Photosynthesis - Wikipedia
文章推薦指數: 80 %
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, ... Photosynthesis FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Biologicalprocesstoconvertlightintochemicalenergy Schematicofphotosynthesisinplants.Thecarbohydratesproducedarestoredinorusedbytheplant. Compositeimageshowingtheglobaldistributionofphotosynthesis,includingbothoceanicphytoplanktonandterrestrialvegetation.Darkredandblue-greenindicateregionsofhighphotosyntheticactivityintheoceanandonland,respectively. Photosynthesisisaprocessusedbyplantsandotherorganismstoconvertlightenergyintochemicalenergythat,throughcellularrespiration,canlaterbereleasedtofueltheorganism'sactivities.Someofthischemicalenergyisstoredincarbohydratemolecules,suchassugarsandstarches,whicharesynthesizedfromcarbondioxideandwater–hencethenamephotosynthesis,fromtheGreekphōs(φῶς),"light",andsunthesis(σύνθεσις),"puttingtogether".[1][2][3]Inmostcases,oxygenisalsoreleasedasawasteproductthatstoresthreetimesmorechemicalenergythanthecarbohydrates.[4]Mostplants,algae,andcyanobacteriaperformphotosynthesis;suchorganismsarecalledphotoautotrophs.PhotosynthesisislargelyresponsibleforproducingandmaintainingtheoxygencontentoftheEarth'satmosphere,andsuppliesmostoftheenergynecessaryforlifeonEarth.[5] Althoughphotosynthesisisperformeddifferentlybydifferentspecies,theprocessalwaysbeginswhenenergyfromlightisabsorbedbyproteinscalledreactioncentersthatcontaingreenchlorophyll(andothercolored)pigments/chromophores.Inplants,theseproteinsareheldinsideorganellescalledchloroplasts,whicharemostabundantinleafcells,whileinbacteriatheyareembeddedintheplasmamembrane.Intheselight-dependentreactions,someenergyisusedtostripelectronsfromsuitablesubstances,suchaswater,producingoxygengas.Thehydrogenfreedbythesplittingofwaterisusedinthecreationoftwofurthercompoundsthatserveasshort-termstoresofenergy,enablingitstransfertodriveotherreactions:thesecompoundsarereducednicotinamideadeninedinucleotidephosphate(NADPH)andadenosinetriphosphate(ATP),the"energycurrency"ofcells. Inplants,algaeandcyanobacteria,sugarsaresynthesizedbyasubsequentsequenceoflight-independentreactionscalledtheCalvincycle.IntheCalvincycle,atmosphericcarbondioxideisincorporatedintoalreadyexistingorganiccarboncompounds,suchasribulosebisphosphate(RuBP).[6]UsingtheATPandNADPHproducedbythelight-dependentreactions,theresultingcompoundsarethenreducedandremovedtoformfurthercarbohydrates,suchasglucose.Inotherbacteria,differentmechanismssuchasthereverseKrebscycleareusedtoachievethesameend. Thefirstphotosyntheticorganismsprobablyevolvedearlyintheevolutionaryhistoryoflifeandmostlikelyusedreducingagentssuchashydrogenorhydrogensulfide,ratherthanwater,assourcesofelectrons.[7]Cyanobacteriaappearedlater;theexcessoxygentheyproducedcontributeddirectlytotheoxygenationoftheEarth,[8]whichrenderedtheevolutionofcomplexlifepossible.Today,theaveragerateofenergycapturebyphotosynthesisgloballyisapproximately130 terawatts,[9][10][11]whichisabouteighttimesthecurrentpowerconsumptionofhumancivilization.[12]Photosyntheticorganismsalsoconvertaround100–115billiontons(91–104Pgpetagrams,orbillionmetrictons),ofcarbonintobiomassperyear.[13][14]Thatplantsreceivesomeenergyfromlight–inadditiontoair,soil,andwater–wasfirstdiscoveredin1779byJanIngenhousz. Photosynthesisisvitalforclimateprocesses,asitcapturescarbondioxidefromtheairandthenbindscarboninplantsandfurtherinsoilsandharvestedproducts.Cerealsaloneareestimatedtobind3,825Tg(teragrams)or3.825Pg(petagrams)ofcarbondioxideeveryyear,i.e.3.825billionmetrictons.[15] Contents 1Overview 2Photosyntheticmembranesandorganelles 3Light-dependentreactions 3.1Zscheme 3.2Waterphotolysis 4Light-independentreactions 4.1Calvincycle 4.2Carbonconcentratingmechanisms 4.2.1Onland 4.2.2Inwater 5Orderandkinetics 6Efficiency 7Evolution 7.1Symbiosisandtheoriginofchloroplasts 7.2Photosyntheticeukaryoticlineages 7.3Cyanobacteriaandtheevolutionofphotosynthesis 8Experimentalhistory 8.1Discovery 8.2Refinements 8.3Developmentoftheconcept 8.4C3 :C4photosynthesisresearch 9Factors 9.1Lightintensity(irradiance),wavelengthandtemperature 9.2Carbondioxidelevelsandphotorespiration 10Seealso 11References 12Furtherreading 12.1Books 12.2Papers 13Externallinks Overview Photosynthesischangessunlightintochemicalenergy,splitswatertoliberateO2,andfixesCO2intosugar. Mostphotosyntheticorganismsarephotoautotrophs,whichmeansthattheyareabletosynthesizefooddirectlyfromcarbondioxideandwaterusingenergyfromlight.However,notallorganismsusecarbondioxideasasourceofcarbonatomstocarryoutphotosynthesis;photoheterotrophsuseorganiccompounds,ratherthancarbondioxide,asasourceofcarbon.[5]Inplants,algae,andcyanobacteria,photosynthesisreleasesoxygen.Thisoxygenicphotosynthesisisbyfarthemostcommontypeofphotosynthesisusedbylivingorganisms.Althoughtherearesomedifferencesbetweenoxygenicphotosynthesisinplants,algae,andcyanobacteria,theoverallprocessisquitesimilarintheseorganisms.Therearealsomanyvarietiesofanoxygenicphotosynthesis,usedmostlybybacteria,whichconsumecarbondioxidebutdonotreleaseoxygen. Carbondioxideisconvertedintosugarsinaprocesscalledcarbonfixation;photosynthesiscapturesenergyfromsunlighttoconvertcarbondioxideintocarbohydrate.Carbonfixationisanendothermicredoxreaction.Ingeneraloutline,photosynthesisistheoppositeofcellularrespiration:whilephotosynthesisisaprocessofreductionofcarbondioxidetocarbohydrate,cellularrespirationistheoxidationofcarbohydrateorothernutrientstocarbondioxide.Nutrientsusedincellularrespirationincludecarbohydrates,aminoacidsandfattyacids.Thesenutrientsareoxidizedtoproducecarbondioxideandwater,andtoreleasechemicalenergytodrivetheorganism'smetabolism.Photosynthesisandcellularrespirationaredistinctprocesses,astheytakeplacethroughdifferentsequencesofchemicalreactionsandindifferentcellularcompartments. ThegeneralequationforphotosynthesisasfirstproposedbyCornelisvanNielis:[16] CO2carbondioxide+2H2Aelectrondonor+photonslightenergy→[CH2O]carbohydrate+2Aoxidizedelectrondonor+H2Owater Sincewaterisusedastheelectrondonorinoxygenicphotosynthesis,theequationforthisprocessis: CO2carbondioxide+2H2Owater+photonslightenergy→[CH2O]carbohydrate+O2oxygen+H2Owater Thisequationemphasizesthatwaterisbothareactantinthelight-dependentreactionandaproductofthelight-independentreaction,butcancelingnwatermoleculesfromeachsidegivesthenetequation: CO2carbondioxide+H2Owater+photonslightenergy→[CH2O]carbohydrate+O2oxygen Otherprocessessubstituteothercompounds(suchasarsenite)forwaterintheelectron-supplyrole;forexamplesomemicrobesusesunlighttooxidizearsenitetoarsenate:[17]Theequationforthisreactionis: CO2carbondioxide+(AsO3−3)arsenite+photonslightenergy→(AsO3−4)arsenate+COcarbonmonoxide(usedtobuildothercompoundsinsubsequentreactions)[18] Photosynthesisoccursintwostages.Inthefirststage,light-dependentreactionsorlightreactionscapturetheenergyoflightanduseittomakethehydrogencarrierNADPHandtheenergy-storagemoleculeATP.Duringthesecondstage,thelight-independentreactionsusetheseproductstocaptureandreducecarbondioxide. Mostorganismsthatutilizeoxygenicphotosynthesisusevisiblelightforthelight-dependentreactions,althoughatleastthreeuseshortwaveinfraredor,morespecifically,far-redradiation.[19] Someorganismsemployevenmoreradicalvariantsofphotosynthesis.Somearchaeauseasimplermethodthatemploysapigmentsimilartothoseusedforvisioninanimals.Thebacteriorhodopsinchangesitsconfigurationinresponsetosunlight,actingasaprotonpump.Thisproducesaprotongradientmoredirectly,whichisthenconvertedtochemicalenergy.Theprocessdoesnotinvolvecarbondioxidefixationanddoesnotreleaseoxygen,andseemstohaveevolvedseparatelyfromthemorecommontypesofphotosynthesis.[20][21] Photosyntheticmembranesandorganelles Mainarticles:ChloroplastandThylakoid Chloroplastultrastructure:outermembraneintermembranespaceinnermembrane(1+2+3:envelope)stroma(aqueousfluid)thylakoidlumen(insideofthylakoid)thylakoidmembranegranum(stackofthylakoids)thylakoid(lamella)starchribosomeplastidialDNAplastoglobule(dropoflipids) Inphotosyntheticbacteria,theproteinsthatgatherlightforphotosynthesisareembeddedincellmembranes.Initssimplestform,thisinvolvesthemembranesurroundingthecellitself.[22]However,themembranemaybetightlyfoldedintocylindricalsheetscalledthylakoids,[23]orbunchedupintoroundvesiclescalledintracytoplasmicmembranes.[24]Thesestructurescanfillmostoftheinteriorofacell,givingthemembraneaverylargesurfaceareaandthereforeincreasingtheamountoflightthatthebacteriacanabsorb.[23] Inplantsandalgae,photosynthesistakesplaceinorganellescalledchloroplasts.Atypicalplantcellcontainsabout10to100chloroplasts.Thechloroplastisenclosedbyamembrane.Thismembraneiscomposedofaphospholipidinnermembrane,aphospholipidoutermembrane,andanintermembranespace.Enclosedbythemembraneisanaqueousfluidcalledthestroma.Embeddedwithinthestromaarestacksofthylakoids(grana),whicharethesiteofphotosynthesis.Thethylakoidsappearasflatteneddisks.Thethylakoiditselfisenclosedbythethylakoidmembrane,andwithintheenclosedvolumeisalumenorthylakoidspace.Embeddedinthethylakoidmembraneareintegralandperipheralmembraneproteincomplexesofthephotosyntheticsystem. Plantsabsorblightprimarilyusingthepigmentchlorophyll.Thegreenpartofthelightspectrumisnotabsorbedbutisreflectedwhichisthereasonthatmostplantshaveagreencolor.Besideschlorophyll,plantsalsousepigmentssuchascarotenesandxanthophylls.