,E.,andRamnani,N.(2009).AprobabilisticMRatlasofthehumancerebellum.Neuroimage46,39–46.doi:10.1016/j.neuroimage.2009.01.045 PubMedAbstract|CrossRefFullText|GoogleScholar Diedrichsen,J.,andZotow,E.(2015).Surface-baseddisplayofvolume-averagedcerebellarimagingdata.PLoSOne10:e0133402.doi:10.1371/journal.pone.0133402 PubMedAbstract|CrossRefFullText|GoogleScholar Driscoll,I.,Davatzikos,C.,An,Y.,Wu,X.,Shen,D.,Kraut,M.,etal.(2009).LongitudinalpatternofregionalbrainvolumechangedifferentiatesnormalagingfromMCI.Neurology72,1906–1913.doi:10.1212/WNL.0b013e3181a82634 PubMedAbstract|CrossRefFullText|GoogleScholar Dubois,B.,Touchon,J.,Portet,F.,Ousset,P.J.,Vellas,B.,andMichel,B.(2002).“The5words”:asimpleandsensitivetestforthediagnosisofAlzheimer’sdisease.PresseMed.31,1696–1699. PubMedAbstract|GoogleScholar Fedorenko,E.(2014).Theroleofdomain-generalcognitivecontrolinlanguagecomprehension.Front.Psychol.5:335.doi:10.3389/fpsyg.2014.00335 PubMedAbstract|CrossRefFullText|GoogleScholar Fjell,A.M.,McEvoy,L.,Holland,D.,Dale,A.M.,andWalhovd,K.B.(2014).Whatisnormalinnormalaging?Effectsofaging,amyloidandAlzheimer’sdiseaseonthecerebralcortexandthehippocampus.Prog.Neurobiol.117,20–40.doi:10.1016/j.pneurobio.2014.02.004 PubMedAbstract|CrossRefFullText|GoogleScholar Folstein,M.F.,Folstein,S.E.,andMcHugh,P.R.(1975).“Mini-mentalstate”.Apracticalmethodforgradingthecognitivestateofpatientsfortheclinician.J.Psychiatr.Res.12,189–198.doi:10.1016/0022-3956(75)90026-6 PubMedAbstract|CrossRefFullText|GoogleScholar Franzmeier,N.,Göttler,J.,Grimmer,T.,Drzezga,A.,Áraque-Caballero,M.A.,Simon-Vermot,L.,etal.(2017a).Resting-stateconnectivityoftheleftfrontalcortextothedefaultmodeanddorsalattentionnetworksupportsreserveinmildcognitiveimpairment.Front.AgingNeurosci.9:264.doi:10.3389/fnagi.2017.00264 PubMedAbstract|CrossRefFullText|GoogleScholar Franzmeier,N.,Hartmann,J.C.,Taylor,A.N.W.,AraqueCaballero,M.A.,Simon-Vermot,L.,Buerger,K.,etal.(2017b).Leftfrontalhubconnectivityduringmemoryperformancesupportsreserveinagingandmildcognitiveimpairment.J.AlzheimersDis.59,1381–1392.doi:10.3233/JAD-170360 PubMedAbstract|CrossRefFullText|GoogleScholar Freret,T.,Gaudreau,P.,Schumann-Bard,P.,Billard,J.-M.,andPopa-Wagner,A.(2015).Mechanismsunderlyingtheneuroprotectiveeffectofbrainreserveagainstlatelifedepression.J.NeuralTransm.122,55–61.doi:10.1007/s00702-013-1154-2 PubMedAbstract|CrossRefFullText|GoogleScholar Friston,K.J.,Holmes,A.P.,Worsley,K.J.,Poline,J.P.,Frith,C.D.,andFrackowiak,R.S.J.(1995).Statisticalparametricmapsinfunctionalimaging:agenerallinearapproach.Hum.BrainMapp.2,189–210.doi:10.1002/hbm.460020402 CrossRefFullText|GoogleScholar Geerligs,L.,Saliasi,E.,Maurits,N.M.,Renken,R.J.,andLorist,M.M.(2014).Brainmechanismsunderlyingtheeffectsofagingondifferentaspectsofselectiveattention.Neuroimage91,52–62.doi:10.1016/j.neuroimage.2014.01.029 PubMedAbstract|CrossRefFullText|GoogleScholar Gelfo,F.,Mandolesi,L.,Serra,L.,Sorrentino,G.,andCaltagirone,C.