Lie Group -- from Wolfram MathWorld
文章推薦指數: 80 %
A Lie group is a smooth manifold obeying the group properties and that satisfies the additional condition that the group operations are differentiable. Algebra AppliedMathematics CalculusandAnalysis DiscreteMathematics FoundationsofMathematics Geometry HistoryandTerminology NumberTheory ProbabilityandStatistics RecreationalMathematics Topology AlphabeticalIndex NewinMathWorld Algebra GroupTheory LieTheory LieGroups MathWorldContributors Rowland,Todd LieGroup ALiegroupisasmoothmanifoldobeyingthegrouppropertiesandthatsatisfiestheadditionalconditionthatthegroupoperations aredifferentiable. ThisdefinitionisrelatedtothefifthofHilbert'sproblems,whichasksiftheassumptionofdifferentiabilityforfunctionsdefining acontinuoustransformationgroupcanbeavoided. ThesimplestexamplesofLiegroupsareone-dimensional.Underaddition,thereallineisaLiegroup.Afterpickingaspecificpointtobetheidentity element,thecircleisalsoaLiegroup.Anotherpoint onthecircleatanglefromtheidentitythenactsbyrotating thecirclebytheangleIngeneral,aLiegroupmayhave amorecomplicatedgroupstructure,suchastheorthogonal group(i.e.,theorthogonal matrices),orthegenerallineargroup(i.e.,theinvertible matrices).TheLorentzgroupisalsoaLiegroup. ThetangentspaceattheidentityofaLiegroupalwayshasthestructureofaLiealgebra,andthis Liealgebradeterminesthelocalstructureofthe Liegroupviatheexponentialmap.Forexample, thefunctiongivestheexponential mapfromthecircle'stangentspace(i.e.,thereals),tothecircle,thought ofasaunitcirclein.Amoredifficult exampleistheexponentialmapfromantisymmetricmatricestothespecial orthogonalgroup,thesubsetofwithdeterminant 1. ThetopologyofaLiegroupisfairlyrestricted.Forexample,therealwaysexistsanonvanishingvectorfield.Thisstructurehasallowed completeclassificationofthefinitedimensionalsemisimple Liegroupsandtheirrepresentations. SeealsoCompactLieGroup,ContinuousGroup,Group,LieAlgebra, LieGroupoid,Lie-Type Group,LorentzGroup,Nil Geometry,OrthogonalGroup,Semisimple LieGroup,SmoothManifold,Sol Geometry,TangentSpace,Vector FieldExplorethis topicintheMathWorldclassroom ThisentrycontributedbyTodd Rowland ExplorewithWolfram|Alpha Morethingstotry: birthdayproblem35people div[x^2siny,y^2sinxz,xysin(cosz)] interval[-sqrt(5),1+sqrt(5)] Citethisas: Rowland,Todd."LieGroup."FromMathWorld--AWolframWebResource,createdbyEric W.Weisstein.https://mathworld.wolfram.com/LieGroup.html Subjectclassifications Algebra GroupTheory LieTheory LieGroups MathWorldContributors Rowland,Todd Created,developedandnurturedbyEricWeissteinatWolframResearch
延伸文章資訊
- 1李群- 維基百科,自由的百科全書
李群(英語:Lie group,/ˈliː/)是一個數學概念,指具有群結構的光滑微分流形,其群作用與微分結構相容。李群的名字源於挪威數學家索菲斯·李的姓氏,以其為連續變換群 ...
- 2Lie group - Wikipedia
The mathematical object capturing this structure is called a Lie algebra (Lie himself called them...
- 3Lie Group Mathematics: The Math of String Theory - 博客來
Mathematical Lie groups are smooth differentiable manifolds and as such can be studied using diff...
- 4Introduction to Lie Groups and Lie Algebras Alexander Kirillov ...
Lie groups, subgroups, and cosets. Definition 2.1. A Lie group is a set G with two structures: G ...
- 5What is a Lie group?
Informally, a Lie group is a group of symmetries where the symmetries are continuous. A circle ha...