[25]Algaealsousechlorophyll,butvariousotherpigmentsarepresent,suchasphycocyanin,carotenes,andxanthophyllsingreenalgae,phycoerythrininredalgae(rhodophytes)andfucoxanthininbrownalgaeanddiatomsresultinginawidevarietyofcolors. Thesepigmentsareembeddedinplantsandalgaeincomplexescalledantennaproteins.Insuchproteins,thepigmentsarearrangedtoworktogether.Suchacombinationofproteinsisalsocalledalight-harvestingcomplex.[26] Althoughallcellsinthegreenpartsofaplanthavechloroplasts,themajorityofthosearefoundinspeciallyadaptedstructurescalledleaves.Certainspeciesadaptedtoconditionsofstrongsunlightandaridity,suchasmanyEuphorbiaandcactusspecies,havetheirmainphotosyntheticorgansintheirstems.Thecellsintheinteriortissuesofaleaf,calledthemesophyll,cancontainbetween450,000and800,000chloroplastsforeverysquaremillimeterofleaf.Thesurfaceoftheleafiscoatedwithawater-resistantwaxycuticlethatprotectstheleaffromexcessiveevaporationofwateranddecreasestheabsorptionofultravioletorbluelighttominimizeheating.Thetransparentepidermislayerallowslighttopassthroughtothepalisademesophyllcellswheremostofthephotosynthesistakesplace. Light-dependentreactions Mainarticle:Light-dependentreactions Light-dependentreactionsofphotosynthesisatthethylakoidmembrane Inthelight-dependentreactions,onemoleculeofthepigmentchlorophyllabsorbsonephotonandlosesoneelectron.Thiselectronistakenupbyamodifiedformofchlorophyllcalledpheophytin,whichpassestheelectrontoaquinonemolecule,startingtheflowofelectronsdownanelectrontransportchainthatleadstotheultimatereductionofNADPtoNADPH.Inaddition,thiscreatesaprotongradient(energygradient)acrossthechloroplastmembrane,whichisusedbyATPsynthaseinthesynthesisofATP.Thechlorophyllmoleculeultimatelyregainstheelectronitlostwhenawatermoleculeissplitinaprocesscalledphotolysis,whichreleasesadioxygen(O2)moleculeasahigh-energywasteproduct. Theoverallequationforthelight-dependentreactionsundertheconditionsofnon-cyclicelectronflowingreenplantsis:[27] 2H2O+2NADP++3ADP+3Pi+light→2NADPH+2H++3ATP+O2 Notallwavelengthsoflightcansupportphotosynthesis.Thephotosyntheticactionspectrumdependsonthetypeofaccessorypigmentspresent.Forexample,ingreenplants,theactionspectrumresemblestheabsorptionspectrumforchlorophyllsandcarotenoidswithabsorptionpeaksinviolet-blueandredlight.Inredalgae,theactionspectrumisblue-greenlight,whichallowsthesealgaetousetheblueendofthespectrumtogrowinthedeeperwatersthatfilteroutthelongerwavelengths(redlight)usedbyabove-groundgreenplants.Thenon-absorbedpartofthelightspectrumiswhatgivesphotosyntheticorganismstheircolor(e.g.,greenplants,redalgae,purplebacteria)andistheleasteffectiveforphotosynthesisintherespectiveorganisms. Zscheme The"Zscheme" Inplants,light-dependentreactionsoccurinthethylakoidmembranesofthechloroplastswheretheydrivethesynthesisofATPandNADPH.Thelight-dependentreactionsareoftwoforms:cyclicandnon-cyclic. Inthenon-cyclicreaction,thephotonsarecapturedinthelight-harvestingantennacomplexesofphotosystemIIbychlorophyllandotheraccessorypigments(seediagramatright).Theabsorptionofaphotonbytheantennacomplexloosensanelectronbyaprocesscalledphotoinducedchargeseparation.TheantennasystemisatthecoreofthechlorophyllmoleculeofthephotosystemIIreactioncenter.Thatloosenedelectronistakenupbytheprimaryelectron-acceptormolecule,pheophytin.Astheelectronsareshuttledthroughanelectrontransportchain(theso-calledZ-schemeshowninthediagram),achemiosmoticpotentialisgeneratedbypumpingprotoncations(H+)acrossthemembraneandintothethylakoidspace.AnATPsynthaseenzymeusesthatchemiosmoticpotentialtomakeATPduringphotophosphorylation,whereasNADPHisaproductoftheterminalredoxreactionintheZ-scheme.TheelectronentersachlorophyllmoleculeinPhotosystemI.Thereitisfurtherexcitedbythelightabsorbedbythatphotosystem.Theelectronisthenpassedalongachainofelectronacceptorstowhichittransferssomeofitsenergy.Theenergydeliveredtotheelectronacceptorsisusedtomovehydrogenionsacrossthethylakoidmembraneintothelumen.Theelectroniseventuallyusedtoreducetheco-enzymeNADPwithaH+toNADPH(whichhasfunctionsinthelight-independentreaction);atthatpoint,thepathofthatelectronends. Thecyclicreactionissimilartothatofthenon-cyclicbutdiffersinthatitgeneratesonlyATP,andnoreducedNADP(NADPH)iscreated.ThecyclicreactiontakesplaceonlyatphotosystemI.Oncetheelectronisdisplacedfromthephotosystem,theelectronispasseddowntheelectronacceptormoleculesandreturnstophotosystemI,fromwhereitwasemitted,hencethenamecyclicreaction. Waterphotolysis Mainarticles:PhotodissociationandOxygenevolution Linearelectrontransportthroughaphotosystemwillleavethereactioncenterofthatphotosystemoxidized.Elevatinganotherelectronwillfirstrequirere-reductionofthereactioncenter.Theexcitedelectronslostfromthereactioncenter(P700)ofphotosystemIarereplacedbytransferfromplastocyanin,whoseelectronscomefromelectrontransportthroughphotosystemII.PhotosystemII,asthefirststepoftheZ-scheme,requiresanexternalsourceofelectronstoreduceitsoxidized,high-energychlorophyllareactioncenter,calledP680+.[4]Thesourceofelectronsforphotosynthesisingreenplantsandcyanobacteriaiswater.Twowatermoleculesareoxidizedbytheenergyoffoursuccessivecharge-separationreactionsofphotosystemIItoyieldamoleculeofdiatomicoxygenandfourhydrogenions.Theelectronsyieldedaretransferredtoaredox-activetyrosineresiduethatisoxidizedbytheenergyofP680+.ThisresetstheabilityofP680toabsorbanotherphotonandreleaseanotherphoto-dissociatedelectron.TheoxidationofwateriscatalyzedinphotosystemIIbyaredox-activestructurethatcontainsfourmanganeseionsandacalciumion;thisoxygen-evolvingcomplexbindstwowatermoleculesandcontainsthefouroxidizingequivalentsthatareusedtodrivethewater-oxidizingreaction(Kok'sS-statediagrams).PhotosystemIIistheonlyknownbiologicalenzymethatcarriesouttheoxidationofwater.[4]ThehydrogenionsarereleasedinthethylakoidlumenandthereforecontributetothetransmembranechemiosmoticpotentialthatleadstoATPsynthesis.Oxygenisawasteproductoflight-dependentreactions,butthemajorityoforganismsonEarthuseoxygenanditsenergyforcellularrespiration,includingphotosyntheticorganisms.[28][29] Light-independentreactions Calvincycle Mainarticles:Light-independentreactionsandCarbonfixation Inthelight-independent(or"dark")reactions,theenzymeRuBisCOcapturesCO2fromtheatmosphereand,inaprocesscalledtheCalvincycle,usesthenewlyformedNADPHandreleasesthree-carbonsugars,whicharelatercombinedtoformsucroseandstarch.Theoverallequationforthelight-independentreactionsingreenplantsis[27]: 128 3CO2+9ATP+6NADPH+6H+→C3H6O3-phosphate+9ADP+8Pi+6NADP++3H2O OverviewoftheCalvincycleandcarbonfixation Carbonfixationproducesthethree-carbonsugarintermediate,whichisthenconvertedintothefinalcarbohydrateproducts.Thesimplecarbonsugarsproducedbyphotosynthesisarethenusedtoformotherorganiccompounds,suchasthebuildingmaterialcellulose,theprecursorsforlipidandaminoacidbiosynthesis,orasafuelincellularrespiration.Thelatteroccursnotonlyinplantsbutalsoinanimalswhenthecarbonandenergyfromplantsispassedthroughafoodchain. Thefixationorreductionofcarbondioxideisaprocessinwhichcarbondioxidecombineswithafive-carbonsugar,ribulose1,5-bisphosphate,toyieldtwomoleculesofathree-carboncompound,glycerate3-phosphate,alsoknownas3-phosphoglycerate.Glycerate3-phosphate,inthepresenceofATPandNADPHproducedduringthelight-dependentstages,isreducedtoglyceraldehyde3-phosphate.Thisproductisalsoreferredtoas3-phosphoglyceraldehyde(PGAL)or,moregenerically,astriosephosphate.Most(5outof6molecules)oftheglyceraldehyde3-phosphateproducedareusedtoregenerateribulose1,5-bisphosphatesotheprocesscancontinue.Thetriosephosphatesnotthus"recycled"oftencondensetoformhexosephosphates,whichultimatelyyieldsucrose,starchandcellulose.Thesugarsproducedduringcarbonmetabolismyieldcarbonskeletonsthatcanbeusedforothermetabolicreactionsliketheproductionofaminoacidsandlipids. Carbonconcentratingmechanisms Onland Mainarticles:C4carbonfixation,CAMphotosynthesis,andAlarmphotosynthesis OverviewofC4carbonfixation Inhotanddryconditions,plantsclosetheirstomatatopreventwaterloss.Undertheseconditions,CO2willdecreaseandoxygengas,producedbythelightreactionsofphotosynthesis,willincrease,causinganincreaseofphotorespirationbytheoxygenaseactivityofribulose-1,5-bisphosphatecarboxylase/oxygenaseanddecreaseincarbonfixation.SomeplantshaveevolvedmechanismstoincreasetheCO2concentrationintheleavesundertheseconditions.[30] PlantsthatusetheC4carbonfixationprocesschemicallyfixcarbondioxideinthecellsofthemesophyllbyaddingittothethree-carbonmoleculephosphoenolpyruvate(PEP),areactioncatalyzedbyanenzymecalledPEPcarboxylase,creatingthefour-carbonorganicacidoxaloaceticacid.OxaloaceticacidormalatesynthesizedbythisprocessisthentranslocatedtospecializedbundlesheathcellswheretheenzymeRuBisCOandotherCalvincycleenzymesarelocated,andwhereCO2releasedbydecarboxylationofthefour-carbonacidsisthenfixedbyRuBisCOactivitytothethree-carbon3-phosphoglycericacids.ThephysicalseparationofRuBisCOfromtheoxygen-generatinglightreactionsreducesphotorespirationandincreasesCO2fixationand,thus,thephotosyntheticcapacityoftheleaf.[31]C4plantscanproducemoresugarthanC3plantsinconditionsofhighlightandtemperature.ManyimportantcropplantsareC4plants,includingmaize,sorghum,sugarcane,andmillet.PlantsthatdonotusePEP-carboxylaseincarbonfixationarecalledC3plantsbecausetheprimarycarboxylationreaction,catalyzedbyRuBisCO,producesthethree-carbon3-phosphoglycericacidsdirectlyintheCalvin-Bensoncycle.Over90%ofplantsuseC3carbonfixation,comparedto3%thatuseC4carbonfixation;[32]however,theevolutionofC4inover60plantlineagesmakesitastrikingexampleofconvergentevolution.