(2018).Theneuroprotectiveeffectsofexperienceoncognitivefunctions:evidencefromanimalstudiesontheneurobiologicalbasesofbrainreserve.Neuroscience370,218–235.doi:10.1016/j.neuroscience.2017.07.065 PubMedAbstract|CrossRefFullText|GoogleScholar Good,C.D.,Johnsrude,I.S.,Ashburner,J.,Henson,R.N.,Friston,K.J.,andFrackowiak,R.S.(2001).Avoxel-basedmorphometricstudyofageingin465normaladulthumanbrains.Neuroimage14,21–36.doi:10.1006/nimg.2001.0786 PubMedAbstract|CrossRefFullText|GoogleScholar Gorbach,T.,Pudas,S.,Lundquist,A.,Orädd,G.,Josefsson,M.,Salami,A.,etal.(2017).Longitudinalassociationbetweenhippocampusatrophyandepisodic-memorydecline.Neurobiol.Aging51,167–176.doi:10.1016/j.neurobiolaging.2016.12.002 PubMedAbstract|CrossRefFullText|GoogleScholar Gutchess,A.H.,Welsh,R.C.,Hedden,T.,Bangert,A.,Minear,M.,Liu,L.L.,etal.(2005).Agingandtheneuralcorrelatesofsuccessfulpictureencoding:frontalactivationscompensatefordecreasedmedial-temporalactivity.J.Cogn.Neurosci.17,84–96.doi:10.1162/0898929052880048 PubMedAbstract|CrossRefFullText|GoogleScholar Habas,C.,Kamdar,N.,Nguyen,D.,Prater,K.,Beckmann,C.F.,Menon,V.,etal.(2009).Distinctcerebellarcontributionstointrinsicconnectivitynetworks.J.Neurosci.29,8586–8594.doi:10.1523/JNEUROSCI.1868-09.2009 PubMedAbstract|CrossRefFullText|GoogleScholar Helder,E.J.,Zuverza-Chavarria,V.,andWhitman,R.D.(2016).Executivefunctioningandlateralizedsemanticpriminginolderadults.CogentPsychol.3:1182687.doi:10.1080/23311908.2016.1182687 CrossRefFullText|GoogleScholar Hickok,G.(2009).Thefunctionalneuroanatomyoflanguage.Phys.LifeRev.6,121–143.doi:10.1016/j.plrev.2009.06.001 PubMedAbstract|CrossRefFullText|GoogleScholar Howard,D.,andPatterson,K.(1992).ThePyramidsandPalmTreesTest:ATestofSemanticAccessfromWordsandPictures.BurySt.Edmunds,Suffolk:ThamesValleyTestCompany. Hoyau,E.,Boudiaf,N.,Cousin,E.,Pichat,C.,Fournet,N.,Krainik,A.,etal.(2017).Agingmodulatesthehemisphericspecializationduringwordproduction.Front.AgingNeurosci.9:125.doi:10.3389/fnagi.2017.00125 PubMedAbstract|CrossRefFullText|GoogleScholar Huizinga,M.,Dolan,C.V.,andvanderMolen,M.W.(2006).Age-relatedchangeinexecutivefunction:developmentaltrendsandalatentvariableanalysis.Neuropsychologia44,2017–2036.doi:10.1016/j.neuropsychologia.2006.01.010 PubMedAbstract|CrossRefFullText|GoogleScholar Japee,S.,Holiday,K.,Satyshur,M.D.,Mukai,I.,andUngerleider,L.G.(2015).Aroleofrightmiddlefrontalgyrusinreorientingofattention:acasestudy.Front.Syst.Neurosci.9:23.doi:10.3389/fnsys.2015.00023 PubMedAbstract|CrossRefFullText|GoogleScholar Jessen,F.,Feyen,L.,Freymann,K.,Tepest,R.,Maier,W.,Heun,R.,etal.(2006).Volumereductionoftheentorhinalcortexinsubjectivememoryimpairment.Neurobiol.Aging27,1751–1756.doi:10.1016/j.neurobiolaging.2005.10.010 PubMedAbstract|CrossRefFullText|GoogleScholar Kalafat,M.,Hugonot-Diener,L.,andPoitrenaud,J.(2003).Standardisationetétalonnagefrançaisdu“Mini-MentalState”(MMS)versionGRÉCO.Rev.Neuropsychol.13,209–236. GoogleScholar Karmiloff-Smith,A.