[30]C2photosynthesis,whichinvolvescarbon-concentrationbyselectivebreakdownofphotorespiratoryglycine,isbothanevolutionaryprecursortoC4andausefulCCMinitsownright.[33] Xerophytes,suchascactiandmostsucculents,alsousePEPcarboxylasetocapturecarbondioxideinaprocesscalledCrassulaceanacidmetabolism(CAM).IncontrasttoC4metabolism,whichspatiallyseparatestheCO2fixationtoPEPfromtheCalvincycle,CAMtemporallyseparatesthesetwoprocesses.CAMplantshaveadifferentleafanatomyfromC3plants,andfixtheCO2atnight,whentheirstomataareopen.CAMplantsstoretheCO2mostlyintheformofmalicacidviacarboxylationofphosphoenolpyruvatetooxaloacetate,whichisthenreducedtomalate.DecarboxylationofmalateduringthedayreleasesCO2insidetheleaves,thusallowingcarbonfixationto3-phosphoglyceratebyRuBisCO.CAMisusedby16,000speciesofplants.[34] Calciumoxalateaccumulatingplants,suchasAmaranthushybridusandColobanthusquitensis,showavariationofphotosynthesiswherecalciumoxalatecrystalsfunctionasdynamiccarbonpools,supplyingcarbondioxide(CO2)tophotosyntheticcellswhenstomataarepartiallyortotallyclosed.ThisprocesswasnamedAlarmphotosynthesis.Understressconditions(e.g.waterdeficit)oxalatereleasedfromcalciumoxalatecrystalsisconvertedtoCO2byanoxalateoxidaseenzymeandtheproducedCO2cansupporttheCalvincyclereactions.Reactivehydrogenperoxide(H2O2),thebyproductofoxalateoxidasereaction,canbeneutralizedbycatalase.Alarmphotosynthesisrepresentsaphotosyntheticvarianttobeaddedtothewell-knownC4andCAMpathways.However,alarmphotosynthesis,incontrasttothesepathways,operatesasabiochemicalpumpthatcollectscarbonfromtheorganinterior(orfromthesoil)andnotfromtheatmosphere.[35][36] Inwater Cyanobacteriapossesscarboxysomes,whichincreasetheconcentrationofCO2aroundRuBisCOtoincreasetherateofphotosynthesis.Anenzyme,carbonicanhydrase,locatedwithinthecarboxysomereleasesCO2fromdissolvedhydrocarbonateions(HCO−3).BeforetheCO2diffusesoutitisquicklyspongedupbyRuBisCO,whichisconcentratedwithinthecarboxysomes.HCO−3ionsaremadefromCO2outsidethecellbyanothercarbonicanhydraseandareactivelypumpedintothecellbyamembraneprotein.Theycannotcrossthemembraneastheyarecharged,andwithinthecytosoltheyturnbackintoCO2veryslowlywithoutthehelpofcarbonicanhydrase.ThiscausestheHCO−3ionstoaccumulatewithinthecellfromwheretheydiffuseintothecarboxysomes.[37]PyrenoidsinalgaeandhornwortsalsoacttoconcentrateCO2aroundRuBisCO.[38] Orderandkinetics Theoverallprocessofphotosynthesistakesplaceinfourstages:[14] Stage Description Timescale 1 Energytransferinantennachlorophyll(thylakoidmembranes) Femtosecondtopicosecond 2 Transferofelectronsinphotochemicalreactions(thylakoidmembranes) Picosecondtonanosecond 3 ElectrontransportchainandATPsynthesis(thylakoidmembranes) Microsecondtomillisecond 4 Carbonfixationandexportofstableproducts Millisecondtosecond Efficiency Mainarticle:Photosyntheticefficiency Plantsusuallyconvertlightintochemicalenergywithaphotosyntheticefficiencyof3–6%.[39][40] Absorbedlightthatisunconvertedisdissipatedprimarilyasheat,withasmallfraction(1–2%)[41]re-emittedaschlorophyllfluorescenceatlonger(redder)wavelengths.Thisfactallowsmeasurementofthelightreactionofphotosynthesisbyusingchlorophyllfluorometers.[41] Actualplants'photosyntheticefficiencyvarieswiththefrequencyofthelightbeingconverted,lightintensity,temperatureandproportionofcarbondioxideintheatmosphere,andcanvaryfrom0.1%to8%.[42]Bycomparison,solarpanelsconvertlightintoelectricenergyatanefficiencyofapproximately6–20%formass-producedpanels,andabove40%inlaboratorydevices. Scientistsarestudyingphotosynthesisinhopesofdevelopingplantswithincreasedyield.[40] Theefficiencyofbothlightanddarkreactionscanbemeasuredbuttherelationshipbetweenthetwocanbecomplex.[43]Forexample,theATPandNADPHenergymolecules,createdbythelightreaction,canbeusedforcarbonfixationorforphotorespirationinC3plants.[43]Electronsmayalsoflowtootherelectronsinks.[44][45][46]Forthisreason,itisnotuncommonforauthorstodifferentiatebetweenworkdoneundernon-photorespiratoryconditionsandunderphotorespiratoryconditions.[47][48][49] ChlorophyllfluorescenceofphotosystemIIcanmeasurethelightreaction,andinfraredgasanalyzerscanmeasurethedarkreaction.[50]Itisalsopossibletoinvestigatebothatthesametimeusinganintegratedchlorophyllfluorometerandgasexchangesystem,orbyusingtwoseparatesystemstogether.[51]InfraredgasanalyzersandsomemoisturesensorsaresensitiveenoughtomeasurethephotosyntheticassimilationofCO2,andofΔH2Ousingreliablemethods[52]CO2iscommonlymeasuredinμmols/(m2/s),partspermillionorvolumepermillionandH2Oiscommonlymeasuredinmmol/(m2/s)orinmbars.[52]BymeasuringCO2assimilation,ΔH2O,leaftemperature,barometricpressure,leafarea,andphotosyntheticallyactiveradiationorPAR,itbecomespossibletoestimate,"A"orcarbonassimilation,"E"ortranspiration,"gs"orstomatalconductance,andCiorintracellularCO2.[52]However,itismorecommontousedchlorophyllfluorescenceforplantstressmeasurement,whereappropriate,becausethemostcommonlyusedparametersFV/FMandY(II)orF/FM'canbemeasuredinafewseconds,allowingtheinvestigationoflargerplantpopulations.[49] GasexchangesystemsthatoffercontrolofCO2levels,aboveandbelowambient,allowthecommonpracticeofmeasurementofA/Cicurves,atdifferentCO2levels,tocharacterizeaplant'sphotosyntheticresponse.[52] Integratedchlorophyllfluorometer–gasexchangesystemsallowamoreprecisemeasureofphotosyntheticresponseandmechanisms.[50][51]WhilestandardgasexchangephotosynthesissystemscanmeasureCi,orsubstomatalCO2levels,theadditionofintegratedchlorophyllfluorescencemeasurementsallowsamoreprecisemeasurementofCCtoreplaceCi.[51][53]TheestimationofCO2atthesiteofcarboxylationinthechloroplast,orCC,becomespossiblewiththemeasurementofmesophyllconductanceorgmusinganintegratedsystem.[50][51][54] Photosynthesismeasurementsystemsarenotdesignedtodirectlymeasuretheamountoflightabsorbedbytheleaf.Butanalysisofchlorophyll-fluorescence,P700-andP515-absorbanceandgasexchangemeasurementsrevealdetailedinformationaboute.g.thephotosystems,quantumefficiencyandtheCO2assimilationrates.Withsomeinstruments,evenwavelength-dependencyofthephotosyntheticefficiencycanbeanalyzed.[55] Aphenomenonknownasquantumwalkincreasestheefficiencyoftheenergytransportoflightsignificantly.Inthephotosyntheticcellofanalga,bacterium,orplant,therearelight-sensitivemoleculescalledchromophoresarrangedinanantenna-shapedstructurenamedaphotocomplex.Whenaphotonisabsorbedbyachromophore,itisconvertedintoaquasiparticlereferredtoasanexciton,whichjumpsfromchromophoretochromophoretowardsthereactioncenterofthephotocomplex,acollectionofmoleculesthattrapsitsenergyinachemicalformaccessibletothecell'smetabolism.Theexciton'swavepropertiesenableittocoverawiderareaandtryoutseveralpossiblepathssimultaneously,allowingittoinstantaneously"choose"themostefficientroute,whereitwillhavethehighestprobabilityofarrivingatitsdestinationintheminimumpossibletime. Becausethatquantumwalkingtakesplaceattemperaturesfarhigherthanquantumphenomenausuallyoccur,itisonlypossibleoververyshortdistances.Obstaclesintheformofdestructiveinterferencecausetheparticletoloseitswavepropertiesforaninstantbeforeitregainsthemonceagainafteritisfreedfromitslockedpositionthroughaclassic"hop".Themovementoftheelectrontowardsthephotocenteristhereforecoveredinaseriesofconventionalhopsandquantumwalks.[56][57][58] Evolution Mainarticle:Evolutionofphotosynthesis LifetimelineThisbox:viewtalkedit−4500 —–—–−4000 —–—–−3500 —–—–−3000 —–—–−2500 —–—–−2000 —–—–−1500 —–—–−1000 —–—–−500 —–—–0 — Water Single-celledlife Photosynthesis Eukaryotes Multicellularlife Plants ArthropodsMolluscsFlowersDinosaurs MammalsBirdsPrimatesHadeanArcheanProterozoicPhanerozoic ←Earthformed←Earliestwater←LUCA←Earliestfossils←LHBmeteorites←Earliestoxygen←Pongolaglaciation*←Atmosphericoxygen←Huronianglaciation*←Sexualreproduction←Earliestmulticellularlife←Earliestfungi←Earliestplants←Earliestanimals←Cryogenianiceage*←Ediacaranbiota←Cambrianexplosion←Andeanglaciation*←Earliesttetrapods←Karooiceage*←Earliestapes/humans←Quaternaryiceage*(millionyearsago)*IceAges Earlyphotosyntheticsystems,suchasthoseingreenandpurplesulfurandgreenandpurplenonsulfurbacteria,arethoughttohavebeenanoxygenic,andusedvariousothermoleculesthanwateraselectrondonors.Greenandpurplesulfurbacteriaarethoughttohaveusedhydrogenandsulfuraselectrondonors.Greennonsulfurbacteriausedvariousaminoandotherorganicacidsasanelectrondonor.Purplenonsulfurbacteriausedavarietyofnonspecificorganicmolecules.TheuseofthesemoleculesisconsistentwiththegeologicalevidencethatEarth'searlyatmospherewashighlyreducingatthattime.[59] Fossilsofwhatarethoughttobefilamentousphotosyntheticorganismshavebeendatedat3.4billionyearsold.[60][61]Morerecentstudiesalsosuggestthatphotosynthesismayhavebegunabout3.4billionyearsago.[62][63] ThemainsourceofoxygenintheEarth'satmospherederivesfromoxygenicphotosynthesis,andthefirstappearanceofthishigh-energymoleculeissometimesreferredtoastheoxygencatastrophe.Geologicalevidencesuggeststhatoxygenicphotosynthesis,suchasthatincyanobacteria,becameimportantduringthePaleoproterozoiceraaround2billionyearsago.Modernphotosynthesisinplantsandmostphotosyntheticprokaryotesisoxygenic,usingwaterasanelectrondonor,whichisoxidizedtomolecularoxygeninthephotosyntheticreactioncenter. Symbiosisandtheoriginofchloroplasts Plantcellswithvisiblechloroplasts(fromamoss,Plagiomniumaffine) Severalgroupsofanimalshaveformedsymbioticrelationshipswithphotosyntheticalgae.Thesearemostcommonincorals,spongesandseaanemones.Itispresumedthatthisisduetotheparticularlysimplebodyplansandlargesurfaceareasoftheseanimalscomparedtotheirvolumes.[64]Inaddition,afewmarinemollusksElysiaviridisandElysiachloroticaalsomaintainasymbioticrelationshipwithchloroplaststheycapturefromthealgaeintheirdietandthenstoreintheirbodies(seeKleptoplasty).Thisallowsthemolluskstosurvivesolelybyphotosynthesisforseveralmonthsatatime.[65][66]Someofthegenesfromtheplantcellnucleushaveevenbeentransferredtotheslugs,sothatthechloroplastscanbesuppliedwithproteinsthattheyneedtosurvive.[67] Anevencloserformofsymbiosismayexplaintheoriginofchloroplasts.Chloroplastshavemanysimilaritieswithphotosyntheticbacteria,includingacircularchromosome,prokaryotic-typeribosome,andsimilarproteinsinthephotosyntheticreactioncenter.[68][69]Theendosymbiotictheorysuggeststhatphotosyntheticbacteriawereacquired(byendocytosis)byearlyeukaryoticcellstoformthefirstplantcells.Therefore,chloroplastsmaybephotosyntheticbacteriathatadaptedtolifeinsideplantcells.Likemitochondria,chloroplastspossesstheirownDNA,separatefromthenuclearDNAoftheirplanthostcellsandthegenesinthischloroplastDNAresemblethosefoundincyanobacteria.[70]DNAinchloroplastscodesforredoxproteinssuchasthosefoundinthephotosyntheticreactioncenters.TheCoRRHypothesisproposesthatthisco-locationofgeneswiththeirgeneproductsisrequiredforredoxregulationofgeneexpression,andaccountsforthepersistenceofDNAinbioenergeticorganelles.[71] Photosyntheticeukaryoticlineages Symbioticandkleptoplasticorganismsexcluded: Theglaucophytesandtheredandgreenalgae—cladeArchaeplastida(uni-andmulticellular) Thecryptophytes—cladeCryptista(unicellular) Thehaptophytes—cladeHaptista(unicellular) ThedinoflagellatesandchromeridsinthesuperphylumMyzozoa—cladeAlveolata(unicellular) Theochrophytes—cladeHeterokonta(uni-andmulticellular) Thechlorarachniophytesand3speciesofPaulinellainthephylumCercozoa—cladeRhizaria(unicellular) Theeuglenids—cladeExcavata(unicellular) Exceptfortheeuglenids,whicharefoundwithintheExcavata,allofthesebelongtotheDiaphoretickes.ArchaeplastidaandthephotosyntheticPaulinellagottheirplastids,whicharesurroundedbytwomembranes,throughprimaryendosymbiosisintwoseparateevents,byengulfingacyanobacterium.Theplastidsinalltheothergroupshaveeitheraredorgreenalgalorigin,andarereferredtoasthe"redlineages"andthe"greenlineages".Indinoflagellatesandeuglenidstheplastidsaresurroundedbythreemembranes,andintheremaininglinesbyfour.Anucleomorph,remnantsoftheoriginalalgalnucleuslocatedbetweentheinnerandoutermembranesoftheplastid,ispresentinthecryptophytes(fromaredalga)andchlorarachniophytes(fromagreenalga).[72] Somedinoflaggelatesthatlosttheirphotosyntheticabilitylaterregaineditagainthroughnewendosymbioticeventswithdifferentalgae. Whileabletoperformphotosynthesis,manyoftheseeukaryoticgroupsaremixotrophsandpracticeheterotrophytovariousdegrees. Cyanobacteriaandtheevolutionofphotosynthesis Thebiochemicalcapacitytousewaterasthesourceforelectronsinphotosynthesisevolvedonce,inacommonancestorofextantcyanobacteria(formerlycalledblue-greenalgae),whicharetheonlyprokaryotesperformingoxygenicphotosynthesis.ThegeologicalrecordindicatesthatthistransformingeventtookplaceearlyinEarth'shistory,atleast2450–2320millionyearsago(Ma),and,itisspeculated,muchearlier.[73][74]BecausetheEarth'satmospherecontainedalmostnooxygenduringtheestimateddevelopmentofphotosynthesis,itisbelievedthatthefirstphotosyntheticcyanobacteriadidnotgenerateoxygen.[75]AvailableevidencefromgeobiologicalstudiesofArchean(>2500Ma)sedimentaryrocksindicatesthatlifeexisted3500Ma,butthequestionofwhenoxygenicphotosynthesisevolvedisstillunanswered.Aclearpaleontologicalwindowoncyanobacterialevolutionopenedabout2000Ma,revealinganalready-diversebiotaofcyanobacteria.CyanobacteriaremainedtheprincipalprimaryproducersofoxygenthroughouttheProterozoicEon(2500–543Ma),inpartbecausetheredoxstructureoftheoceansfavoredphotoautotrophscapableofnitrogenfixation.[citationneeded]GreenalgaejoinedcyanobacteriaasthemajorprimaryproducersofoxygenoncontinentalshelvesneartheendoftheProterozoic,butonlywiththeMesozoic(251–66Ma)radiationsofdinoflagellates,coccolithophorids,anddiatomsdidtheprimaryproductionofoxygeninmarineshelfwaterstakemodernform.Cyanobacteriaremaincriticaltomarineecosystemsasprimaryproducersofoxygeninoceanicgyres,asagentsofbiologicalnitrogenfixation,and,inmodifiedform,astheplastidsofmarinealgae.[76] Experimentalhistory Discovery Althoughsomeofthestepsinphotosynthesisarestillnotcompletelyunderstood,theoverallphotosyntheticequationhasbeenknownsincethe19thcentury. PortraitofJanBaptistvanHelmontbyMaryBeale,c.1674 JanvanHelmontbegantheresearchoftheprocessinthemid-17thcenturywhenhecarefullymeasuredthemassofthesoilusedbyaplantandthemassoftheplantasitgrew.Afternoticingthatthesoilmasschangedverylittle,hehypothesizedthatthemassofthegrowingplantmustcomefromthewater,theonlysubstanceheaddedtothepottedplant.Hishypothesiswaspartiallyaccurate–muchofthegainedmasscomesfromcarbondioxideaswellaswater.However,thiswasasignalingpointtotheideathatthebulkofaplant'sbiomasscomesfromtheinputsofphotosynthesis,notthesoilitself. JosephPriestley,achemistandminister,discoveredthatwhenheisolatedavolumeofairunderaninvertedjarandburnedacandleinit(whichgaveoffCO2),thecandlewouldburnoutveryquickly,muchbeforeitranoutofwax.Hefurtherdiscoveredthatamousecouldsimilarly"injure"air.Hethenshowedthattheairthathadbeen"injured"bythecandleandthemousecouldberestoredbyaplant.[77] In1779,JanIngenhouszrepeatedPriestley'sexperiments.Hediscoveredthatitwastheinfluenceofsunlightontheplantthatcouldcauseittoreviveamouseinamatterofhours.[77][78] In1796,JeanSenebier,aSwisspastor,botanist,andnaturalist,demonstratedthatgreenplantsconsumecarbondioxideandreleaseoxygenundertheinfluenceoflight.Soonafterward,Nicolas-ThéodoredeSaussureshowedthattheincreaseinmassoftheplantasitgrowscouldnotbedueonlytouptakeofCO2butalsototheincorporationofwater.Thus,thebasicreactionbywhichphotosynthesisisusedtoproducefood(suchasglucose)wasoutlined.[79] Refinements CornelisVanNielmadekeydiscoveriesexplainingthechemistryofphotosynthesis.Bystudyingpurplesulfurbacteriaandgreenbacteriahewasthefirsttodemonstratethatphotosynthesisisalight-dependentredoxreaction,inwhichhydrogenreduces(donatesitsatomsaselectronsandprotonsto)carbondioxide. RobertEmersondiscoveredtwolightreactionsbytestingplantproductivityusingdifferentwavelengthsoflight.Withtheredalone,thelightreactionsweresuppressed.Whenblueandredwerecombined,theoutputwasmuchmoresubstantial.Thus,thereweretwophotosystems,oneabsorbingupto600 nmwavelengths,theotherupto700 nm.TheformerisknownasPSII,thelatterisPSI.PSIcontainsonlychlorophyll"a",PSIIcontainsprimarilychlorophyll"a"withmostoftheavailablechlorophyll"b",amongotherpigments.Theseincludephycobilins,whicharetheredandbluepigmentsofredandbluealgae,respectively,andfucoxantholforbrownalgaeanddiatoms.TheprocessismostproductivewhentheabsorptionofquantaisequalinbothPSIIandPSI,assuringthatinputenergyfromtheantennacomplexisdividedbetweenthePSIandPSIIsystems,whichinturnpowersthephotochemistry.[14] RobertHillthoughtthatacomplexofreactionsconsistedofanintermediatetocytochromeb6(nowaplastoquinone),andthatanotherwasfromcytochromeftoastepinthecarbohydrate-generatingmechanisms.Thesearelinkedbyplastoquinone,whichdoesrequireenergytoreducecytochromef.FurtherexperimentstoprovethattheoxygendevelopedduringthephotosynthesisofgreenplantscamefromwaterwereperformedbyHillin1937and1939.Heshowedthatisolatedchloroplastsgiveoffoxygeninthepresenceofunnaturalreducingagentslikeironoxalate,ferricyanideorbenzoquinoneafterexposuretolight.IntheHillreaction:[80] 2H2O+2A+(light,chloroplasts)→2AH2+O2 Aistheelectronacceptor.Therefore,inlight,theelectronacceptorisreducedandoxygenisevolved.SamuelRubenandMartinKamenusedradioactiveisotopestodeterminethattheoxygenliberatedinphotosynthesiscamefromthewater. MelvinCalvinworksinhisphotosynthesislaboratory. MelvinCalvinandAndrewBenson,alongwithJamesBassham,elucidatedthepathofcarbonassimilation(thephotosyntheticcarbonreductioncycle)inplants.ThecarbonreductioncycleisknownastheCalvincycle,butmanyscientistsrefertoitastheCalvin-Benson,Benson-Calvin,orevenCalvin-Benson-Bassham(orCBB)Cycle. NobelPrize-winningscientistRudolphA.Marcuswaslaterabletodiscoverthefunctionandsignificanceoftheelectrontransportchain. OttoHeinrichWarburgandDeanBurkdiscoveredtheI-quantumphotosynthesisreactionthatsplitsCO2,activatedbytherespiration.[81] In1950,firstexperimentalevidencefortheexistenceofphotophosphorylationinvivowaspresentedbyOttoKandlerusingintactChlorellacellsandinterpretinghisfindingsaslight-dependentATPformation.[82] In1954,DanielI.Arnonetal.discoveredphotophosphorylationinvitroinisolatedchloroplastswiththehelpofP32.[83][84] LouisN.M.DuysensandJanAmeszdiscoveredthatchlorophyll"a"willabsorbonelight,oxidizecytochromef,whilechlorophyll"a"(andotherpigments)willabsorbanotherlightbutwillreducethissameoxidizedcytochrome,statingthetwolightreactionsareinseries. Developmentoftheconcept In1893,CharlesReidBarnesproposedtwoterms,photosyntaxandphotosynthesis,forthebiologicalprocessofsynthesisofcomplexcarboncompoundsoutofcarbonicacid,inthepresenceofchlorophyll,undertheinfluenceoflight.Overtime,thetermphotosynthesiscameintocommonusage.Laterdiscoveryofanoxygenicphotosyntheticbacteriaandphotophosphorylationnecessitatedredefinitionoftheterm.[85] C3 :C4photosynthesisresearch Inthelate1940sattheUniversityofCalifornia,Berkeley,thedetailsofphotosyntheticcarbonmetabolismweresortedoutbythechemistsMelvinCalvin,AndrewBenson,JamesBasshamandascoreofstudentsandresearchersutilizingthecarbon-14isotopeandpaperchromatographytechniques.