(2015).Analternativetodomain-generalordomain-specificframeworksfortheorizingabouthumanevolutionandontogenesis.AIMSNeurosci.2,91–104.doi:10.3934/neuroscience.2015.2.91 PubMedAbstract|CrossRefFullText|GoogleScholar Karmiloff-Smith,A.,Al-Janabi,T.,D’Souza,H.,Groet,J.,Massand,E.,Mok,K.,etal.(2016).TheimportanceofunderstandingindividualdifferencesinDownsyndrome.F1000Res.5:389.doi:10.12688/f1000research.7506.1 PubMedAbstract|CrossRefFullText|GoogleScholar Katzman,R.(1993).EducationandtheprevalenceofdementiaandAlzheimer’sdisease.Neurology43,13–20.doi:10.1212/WNL.43.1_Part_1.13 PubMedAbstract|CrossRefFullText|GoogleScholar Kavé,G.,Samuel-Enoch,K.,andAdiv,S.(2009).Theassociationbetweenageandthefrequencyofnounsselectedforproduction.Psychol.Aging24,17–27.doi:10.1037/a0014579 PubMedAbstract|CrossRefFullText|GoogleScholar Kelly,R.M.,andStrick,P.L.(2003).Cerebellarloopswithmotorcortexandprefrontalcortexofanonhumanprimate.J.Neurosci.23,8432–8444.doi:10.1523/JNEUROSCI.23-23-08432.2003 PubMedAbstract|CrossRefFullText|GoogleScholar Kurth,F.,Luders,E.,andGaser,C.(2015).“Voxel-basedmorphometry,”inBrainMapping,ed.W.Toga(Waltham,MA:AcademicPress),345–349. GoogleScholar Lemaître,H.,Crivello,F.,Grassiot,B.,Alpérovitch,A.,Tzourio,C.,andMazoyer,B.(2005).Age-andsex-relatedeffectsontheneuroanatomyofhealthyelderly.Neuroimage26,900–911.doi:10.1016/j.neuroimage.2005.02.042 PubMedAbstract|CrossRefFullText|GoogleScholar Lemaitre,H.,Goldman,A.L.,Sambataro,F.,Verchinski,B.A.,Meyer-Lindenberg,A.,Weinberger,D.R.,etal.(2012).Normalage-relatedbrainmorphometricchanges:nonuniformityacrosscorticalthickness,surfaceareaandgreymattervolume?Neurobiol.Aging33,617.e1–617.e9.doi:10.1016/j.neurobiolaging.2010.07.013 PubMedAbstract|CrossRefFullText|GoogleScholar Leong,R.L.F.,Lo,J.C.,Sim,S.K.Y.,Zheng,H.,Tandi,J.,Zhou,J.,etal.(2017).Longitudinalbrainstructureandcognitivechangesover8yearsinanEastAsiancohort.Neuroimage147,852–860.doi:10.1016/j.neuroimage.2016.10.016 PubMedAbstract|CrossRefFullText|GoogleScholar Lovden,M.,Schmiedek,F.,Kennedy,K.M.,Rodrigue,K.M.,Lindenberger,U.,andRaz,N.(2013).Doesvariabilityincognitiveperformancecorrelatewithfrontalbrainvolume?Neuroimage64,209–215.doi:10.1016/j.neuroimage.2012.09.039 PubMedAbstract|CrossRefFullText|GoogleScholar Manard,M.,Bahri,M.A.,Salmon,E.,andCollette,F.(2016).Relationshipbetweengreymatterintegrityandexecutiveabilitiesinaging.BrainRes.1642,562–580.doi:10.1016/j.brainres.2016.04.045 PubMedAbstract|CrossRefFullText|GoogleScholar Marchand,W.R.,Lee,J.N.,Suchy,Y.,Garn,C.,Johnson,S.,Wood,N.,etal.(2011).Age-relatedchangesofthefunctionalarchitectureofthecortico-basalgangliacircuitryduringmotortaskexecution.Neuroimage55,194–203.doi:10.1016/j.neuroimage.2010.12.030 PubMedAbstract|CrossRefFullText|GoogleScholar Metz-Lutz,M.,Kremin,H.,Deloche,G.,Hannequin,D.,Ferrand,L.,Perrier,D.,etal.(1991).Standardisationd’untestdedénominationorale:contrôledeseffetsdel’âge,dusexeetduniveaudescolaritéchezlessujetsadultesnormaux.Neuropsychologie1,73–95. Meyer,A.M.,andFedermeier,K.D.