[86]ThepathwayofCO2fixationbythealgaeChlorellainafractionofasecondinlightresultedina3carbonmoleculecalledphosphoglycericacid(PGA).Forthatoriginalandground-breakingwork,aNobelPrizeinChemistrywasawardedtoMelvinCalvinin1961.Inparallel,plantphysiologistsstudiedleafgasexchangesusingthenewmethodofinfraredgasanalysisandaleafchamberwherethenetphotosyntheticratesrangedfrom10to13μmolCO2·m−2·s−1,withtheconclusionthatallterrestrialplantshavethesamephotosyntheticcapacities,thatarelightsaturatedatlessthan50%ofsunlight.[87][88] Laterin1958–1963atCornellUniversity,fieldgrownmaizewasreportedtohavemuchgreaterleafphotosyntheticratesof40μmolCO2·m−2·s−1andnotbesaturatedatnearfullsunlight.[89][90]Thishigherrateinmaizewasalmostdoubleofthoseobservedinotherspeciessuchaswheatandsoybean,indicatingthatlargedifferencesinphotosynthesisexistamonghigherplants.AttheUniversityofArizona,detailedgasexchangeresearchonmorethan15speciesofmonocotanddicotuncoveredforthefirsttimethatdifferencesinleafanatomyarecrucialfactorsindifferentiatingphotosyntheticcapacitiesamongspecies.[91][92]Intropicalgrasses,includingmaize,sorghum,sugarcane,Bermudagrassandinthedicotamaranthus,leafphotosyntheticrateswerearound38−40μmolCO2·m−2·s−1,andtheleaveshavetwotypesofgreencells,i.e.outerlayerofmesophyllcellssurroundingatightlypackedcholorophyllousvascularbundlesheathcells.ThistypeofanatomywastermedKranzanatomyinthe19thcenturybythebotanistGottliebHaberlandtwhilestudyingleafanatomyofsugarcane.[93]PlantspecieswiththegreatestphotosyntheticratesandKranzanatomyshowednoapparentphotorespiration,verylowCO2compensationpoint,highoptimumtemperature,highstomatalresistancesandlowermesophyllresistancesforgasdiffusionandratesneversaturatedatfullsunlight.[94]TheresearchatArizonawasdesignatedaCitationClassicin1986.[92]ThesespecieswerelatertermedC4plantsasthefirststablecompoundofCO2fixationinlighthas4carbonsasmalateandaspartate.[95][96][97]OtherspeciesthatlackKranzanatomyweretermedC3typesuchascottonandsunflower,asthefirststablecarboncompoundisthe3-carbonPGA.At1000ppmCO2inmeasuringair,boththeC3andC4plantshadsimilarleafphotosyntheticratesaround60μmolCO2·m−2·s−1indicatingthesuppressionofphotorespirationinC3plants.[91][92] Factors Theleafistheprimarysiteofphotosynthesisinplants. Therearethreemainfactorsaffectingphotosynthesis[clarificationneeded]andseveralcorollaryfactors.Thethreemainare:[citationneeded] Lightirradianceandwavelength Carbondioxideconcentration Temperature. Totalphotosynthesisislimitedbyarangeofenvironmentalfactors.Theseincludetheamountoflightavailable,theamountofleafareaaplanthastocapturelight(shadingbyotherplantsisamajorlimitationofphotosynthesis),therateatwhichcarbondioxidecanbesuppliedtothechloroplaststosupportphotosynthesis,theavailabilityofwater,andtheavailabilityofsuitabletemperaturesforcarryingoutphotosynthesis.[98] Lightintensity(irradiance),wavelengthandtemperature Seealso:PI(photosynthesis-irradiance)curve Absorbancespectraoffreechlorophylla(blue)andb(red)inasolvent.Theactionspectraofchlorophyllmoleculesareslightlymodifiedinvivodependingonspecificpigment–proteininteractions. Theprocessofphotosynthesisprovidesthemaininputoffreeenergyintothebiosphere,andisoneoffourmainwaysinwhichradiationisimportantforplantlife.[99] Theradiationclimatewithinplantcommunitiesisextremelyvariable,inbothtimeandspace. Intheearly20thcentury,FrederickBlackmanandGabrielleMatthaeiinvestigatedtheeffectsoflightintensity(irradiance)andtemperatureontherateofcarbonassimilation. Atconstanttemperature,therateofcarbonassimilationvarieswithirradiance,increasingastheirradianceincreases,butreachingaplateauathigherirradiance. Atlowirradiance,increasingthetemperaturehaslittleinfluenceontherateofcarbonassimilation.Atconstanthighirradiance,therateofcarbonassimilationincreasesasthetemperatureisincreased. Thesetwoexperimentsillustrateseveralimportantpoints:First,itisknownthat,ingeneral,photochemicalreactionsarenotaffectedbytemperature.However,theseexperimentsclearlyshowthattemperatureaffectstherateofcarbonassimilation,sotheremustbetwosetsofreactionsinthefullprocessofcarbonassimilation.Thesearethelight-dependent'photochemical'temperature-independentstage,andthelight-independent,temperature-dependentstage.Second,Blackman'sexperimentsillustratetheconceptoflimitingfactors.Anotherlimitingfactoristhewavelengthoflight.Cyanobacteria,whichresideseveralmetersunderwater,cannotreceivethecorrectwavelengthsrequiredtocausephotoinducedchargeseparationinconventionalphotosyntheticpigments.Tocombatthisproblem,aseriesofproteinswithdifferentpigmentssurroundthereactioncenter.Thisunitiscalledaphycobilisome.[clarificationneeded] Carbondioxidelevelsandphotorespiration Photorespiration Ascarbondioxideconcentrationsrise,therateatwhichsugarsaremadebythelight-independentreactionsincreasesuntillimitedbyotherfactors.RuBisCO,theenzymethatcapturescarbondioxideinthelight-independentreactions,hasabindingaffinityforbothcarbondioxideandoxygen.Whentheconcentrationofcarbondioxideishigh,RuBisCOwillfixcarbondioxide.However,ifthecarbondioxideconcentrationislow,RuBisCOwillbindoxygeninsteadofcarbondioxide.Thisprocess,calledphotorespiration,usesenergy,butdoesnotproducesugars. RuBisCOoxygenaseactivityisdisadvantageoustoplantsforseveralreasons: Oneproductofoxygenaseactivityisphosphoglycolate(2carbon)insteadof3-phosphoglycerate(3carbon).PhosphoglycolatecannotbemetabolizedbytheCalvin-Bensoncycleandrepresentscarbonlostfromthecycle.Ahighoxygenaseactivity,therefore,drainsthesugarsthatarerequiredtorecycleribulose5-bisphosphateandforthecontinuationoftheCalvin-Bensoncycle. Phosphoglycolateisquicklymetabolizedtoglycolatethatistoxictoaplantatahighconcentration;itinhibitsphotosynthesis. Salvagingglycolateisanenergeticallyexpensiveprocessthatusestheglycolatepathway,andonly75%ofthecarbonisreturnedtotheCalvin-Bensoncycleas3-phosphoglycerate.Thereactionsalsoproduceammonia(NH3),whichisabletodiffuseoutoftheplant,leadingtoalossofnitrogen. Ahighlysimplifiedsummaryis: 2glycolate+ATP→3-phosphoglycerate+carbondioxide+ADP+NH3 ThesalvagingpathwayfortheproductsofRuBisCOoxygenaseactivityismorecommonlyknownasphotorespiration,sinceitischaracterizedbylight-dependentoxygenconsumptionandthereleaseofcarbondioxide. Seealso Environmentportal Ecologyportal Earthsciencesportal JanAnderson(scientist) Artificialphotosynthesis Calvin-Bensoncycle Carbonfixation Cellularrespiration Chemosynthesis Dailylightintegral Hillreaction Integratedfluorometer Light-dependentreaction Organicreaction Photobiology Photoinhibition Photosyntheticreactioncenter Photosyntheticallyactiveradiation Photosystem PhotosystemI PhotosystemII Quantasome Quantumbiology Radiosynthesis Rededge VitaminD References ^"photosynthesis".OnlineEtymologyDictionary.Archivedfromtheoriginalon2013-03-07.Retrieved2013-05-23. ^φῶς.Liddell,HenryGeorge;Scott,Robert;AGreek–EnglishLexiconatthePerseusProject ^σύνθεσις.Liddell,HenryGeorge;Scott,Robert;AGreek–EnglishLexiconatthePerseusProject ^abcSchmidt-RohrK(November2021)."O2andOtherHigh-EnergyMoleculesinPhotosynthesis:WhyPlantsNeedTwoPhotosystems".Life.Basel,Switzerland.11(11):1191.doi:10.3390/life11111191.PMC 8621363.PMID 34833066. ^abBryantDA,FrigaardNU(Nov2006)."Prokaryoticphotosynthesisandphototrophyilluminated".TrendsinMicrobiology.14(11):488–496.doi:10.1016/j.tim.2006.09.001.PMID 16997562. ^ReeceJ,UrryL,CainM,WassermanS,MinorskyP,JacksonR(2011).Biology(International ed.).UpperSaddleRiver,NJ:PearsonEducation.pp. 235,244.ISBN 978-0-321-73975-9.Thisinitialincorporationofcarbonintoorganiccompoundsisknownascarbonfixation. ^OlsonJM(May2006)."PhotosynthesisintheArcheanera".PhotosynthesisResearch.88(2):109–117.doi:10.1007/s11120-006-9040-5.PMID 16453059.S2CID 20364747. ^BuickR(Aug2008)."Whendidoxygenicphotosynthesisevolve?".PhilosophicalTransactionsoftheRoyalSocietyofLondon,SeriesB.363(1504):2731–2743.doi:10.1098/rstb.2008.0041.PMC 2606769.PMID 18468984. ^NealsonKH,ConradPG(Dec1999)."Life:past,presentandfuture".PhilosophicalTransactionsoftheRoyalSocietyofLondon,SeriesB.354(1392):1923–1939.doi:10.1098/rstb.1999.0532.PMC 1692713.PMID 10670014. ^WhitmarshJ,Govindjee(1999)."Thephotosyntheticprocess".InSinghalGS,RengerG,SoporySK,IrrgangKD,Govindjee(eds.).Conceptsinphotobiology:photosynthesisandphotomorphogenesis.Boston:KluwerAcademicPublishers.pp. 11–51.ISBN 978-0-7923-5519-9.100×1015gramsofcarbon/yearfixedbyphotosyntheticorganisms,whichisequivalentto4×1018 kJ/yr=4×1021 J/yroffreeenergystoredasreducedcarbon. ^StegerU,AchterbergW,BlokK,BodeH,FrenzW,GatherC,HanekampG,ImbodenD,JahnkeM,KostM,KurzR,NutzingerHG,ZiesemerT(2005).Sustainabledevelopmentandinnovationintheenergysector.Berlin:Springer.p. 32.ISBN 978-3-540-23103-5.Archivedfromtheoriginalon2016-09-02.Retrieved2016-02-21.Theaverageglobalrateofphotosynthesisis130TW. ^"WorldConsumptionofPrimaryEnergybyEnergyTypeandSelectedCountryGroups,1980–2004".EnergyInformationAdministration.July31,2006.Archivedfromtheoriginal(XLS)onNovember9,2006.Retrieved2007-01-20. ^FieldCB,BehrenfeldMJ,RandersonJT,FalkowskiP(Jul1998)."Primaryproductionofthebiosphere:integratingterrestrialandoceaniccomponents".Science.281(5374):237–240.Bibcode:1998Sci...281..237F.doi:10.1126/science.281.5374.237.PMID 9657713.Archivedfromtheoriginalon2018-09-25.Retrieved2018-04-20. ^abc"Photosynthesis".McGraw-HillEncyclopediaofScience&Technology.Vol. 13.NewYork:McGraw-Hill.2007.ISBN 978-0-07-144143-8. ^Frankelius,Per(July–August2020)."Aproposaltorethinkagricultureintheclimatecalculations".AgronomyJournal.112(4):3216–3221.doi:10.1002/agj2.20286.S2CID 219423329. ^WhitmarshJ,Govindjee(1999)."Chapter2:TheBasicPhotosyntheticProcess".InSinghalGS,RengerG,SoporySK,IrrgangKD,Govindjee(eds.).ConceptsinPhotobiology:PhotosynthesisandPhotomorphogenesis.Boston:KluwerAcademicPublishers.p. 13.ISBN 978-0-7923-5519-9. ^AnaerobicPhotosynthesis,Chemical&EngineeringNews,86,33,August18,2008,p.36 ^KulpTR,HoeftSE,AsaoM,MadiganMT,HollibaughJT,FisherJC,StolzJF,CulbertsonCW,MillerLG,OremlandRS(Aug2008)."Arsenic(III)fuelsanoxygenicphotosynthesisinhotspringbiofilmsfromMonoLake,California".Science.321(5891):967–970.Bibcode:2008Sci...321..967K.doi:10.1126/science.1160799.PMID 18703741.S2CID 39479754. ^"ScientistsdiscoveruniquemicrobeinCalifornia'slargestlake".Archivedfromtheoriginalon2009-07-12.Retrieved2009-07-20. ^Plants:DiversityandEvolutionArchived2016-09-01attheWaybackMachine,page14,MartinIngrouille,BillEddie ^OakleyT(19December2008)."EvolutionaryNovelties:Opsins:Anamazingevolutionaryconvergence".Archivedfromtheoriginalon17April2019.Retrieved17April2019. ^TavanoCL,DonohueTJ(December2006)."Developmentofthebacterialphotosyntheticapparatus".CurrentOpinioninMicrobiology.9(6):625–631.doi:10.1016/j.mib.2006.10.005.PMC 2765710.PMID 17055774. ^abMullineauxCW(1999)."Thethylakoidmembranesofcyanobacteria:structure,dynamicsandfunction".AustralianJournalofPlantPhysiology.26(7):671–677.doi:10.1071/PP99027. ^SenerMK,OlsenJD,HunterCN,SchultenK(October2007)."Atomic-levelstructuralandfunctionalmodelofabacterialphotosyntheticmembranevesicle".ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.104(40):15723–15728.Bibcode:2007PNAS..10415723S.doi:10.1073/pnas.0706861104.PMC 2000399.PMID 17895378. ^CampbellNA,WilliamsonB,HeydenRJ(2006).BiologyExploringLife.UpperSaddleRiver,NewJersey:PrenticeHall.ISBN 978-0-13-250882-7.Archivedfromtheoriginalon2014-11-02.Retrieved2009-02-03. ^ZieheD,DünschedeB,SchünemannD(December2018)."MolecularmechanismofSRP-dependentlight-harvestingproteintransporttothethylakoidmembraneinplants".PhotosynthesisResearch.138(3):303–313.doi:10.1007/s11120-018-0544-6.PMC 6244792.PMID 29956039. ^abRavenPH,EvertRF,EichhornSE(2005).BiologyofPlants(7th ed.).NewYork:W.H.FreemanandCompany.pp. 124–127.ISBN 978-0-7167-1007-3. ^"Yachandra/YanoGroup".LawrenceBerkeleyNationalLaboratory.Archivedfromtheoriginalon2019-07-22.Retrieved2019-07-22. ^PushkarY,YanoJ,SauerK,BoussacA,YachandraVK(February2008)."StructuralchangesintheMn4Caclusterandthemechanismofphotosyntheticwatersplitting".ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.105(6):1879–1884.Bibcode:2008PNAS..105.1879P.doi:10.1073/pnas.0707092105.PMC 2542863.PMID 18250316. ^abWilliamsBP,JohnstonIG,CovshoffS,HibberdJM(September2013)."PhenotypiclandscapeinferencerevealsmultipleevolutionarypathstoC4photosynthesis".eLife.2:e00961.doi:10.7554/eLife.00961.PMC 3786385.PMID 24082995. ^TaizL,GeigerE(2006).PlantPhysiology(4th ed.).SinauerAssociates.ISBN 978-0-87893-856-8. ^MonsonRK,SageRF(1999)."TheTaxonomicDistributionofC4Photosynthesis".C4plantbiology.Boston:AcademicPress.pp. 551–580.ISBN 978-0-12-614440-6. ^Lundgren,MarjorieR.(December2020)."C2photosynthesis:apromisingroutetowardscropimprovement?".NewPhytologist.228(6):1734–1740.doi:10.1111/nph.16494. ^DoddAN,BorlandAM,HaslamRP,GriffithsH,MaxwellK(April2002)."Crassulaceanacidmetabolism:plastic,fantastic".JournalofExperimentalBotany.53(369):569–580.doi:10.1093/jexbot/53.369.569.PMID 11886877. ^TooulakouG,GiannopoulosA,NikolopoulosD,BrestaP,DotsikaE,OrkoulaMG,et al.(August2016)."AlarmPhotosynthesis:CalciumOxalateCrystalsasanInternalCO2SourceinPlants".PlantPhysiology.171(4):2577–2585.doi:10.1104/pp.16.00111.PMC 4972262.PMID 27261065. ^Gómez-EspinozaO,González-RamírezD,BrestaP,KarabourniotisG,BravoLA(October2020)."DecompositionofCalciumOxalateCrystalsinColobanthusquitensisunderCO2LimitingConditions".Plants.9(10):1307.doi:10.3390/plants9101307.PMC 7600318.PMID 33023238. ^BadgerMR,PriceGD(February2003)."CO2concentratingmechanismsincyanobacteria:molecularcomponents,theirdiversityandevolution".JournalofExperimentalBotany.54(383):609–622.doi:10.1093/jxb/erg076.PMID 12554704. ^BadgerMR,AndrewsJT,WhitneySM,LudwigM,YellowleesDC,LeggatW,PriceGD(1998)."ThediversityandcoevolutionofRubisco,plastids,pyrenoids,andchloroplast-basedCO2-concentratingmechanismsinalgae".CanadianJournalofBotany.76(6):1052–1071.doi:10.1139/b98-074. ^MiyamotoK."Chapter1–Biologicalenergyproduction".Renewablebiologicalsystemsforalternativesustainableenergyproduction(FAOAgriculturalServicesBulletin–128).FoodandAgricultureOrganizationoftheUnitedNations.Archivedfromtheoriginalon7September2013.Retrieved4January2009. ^abEhrenbergR(2017-12-15)."Thephotosynthesisfix".KnowableMagazine.AnnualReviews.doi:10.1146/knowable-121917-115502.Retrieved2018-04-03. ^abMaxwellK,JohnsonGN(April2000)."Chlorophyllfluorescence–apracticalguide".JournalofExperimentalBotany.51(345):659–668.doi:10.1093/jexbot/51.345.659.PMID 10938857. ^GovindjeeR."WhatisPhotosynthesis?".BiologyatIllinois.Archivedfromtheoriginalon27May2014.Retrieved17April2014. ^abRosenqvistE,vanKootenO(2006)."Chapter2:ChlorophyllFluorescence:AGeneralDescriptionandNomenclature".InDeEllJA,ToivonenPM(eds.).PracticalApplicationsofChlorophyllFluorescenceinPlantBiology.Dordrecht,theNetherlands:KluwerAcademicPublishers.pp. 39–78. ^BakerNR,OxboroughK(2004)."Chapter3:Chlorophyllfluorescenceasaprobeofphotosyntheticproductivity".InPapaqeorgiouG,Govindjee(eds.).ChlorophyllaFluorescenceaSignatureofPhotosynthesis.Dordrecht,TheNetherlands:Springer.pp. 66–79. ^FlexasJ,EscalnonaJM,MedranoH(January1999)."Waterstressinducesdifferentlevelsofphotosynthesisandelectrontransportrateregulationingrapevines".Plant,CellandEnvironment.22(1):39–48.doi:10.1046/j.1365-3040.1999.00371.x. ^FryerMJ,AndrewsJR,OxboroughK,BlowersDA,BakerNR(1998)."RelationshipbetweenCO2assimilation,photosyntheticelectrontransport,andactiveO2metabolisminleavesofmaizeinthefieldduringperiodsoflowtemperature".PlantPhysiology.116(2):571–580.doi:10.1104/pp.116.2.571.PMC 35114.PMID 9490760. ^EarlH,SaidEnnahliS(2004)."EstimatingphotosyntheticelectrontransportviachlorophyllfluorometrywithoutPhotosystemIIlightsaturation".PhotosynthesisResearch.82(2):177–186.doi:10.1007/s11120-004-1454-3.PMID 16151873.S2CID 291238. ^GentyB,BriantaisJ,BakerNR(1989)."Therelationshipbetweenthequantumyieldofphotosyntheticelectrontransportandquenchingofchlorophyllfluorescence".BiochimicaetBiophysicaActa(BBA)-GeneralSubjects.990(1):87–92.doi:10.1016/s0304-4165(89)80016-9. ^abBakerNR(2008)."Chlorophyllfluorescence:Aprobeofphotosynthesisinvivo".AnnualReviewofPlantBiology.59:89–113.doi:10.1146/annurev.arplant.59.032607.092759.PMID 18444897.S2CID 31451852. ^abcBernacchiCJ,PortisAR,NakanoH,vonCaemmererS,LongSP(2002)."Temperatureresponseofmesophyllconductance.ImplicationsforthedeterminationofRubiscoenzymekineticsandforlimitationstophotosynthesisinvivo".PlantPhysiology.130(4):1992–1998.doi:10.1104/pp.008250.PMC 166710.PMID 12481082. ^abcdRibas-CarboM,FlexasJ,RobinsonSA,TcherkezGG(2010)."Invivomeasurementofplantrespiration".UniversityofWollongongResearchOnline. ^abcdLongSP,BernacchiCJ(2003)."Gasexchangemeasurements,whatcantheytellusabouttheunderlyinglimitationstophotosynthesis?Proceduresandsourcesoferror".JournalofExperimentalBotany.54(392):2393–2401.doi:10.1093/jxb/erg262.PMID 14512377. ^BernacchiCJ,PortisA(2002)."R.,NakanoH.,vonCaemmererS.,andLongS.P.(2002)Temperatureresponseofnesophyllconductance.ImplicationsforthedeterminationofRubiscoenzymekineticsandforlimitationstophotosynthesisinvivo".PlantPhysiology.130(4):1992–1998.doi:10.1104/pp.008250.PMC 166710.PMID 12481082. ^YinX,StruikPC(2009)."TheoreticalreconsiderationswhenestimatingthemesophyllconductancetoCO2diffusioninleavesofC3plantsbyanalysisofcombinedgasexchangeandchlorophyllfluorescencemeasurements".Plant,CellandEnvironment.32(11):1513–1524[1524].doi:10.1111/j.1365-3040.2009.02016.x.PMID 19558403. ^SchreiberU,KlughammerC,KolbowskiJ(2012)."Assessmentofwavelength-dependentparametersofphotosyntheticelectrontransportwithanewtypeofmulti-colorPAMchlorophyllfluorometer".PhotosynthesisResearch.113(1–3):127–144.doi:10.1007/s11120-012-9758-1.PMC 3430841.PMID 22729479. ^PalmerJ(21June2013)."Plants'seendoingquantumphysics'".BBCNews.Archivedfromtheoriginalon3October2018.Retrieved21June2018. ^LloydS(10March2014)."QuantumBiology:Betterlivingthroughquantummechanics".TheNatureofReality.Nova:PBSOnline;WGBHBoston.Archivedfromtheoriginalon3July2017.Retrieved8September2017. ^HildnerR,BrinksD,NiederJB,CogdellRJ,vanHulstNF(June2013)."Quantumcoherentenergytransferovervaryingpathwaysinsinglelight-harvestingcomplexes".Science.340(6139):1448–1451.Bibcode:2013Sci...340.1448H.doi:10.1126/science.1235820.PMID 23788794.S2CID 25760719. ^GaleJ(2009).AstrobiologyofEarth:Theemergence,evolutionandfutureoflifeonaplanetinturmoil.OxfordUniversityPress.pp. 112–113.ISBN 978-0-19-154835-2. ^DavisK(2October2004)."Photosynthesisgotareallyearlystart".NewScientist.Archivedfromtheoriginalon1May2015.Retrieved8September2017. ^HooperR(19August2006)."Revealingthedawnofphotosynthesis".NewScientist.Archivedfromtheoriginalon24May2015.Retrieved8September2017. ^CardonaT(March2018)."EarlyArcheanoriginofheterodimericPhotosystemI".Heliyon.4(3):e00548.doi:10.1016/j.heliyon.2018.e00548.PMC 5857716.PMID 29560463.Archivedfromtheoriginalon1April2019.Retrieved23March2018. ^HowardV(7March2018)."PhotosynthesisOriginatedABillionYearsEarlierThanWeThought,StudyShows".AstrobiologyMagazine.Retrieved23March2018.