(2010).Event-relatedpotentialsrevealtheeffectsofagingonmeaningselectionandrevision.Psychophysiology47,673–686.doi:10.1111/j.1469-8986.2010.00983.x PubMedAbstract|CrossRefFullText|GoogleScholar Morcom,A.M.,andJohnson,W.(2015).Neuralreorganizationandcompensationinaging.J.Cogn.Neurosci.27,1275–1285.doi:10.1162/jocn_a_00783 PubMedAbstract|CrossRefFullText|GoogleScholar Nissim,N.R.,O’Shea,A.M.,Bryant,V.,Porges,E.C.,Cohen,R.,andWoods,A.J.(2017).Frontalstructuralneuralcorrelatesofworkingmemoryperformanceinolderadults.Front.AgingNeurosci.8:328.doi:10.3389/fnagi.2016.00328 PubMedAbstract|CrossRefFullText|GoogleScholar Nyberg,L.,Lövdén,M.,Riklund,K.,Lindenberger,U.,andBäckman,L.(2012).Memoryagingandbrainmaintenance.TrendsCogn.Sci.16,292–305.doi:10.1016/j.tics.2012.04.005 PubMedAbstract|CrossRefFullText|GoogleScholar Nyberg,L.,Salami,A.,Andersson,M.,Eriksson,J.,Kalpouzos,G.,Kauppi,K.,etal.(2010).Longitudinalevidencefordiminishedfrontalcortexfunctioninaging.Proc.Natl.Acad.Sci.USA107,22682–22686.doi:10.1073/pnas.1012651108 PubMedAbstract|CrossRefFullText|GoogleScholar Oldfield,R.C.(1971).Theassessmentandanalysisofhandedness:theEdinburghinventory.Neuropsychologia9,97–113.doi:10.1016/0028-3932(71)90067-4 PubMedAbstract|CrossRefFullText|GoogleScholar Petersen,S.E.,Fox,P.T.,Posner,M.I.,Mintun,M.,andRaichle,M.E.(1989).Positronemissiontomographicstudiesoftheprocessingofsingewords.J.Cogn.Neurosci.1,153–170.doi:10.1162/jocn.1989.1.2.153 PubMedAbstract|CrossRefFullText|GoogleScholar Pudas,S.,Persson,J.,Josefsson,M.,deLuna,X.,Nilsson,L.-G.,andNyberg,L.(2013).Braincharacteristicsofindividualsresistingage-relatedcognitivedeclineovertwodecades.J.Neurosci.33,8668–8677.doi:10.1523/JNEUROSCI.2900-12.2013 PubMedAbstract|CrossRefFullText|GoogleScholar Rajah,M.N.,Ames,B.,andD’Esposito,M.(2008).Prefrontalcontributionstodomain-generalexecutivecontrolprocessesduringtemporalcontextretrieval.Neuropsychologia46,1088–1103.doi:10.1016/j.neuropsychologia.2007.10.023 PubMedAbstract|CrossRefFullText|GoogleScholar Rajah,M.N.,Languay,R.,andValiquette,L.(2010).Age-relatedchangesinprefrontalcortexactivityareassociatedwithbehaviouraldeficitsinbothtemporalandspatialcontextmemoryretrievalinolderadults.Cortex46,535–549.doi:10.1016/j.cortex.2009.07.006 PubMedAbstract|CrossRefFullText|GoogleScholar Raz,N.,Lindenberger,U.,Rodrigue,K.M.,Kennedy,K.M.,Head,D.,Williamson,A.,etal.(2005).Regionalbrainchangesinaginghealthyadults:generaltrends,individualdifferencesandmodifiers.Cereb.Cortex15,1676–1689.doi:10.1093/cercor/bhi044 PubMedAbstract|CrossRefFullText|GoogleScholar Raz,N.,andRodrigue,K.M.(2006).Differentialagingofthebrain:patterns,cognitivecorrelatesandmodifiers.Neurosci.Biobehav.Rev.30,730–748.doi:10.1016/j.neubiorev.2006.07.001 PubMedAbstract|CrossRefFullText|GoogleScholar Rossi,A.F.,Pessoa,L.,Desimone,R.,andUngerleider,L.G.(2009).Theprefrontalcortexandtheexecutivecontrolofattention.Exp.BrainRes.192,489–497.doi:10.1007/s00221-008-1642-z PubMedAbstract|CrossRefFullText|GoogleScholar Salat,D.H.,Buckner,R.L.,Snyder,A.Z.,Greve,D.N.,Desikan,R.S.R.,Busa,E.,etal.(2004).Thinningofthecerebralcortexinaging.Cereb.Cortex14,721–730.doi:10.1093/cercor/bhh032 PubMedAbstract|CrossRefFullText|GoogleScholar Salthouse,T.A.(2010).Selectivereviewofcognitiveaging.J.Int.Neuropsychol.Soc.16,754–760.doi:10.1017/S1355617710000706 PubMedAbstract|CrossRefFullText|GoogleScholar Satz,P.(1993).Brainreservecapacityonsymptomonsetafterbraininjury:aformulationandreviewofevidenceforthresholdtheory.Neuropsychology7,273–295.doi:10.1037/0894-4105.7.3.273 CrossRefFullText|GoogleScholar Seghier,M.L.(2012).Theangulargyrus.Neurosci.19,43–61.doi:10.1177/1073858412440596 PubMedAbstract|CrossRefFullText|GoogleScholar Seidler,R.D.,Bernard,J.A.,Burutolu,T.B.,Fling,B.W.,Gordon,M.T.,Gwin,J.T.,etal.(2010).Motorcontrolandaging:linkstoage-relatedbrainstructural,functional,andbiochemicaleffects.Neurosci.Biobehav.Rev.34,721–733.doi:10.1016/j.neubiorev.2009.10.005 PubMedAbstract|CrossRefFullText|GoogleScholar Shafto,M.A.,Stamatakis,E.A.,Tam,P.P.,andTyler,L.K.(2010).Wordretrievalfailuresinoldage:therelationshipbetweenstructureandfunction.J.Cogn.Neurosci.22,1530–1540.doi:10.1162/jocn.2009.21321 PubMedAbstract|CrossRefFullText|GoogleScholar Sokolov,A.A.,Miall,R.C.,andIvry,R.B.(2017).Thecerebellum:adaptivepredictionformovementandcognition.TrendsCogn.Sci.21,313–332.doi:10.1016/j.tics.2017.02.005 PubMedAbstract|CrossRefFullText|GoogleScholar Stern,Y.(2002).Whatiscognitivereserve?Theoryandresearchapplicationofthereserveconcept.J.Int.Neuropsychol.Soc.8,448–460.doi:10.1017/s1355617702813248 PubMedAbstract|CrossRefFullText|GoogleScholar Stern,Y.(2009).Cognitivereserve.Neuropsychologia47,2015–2028.doi:10.1016/j.neuropsychologia.2009.03.004 PubMedAbstract|CrossRefFullText|GoogleScholar Stoodley,C.J.(2012).Thecerebellumandcognition:evidencefromfunctionalimagingstudies.Cerebellum11,352–365.doi:10.1007/s12311-011-0260-7 PubMedAbstract|CrossRefFullText|GoogleScholar Talairach,J.,andTournoux,P.(1988).Co-PlanarStereotaxicAtlasoftheHumanBrain:3-DimensionalProportionalSystm:AnApproachtoCerebralImaging.NewYork,NY:ThiemeMedicalPublishersInc. GoogleScholar Tisserand,D.J.,vanBoxtel,M.P.J.,Pruessner,J.C.,Hofman,P.,Evans,A.C.,andJolles,J.(2004).Avoxel-basedmorphometricstudytodetermineindividualdifferencesingreymatterdensityassociatedwithageandcognitivechangeovertime.Cereb.Cortex14,966–973.doi:10.1093/cercor/bhh057 PubMedAbstract|CrossRefFullText|GoogleScholar Tombaugh,T.N.(2004).TrailmakingtestAandB:normativedatastratifiedbyageandeducation.Arch.Clin.Neuropsychol.19,203–214.doi:10.1016/s0887-6177(03)00039-8 PubMedAbstract|CrossRefFullText|GoogleScholar Troyer,A.K.,Moscovitch,M.,andWinocur,G.(1997).Clusteringandswitchingastwocomponentsofverbalfluency:evidencefromyoungerandolderhealthyadults.Neuropsychology11,138–146.doi:10.1037/0894-4105.11.1.138 PubMedAbstract|CrossRefFullText|GoogleScholar Verhaegen,C.,andPoncelet,M.