[permanentdeadlink] ^VennAA,LoramJE,DouglasAE(2008)."Photosyntheticsymbiosesinanimals".JournalofExperimentalBotany.59(5):1069–1080.doi:10.1093/jxb/erm328.PMID 18267943. ^RumphoME,SummerEJ,ManhartJR(May2000)."Solar-poweredseaslugs.Mollusc/algalchloroplastsymbiosis".PlantPhysiology.123(1):29–38.doi:10.1104/pp.123.1.29.PMC 1539252.PMID 10806222. ^MuscatineL,GreeneRW(1973).Chloroplastsandalgaeassymbiontsinmolluscs.InternationalReviewofCytology.Vol. 36.pp. 137–169.doi:10.1016/S0074-7696(08)60217-X.ISBN 978-0-12-364336-0.PMID 4587388. ^RumphoME,WorfulJM,LeeJ,KannanK,TylerMS,BhattacharyaD,MoustafaA,ManhartJR(November2008)."HorizontalgenetransferofthealgalnucleargenepsbOtothephotosyntheticseaslugElysiachlorotica".ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.105(46):17867–17871.Bibcode:2008PNAS..10517867R.doi:10.1073/pnas.0804968105.PMC 2584685.PMID 19004808. ^DouglasSE(December1998)."Plastidevolution:origins,diversity,trends".CurrentOpinioninGenetics&Development.8(6):655–661.doi:10.1016/S0959-437X(98)80033-6.PMID 9914199. ^Reyes-PrietoA,WeberAP,BhattacharyaD(2007)."Theoriginandestablishmentoftheplastidinalgaeandplants".AnnualReviewofGenetics.41:147–168.doi:10.1146/annurev.genet.41.110306.130134.PMID 17600460.S2CID 8966320.[permanentdeadlink] ^RavenJA,AllenJF(2003)."Genomicsandchloroplastevolution:whatdidcyanobacteriadoforplants?".GenomeBiology.4(3):209.doi:10.1186/gb-2003-4-3-209.PMC 153454.PMID 12620099. ^AllenJF(December2017)."TheCoRRhypothesisforgenesinorganelles".JournalofTheoreticalBiology.434:50–57.Bibcode:2017JThBi.434...50A.doi:10.1016/j.jtbi.2017.04.008.PMID 28408315. ^Keeling,P.J.(2010)."Theendosymbioticorigin,diversificationandfateofplastids-NCBI-NIH".PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesB,BiologicalSciences.365(1541):729–748.doi:10.1098/rstb.2009.0103.PMC 2817223.PMID 20124341. ^TomitaniA,KnollAH,CavanaughCM,OhnoT(April2006)."Theevolutionarydiversificationofcyanobacteria:molecular-phylogeneticandpaleontologicalperspectives".ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.103(14):5442–5447.Bibcode:2006PNAS..103.5442T.doi:10.1073/pnas.0600999103.PMC 1459374.PMID 16569695. ^"Cyanobacteria:FossilRecord".Ucmp.berkeley.edu.Archivedfromtheoriginalon2010-08-24.Retrieved2010-08-26. ^SmithA(2010).Plantbiology.NewYork:GarlandScience.p. 5.ISBN 978-0-8153-4025-6. ^HerreroA,FloresE(2008).TheCyanobacteria:MolecularBiology,GenomicsandEvolution(1st ed.).CaisterAcademicPress.ISBN 978-1-904455-15-8. ^abMartinD,ThompsonA,StewartI,GilbertE,HopeK,KawaiG,GriffithsA(September2012)."AparadigmoffragileEarthinPriestley'sbelljar".ExtremePhysiology&Medicine.1(1):4.doi:10.1186/2046-7648-1-4.PMC 3707099.PMID 23849304. ^GestH(2000)."BicentenaryhomagetoDrJanIngen-Housz,MD(1730-1799),pioneerofphotosynthesisresearch".PhotosynthesisResearch.63(2):183–190.doi:10.1023/A:1006460024843.PMID 16228428.S2CID 22970505. ^RabinowitchEI(1945).PhotosynthesisandRelatedProcesses.Vol. 1–viaBiodiversityHeritageLibrary. ^WalkerDA(2002)."'Andwhosebrightpresence'–anappreciationofRobertHillandhisreaction"(PDF).PhotosynthesisResearch.73(1–3):51–54.doi:10.1023/A:1020479620680.PMID 16245102.S2CID 21567780.Archivedfromtheoriginal(PDF)on2008-03-09.Retrieved2015-08-27. ^OttoWarburg–BiographyArchived2010-12-15attheWaybackMachine.Nobelprize.org(1970-08-01).Retrievedon2011-11-03. ^KandlerO(1950)."ÜberdieBeziehungenzwischenPhosphathaushaltundPhotosynthese.I.PhosphatspiegelschwankungenbeiChlorellapyrenoidosaalsFolgedesLicht-Dunkel-Wechsels"[OntherelationshipbetweenthephosphatemetabolismandphotosynthesisI.VariationsinphosphatelevelsinChlorellapyrenoidosaasaconsequenceoflight-darkchanges](PDF).ZeitschriftfürNaturforschung.5b(8):423–437.doi:10.1515/znb-1950-0806.S2CID 97588826.Archived(PDF)fromtheoriginalon2018-06-24.Retrieved2018-06-26. ^ArnonDI,WhatleyFR,AllenMB(1954)."Photosynthesisbyisolatedchloroplasts.II.Photophosphorylation,theconversionoflightintophosphatebondenergy".JournaloftheAmericanChemicalSociety.76(24):6324–6329.doi:10.1021/ja01653a025. ^ArnonDI(1956)."Phosphorusmetabolismandphotosynthesis".AnnualReviewofPlantPhysiology.7:325–354.doi:10.1146/annurev.pp.07.060156.001545. ^GestH(2002)."Historyofthewordphotosynthesisandevolutionofitsdefinition".PhotosynthesisResearch.73(1–3):7–10.doi:10.1023/A:1020419417954.PMID 16245098.S2CID 11265932. ^CalvinM(July1989)."Fortyyearsofphotosynthesisandrelatedactivities".PhotosynthesisResearch.21(1):3–16.doi:10.1007/BF00047170(inactive28February2022).PMID 24424488.{{citejournal}}:CS1maint:DOIinactiveasofFebruary2022(link) ^VerduinJ(1953)."Atableofphotosynthesisratesunderoptimal,nearnaturalconditions".Am.J.Bot.40(9):675–679.doi:10.1002/j.1537-2197.1953.tb06540.x.JSTOR 2439681. ^VerduinJ,WhitwerEE,CowellBC(July1959)."Maximalphotosyntheticratesinnature".Science.130(3370):268–269.Bibcode:1959Sci...130..268V.doi:10.1126/science.130.3370.268.PMID 13668557.S2CID 34122342. ^HeskethJD,MusgraveR(1962)."Photosynthesisunderfieldconditions.IV.Lightstudieswithindividualcornleaves".CropSci.2(4):311–315.doi:10.2135/cropsci1962.0011183x000200040011x.S2CID 83706567. ^HeskethJD,MossDN(1963)."Variationintheresponseofphotosynthesistolight".CropSci.3(2):107–110.doi:10.2135/cropsci1963.0011183X000300020002x. ^abEl-Sharkawy,MA,HeskethJD(1965)."PhotosynthesisamongspeciesinrelationtocharacteristicsofleafanatomyandCO2diffusionresistances".CropSci.5(6):517–521.doi:10.2135/cropsci1965.0011183x000500060010x. ^abcEl-SharkawyMA,HeskethJD(1986)."CitationClassic-PhotosynthesisamongspeciesinrelationtocharacteristicsofleafanatomyandCO2diffusionresistances"(PDF).Curr.Cont./Agr.Biol.Environ.27:14.[permanentdeadlink] ^HaberlandtG(1904).PhysiologischePflanzanatomie.Leipzig:Engelmann. ^El-SharkawyMA(1965).FactorsLimitingPhotosyntheticRatesofDifferentPlantSpecies(Ph.D.thesis).TheUniversityofArizona,Tucson,USA. ^KarpilovYS(1960)."Thedistributionofradioactvityincarbon-14amongtheproductsofphotosynthesisinmaize".Proc.KazanAgric.Inst.14:15–24. ^KortschakHP,HartCE,BurrGO(1965)."Carbondioxidefixationinsugarcaneleaves".PlantPhysiol.40(2):209–213.doi:10.1104/pp.40.2.209.PMC 550268.PMID 16656075. ^HatchMD,SlackCR(1966)."Photosynthesisbysugar-caneleaves.Anewcarboxylationreactionandthepathwayofsugarformation".Biochem.J.101(1):103–111.doi:10.1042/bj1010103.PMC 1270070.PMID 5971771. ^ChapinFS,MatsonPA,MooneyHA(2002).PrinciplesofTerrestrialEcosystemEcology.NewYork:Springer.pp. 97–104.ISBN 978-0-387-95443-1. ^JonesHG(2014).PlantsandMicroclimate:aQuantitativeApproachtoEnvironmentalPlantPhysiology(Third ed.).Cambridge:CambridgeUniversityPress.ISBN 978-0-521-27959-8. Furtherreading LibraryresourcesaboutPhotosynthesis Resourcesinyourlibrary Books BidlackJE,SternKR,JanskyS(2003).IntroductoryPlantBiology.NewYork:McGraw-Hill.ISBN 978-0-07-290941-8. BlankenshipRE(2014).MolecularMechanismsofPhotosynthesis(2nd ed.).JohnWiley&Sons.ISBN 978-1-4051-8975-0. Govindjee,BeattyJT,GestH,AllenJF(2006).DiscoveriesinPhotosynthesis.AdvancesinPhotosynthesisandRespiration.Vol. 20.Berlin:Springer.ISBN 978-1-4020-3323-0. ReeceJB,et al.(2013).CampbellBiology.BenjaminCummings.ISBN 978-0-321-77565-8. Papers GuptaRS,MukhtarT,SinghB(Jun1999)."Evolutionaryrelationshipsamongphotosyntheticprokaryotes(Heliobacteriumchlorum,Chloroflexusaurantiacus,cyanobacteria,Chlorobiumtepidumandproteobacteria):implicationsregardingtheoriginofphotosynthesis".MolecularMicrobiology.32(5):893–906.doi:10.1046/j.1365-2958.1999.01417.x.PMID 10361294.S2CID 33477550. RutherfordAW,FallerP(Jan2003)."PhotosystemII:evolutionaryperspectives".PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesB,BiologicalSciences.358(1429):245–253.doi:10.1098/rstb.2002.1186.PMC 1693113.PMID 12594932. Externallinks Acollectionofphotosynthesispagesforalllevelsfromarenownedexpert(Govindjee) Indepth,advancedtreatmentofphotosynthesis,alsofromGovindjee ScienceAid:PhotosynthesisArticleappropriateforhighschoolscience Metabolism,CellularRespirationandPhotosynthesis–TheVirtualLibraryofBiochemistryandCellBiology OverallexaminationofPhotosynthesisatanintermediatelevel OverallEnergeticsofPhotosynthesis ThesourceofoxygenproducedbyphotosynthesisInteractiveanimation,atextbooktutorial MarshallJ(2011-03-29)."Firstpracticalartificialleafmakesdebut".DiscoveryNews.Archivedfromtheoriginalon2012-03-22.Retrieved2011-03-29. Photosynthesis–LightDependent&LightIndependentStagesArchived2011-09-10attheWaybackMachine KhanAcademy,videointroduction vteBotany History Outline Subdisciplines Archaeobotany Astrobotany Bryology Dendrology Ethnobotany Paleobotany Phycology Phytochemistry Phytogeography Geobotany Plantanatomy Plantecology Plantpathology Plantgroups Algae Archaeplastida Bryophyte Non-vascularplants Vascularplants Spermatophytes Pteridophyte Gymnosperm Angiosperm PlantanatomyPlantmorphology(glossary)Plantcells Cellwall Phragmoplast Plastid Plasmodesma Vacuole Tissues Cork Groundtissue Mesophyll Meristem Storageorgans Vasculartissue Vascularbundle Wood Vegetative Bulb Root Rhizoid Rhizome Shoot Bud Leaf Cataphyll Petiole Sessility Stem Reproductive(Flower) Archegonium Androecium Pollen Stamen Staminode Tapetum Flower Aestivation Flowerdevelopment Floraldiagram Floralformula Floralsymmetry Whorl Fruit Anatomy Berry Capsule Nut Pyrena Seed Dispersal Endosperm Gametophyte Gynandrium Gynoecium Ovary Locule Ovule Stigma Hypanthium(Floralcup) Inflorescence