(2013).Changesinnamingandsemanticabilitieswithagingfrom50to90years.J.Int.Neuropsychol.Soc.19,119–126.doi:10.1017/S1355617712001178 PubMedAbstract|CrossRefFullText|GoogleScholar Weiner,M.W.,Veitch,D.P.,Aisen,P.S.,Beckett,L.A.,Cairns,N.J.,Green,R.C.,etal.(2017).RecentpublicationsfromtheAlzheimer’sdiseaseneuroimaginginitiative:reviewingprogresstowardimprovedADclinicaltrials.AlzheimersDement.13,e1–e85.doi:10.1016/j.jalz.2016.11.007 PubMedAbstract|CrossRefFullText|GoogleScholar Weschler,D.(2008).WechslerAdultIntelligenceScale.4thEdn.SanAntonio,TX:Pearson. Wierenga,C.E.,Benjamin,M.,Gopinath,K.,Perlstein,W.M.,Leonard,C.M.,Rothi,L.J.G.,etal.(2008).Age-relatedchangesinwordretrieval:roleofbilateralfrontalandsubcorticalnetworks.Neurobiol.Aging29,436–451.doi:10.1016/j.neurobiolaging.2006.10.024 PubMedAbstract|CrossRefFullText|GoogleScholar Wingfield,A.,andGrossman,M.(2006).Languageandtheagingbrain:patternsofneuralcompensationrevealedbyfunctionalbrainimaging.J.Neurophysiol.96,2830–2839.doi:10.1152/jn.00628.2006 PubMedAbstract|CrossRefFullText|GoogleScholar Zelazo,P.D.,Craik,F.I.M.,andBooth,L.(2004).Executivefunctionacrossthelifespan.ActaPsychol.115,167–183.doi:10.1016/j.actpsy.2003.12.005 PubMedAbstract|CrossRefFullText|GoogleScholar Zigmond,A.S.,andSnaith,R.P.(1983).Thehospitalanxietyanddepressionscale.ActaPsychiatr.Scand.67,361–370.doi:10.1111/j.1600-0447.1983.tb09716.x PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:aging,graymatter,MRI,VBM,brain,cognitive Citation:RamanoëlS,HoyauE,KauffmannL,RenardF,PichatC,BoudiafN,KrainikA,JaillardAandBaciuM(2018)GrayMatterVolumeandCognitivePerformanceDuringNormalAging.AVoxel-BasedMorphometryStudy.Front.AgingNeurosci.10:235.doi:10.3389/fnagi.2018.00235 Received:11January2018;Accepted:18July2018;Published:03August2018. Editedby:AurelPopa-Wagner,DepartmentofNeurology,UniversityHospitalEssen,Germany Reviewedby:VincentKoppelmans,UniversityofUtah,UnitedStatesJean-FrancoisDemonet,InstitutNationaldelaSantéetdelaRechercheMédicale(INSERM),France Copyright©2018Ramanoël,Hoyau,Kauffmann,Renard,Pichat,Boudiaf,Krainik,JaillardandBaciu.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:StephenRamanoël,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1What is Grey Matter? - News Medical
The grey matter serves to process information in the brain. Structures within the grey matter pro...
- 2The Cerebellum and White and Gray Matter - My-MS.org
The cerebellum functions closely with the cerebral cortex and the brain stem. It's separated from...
- 3Grey Matter in the Brain - Simply Psychology
The grey matter in the cerebellum is related to motor control, balance, coordination, and automat...
- 4Grey matter - Wikipedia
- 5Gray Matter vs White Matter | Technology Networks
What is the function of gray matter? Gray matter-heavy brain regions include those that control m...