Bract Pedicellate Raceme Umbel Perianth Tepal Petal Sepal Plantembryo Receptacle Sporophyll Sporophyte Surfacestructures Cuticle Epicuticularwax Epidermis Nectar Stoma Thorns,spines,andprickles Trichome PlantphysiologyMaterials Aleurone Bulkflow Cellulose Nutrition Photosynthesis Chlorophyll Phytomelanin Planthormones Sap Starch Sugar Transpiration Turgorpressure Plantgrowthandhabit Habit Cushionplants Rosettes Shrubs Prostrateshrubs Subshrubs Succulentplants Trees Vines Lianas Herbaceousplants Secondarygrowth Woodyplants ReproductionEvolutionEcology Alternationofgenerations Doublefertilization Evolutionarydevelopment Evolutionaryhistory timeline Flora Germination Pollination Artificial Pollinators Pollentube Self Sporangium Microsporangia Microspore Megasporangium Megaspore Spore Planttaxonomy Biologicalclassification Botanicalnomenclature Botanicalname Correctname Authorcitation InternationalCodeofNomenclature(ICN) ICNforCultivatedPlants(ICNCP) Cultivatedplanttaxonomy Citrustaxonomy Cultigen Cultivar Group Grex Historyofplantsystematics Herbarium InternationalAssociationforPlantTaxonomy(IAPT) Planttaxonomysystems Taxonomicrank Practice Agronomy Floriculture Forestry Horticulture ListsRelatedtopics Botanicalterms Botanists byauthorabbreviation Botanicalexpedition Category Plantsportal Commons WikiProject vteMetabolismmap Carbonfixation Photo-respiration Pentosephosphatepathway Citricacidcycle Glyoxylatecycle Ureacycle Fattyacidsynthesis Fattyacidelongation Betaoxidation Peroxisomal betaoxidation Glyco-genolysis Glyco-genesis Glyco-lysis Gluconeo-genesis Pyruvatedecarb-oxylation Fermentation Keto-lysis Keto-genesis feederstogluconeo-genesis Direct/C4/CAMcarbonintake Lightreaction Oxidativephosphorylation Aminoaciddeamination Citrateshuttle Lipogenesis Lipolysis Steroidogenesis MVApathway MEPpathway Shikimatepathway Transcription&replication Translation Proteolysis Glycosyl-ation Sugaracids Double/multiplesugars&glycans Simplesugars Inositol-P Aminosugars&sialicacids Nucleotidesugars Hexose-P Triose-P Glycerol P-glycerates Pentose-P Tetrose-P Propionyl-CoA Succinate Acetyl-CoA Pentose-P P-glycerates Glyoxylate Photosystems Pyruvate Lactate Acetyl-CoA Citrate Oxalo-acetate Malate Succinyl-CoA α-Keto-glutarate Ketonebodies Respiratorychain Serinegroup Alanine Branched-chainaminoacids Aspartategroup Homoserinegroup&lysine Glutamategroup&proline Arginine Creatine&polyamines Ketogenic&glucogenicaminoacids Aminoacids Shikimate Aromaticaminoacids&histidine Ascorbate(vitaminC) δ-ALA Bilepigments Hemes Cobalamins(vitaminB12) VariousvitaminBs Calciferols(vitaminD) Retinoids(vitaminA) Quinones(vitaminK)&tocopherols(vitaminE) Cofactors Vitamins&minerals Antioxidants PRPP Nucleotides Nucleicacids Proteins Glycoproteins&proteoglycans Chlorophylls MEP MVA Acetyl-CoA Polyketides Terpenoidbackbones Terpenoids&carotenoids(vitaminA) Cholesterol Bileacids Glycero-phospholipids Glycerolipids Acyl-CoA Fattyacids Glyco-sphingolipids Sphingolipids Waxes Polyunsaturatedfattyacids Neurotransmitters&thyroidhormones Steroids Endo-cannabinoids Eicosanoids Majormetabolicpathwaysinmetro-stylemap.Clickanytext(nameofpathwayormetabolites)tolinktothecorrespondingarticle.Singlelines:pathwayscommontomostlifeforms.Doublelines:pathwaysnotinhumans(occursine.g.plants,fungi,prokaryotes).Orangenodes:carbohydratemetabolism.Violetnodes:photosynthesis.Rednodes:cellularrespiration.Pinknodes:cellsignaling.Bluenodes:aminoacidmetabolism.Greynodes:vitaminandcofactormetabolism.Brownnodes:nucleotideandproteinmetabolism.Greennodes:lipidmetabolism. vteEcology:Modellingecosystems:TrophiccomponentsGeneral Abioticcomponent Abioticstress Behaviour Biogeochemicalcycle Biomass Bioticcomponent Bioticstress Carryingcapacity Competition Ecosystem Ecosystemecology Ecosystemmodel Keystonespecies Listoffeedingbehaviours Metabolictheoryofecology Productivity Resource Producers Autotrophs Chemosynthesis Chemotrophs Foundationspecies Mixotrophs Myco-heterotrophy Mycotroph Organotrophs Photoheterotrophs Photosynthesis Photosyntheticefficiency Phototrophs Primarynutritionalgroups Primaryproduction Consumers Apexpredator Bacterivore Carnivores Chemoorganotroph Foraging Generalistandspecialistspecies Intraguildpredation Herbivores Heterotroph Heterotrophicnutrition Insectivore Mesopredators Mesopredatorreleasehypothesis Omnivores Optimalforagingtheory Planktivore Predation Preyswitching Decomposers Chemoorganoheterotrophy Decomposition Detritivores Detritus Microorganisms Archaea Bacteriophage Lithoautotroph Lithotrophy Marinemicroorganisms Microbialcooperation Microbialecology Microbialfoodweb Microbialintelligence Microbialloop Microbialmat Microbialmetabolism Phageecology Foodwebs Biomagnification Ecologicalefficiency Ecologicalpyramid Energyflow Foodchain Trophiclevel Examplewebs Lakes Rivers Soil Tritrophicinteractionsinplantdefense Marinefoodwebs coldseeps hydrothermalvents intertidal kelpforests NorthPacificGyre SanFranciscoEstuary tidepool Processes Ascendency Bioaccumulation Cascadeeffect Climaxcommunity Competitiveexclusionprinciple Consumer–resourceinteractions Copiotrophs Dominance Ecologicalnetwork Ecologicalsuccession Energyquality EnergySystemsLanguage f-ratio Feedconversionratio Feedingfrenzy Mesotrophicsoil Nutrientcycle Oligotroph Paradoxoftheplankton Trophiccascade Trophicmutualism Trophicstateindex Defense,counter Animalcoloration Anti-predatoradaptations Camouflage Deimaticbehaviour Herbivoreadaptationstoplantdefense Mimicry Plantdefenseagainstherbivory Predatoravoidanceinschoolingfish vteEcology:Modellingecosystems:OthercomponentsPopulationecology Abundance Alleeeffect Depensation Ecologicalyield Effectivepopulationsize Intraspecificcompetition Logisticfunction Malthusiangrowthmodel Maximumsustainableyield Overpopulation Overexploitation Populationcycle Populationdynamics Populationmodeling Populationsize Predator–prey(Lotka–Volterra)equations Recruitment Smallpopulationsize Stability Resilience Resistance Species Biodiversity Density-dependentinhibition Ecologicaleffectsofbiodiversity Ecologicalextinction Endemicspecies Flagshipspecies Gradientanalysis Indicatorspecies Introducedspecies Invasivespecies Latitudinalgradientsinspeciesdiversity Minimumviablepopulation Neutraltheory Occupancy–abundancerelationship Populationviabilityanalysis Priorityeffect Rapoport'srule Relativeabundancedistribution Relativespeciesabundance Speciesdiversity Specieshomogeneity Speciesrichness Speciesdistribution Species-areacurve Umbrellaspecies Speciesinteraction Antibiosis Biologicalinteraction Commensalism Communityecology Ecologicalfacilitation Interspecificcompetition Mutualism Parasitism Storageeffect Symbiosis Spatialecology Biogeography Cross-boundarysubsidy Ecocline Ecotone Ecotype Disturbance Edgeeffects Foster'srule Habitatfragmentation Idealfreedistribution Intermediatedisturbancehypothesis Insularbiogeography Landchangemodeling Landscapeecology Landscapeepidemiology Landscapelimnology Metapopulation Patchdynamics r/Kselectiontheory Resourceselectionfunction Source–sinkdynamics Niche Ecologicalniche Ecologicaltrap Ecosystemengineer Environmentalnichemodelling Guild Habitat marinehabitats Limitingsimilarity Nicheapportionmentmodels Nicheconstruction Nichedifferentiation Ontogeneticnicheshift Othernetworks Assemblyrules Bateman'sprinciple Bioluminescence Ecologicalcollapse Ecologicaldebt Ecologicaldeficit Ecologicalenergetics Ecologicalindicator Ecologicalthreshold Ecosystemdiversity Emergence Extinctiondebt Kleiber'slaw Liebig'slawoftheminimum Marginalvaluetheorem Thorson'srule Xerosere Other Allometry Alternativestablestate Balanceofnature Biologicaldatavisualization Ecocline Ecologicaleconomics Ecologicalfootprint Ecologicalforecasting Ecologicalhumanities Ecologicalstoichiometry Ecopath Ecosystembasedfisheries Endolith Evolutionaryecology Functionalecology Industrialecology Macroecology Microecosystem Naturalenvironment Regimeshift Sexecology Systemsecology Urbanecology Theoreticalecology Listofecologytopics Authoritycontrol:Nationallibraries France(data) Germany Israel UnitedStates Japan Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Photosynthesis&oldid=1086247865" Categories:PhotosynthesisAgronomyBiologicalprocessesBotanyCellularrespirationEcosystemsMetabolismPlantnutritionPlantphysiologyQuantumbiologyHiddencategories:ArticlescontainingAncientGreek(to1453)-languagetextWebarchivetemplatewaybacklinksAllarticleswithdeadexternallinksArticleswithdeadexternallinksfromJune2020ArticleswithpermanentlydeadexternallinksArticleswithdeadexternallinksfromJuly2020CS1maint:DOIinactiveasofFebruary2022ArticleswithdeadexternallinksfromJanuary2018ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataWikipediapagessemi-protectedagainstvandalismAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromJuly2008WikipediaarticlesneedingclarificationfromSeptember2018ArticleswithunsourcedstatementsfromSeptember2018WikipediaarticlesneedingclarificationfromNovember2015ArticleswithBNFidentifiersArticleswithGNDidentifiersArticleswithJ9UidentifiersArticleswithLCCNidentifiersArticleswithNDLidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadViewsourceViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikiversity Languages AfrikaansAlemannischالعربيةAragonésঅসমীয়াAsturianuAvañe'ẽAzərbaycancaتۆرکجهবাংলাBân-lâm-gúБашҡортсаБеларускаяБеларуская(тарашкевіца)भोजपुरीBikolCentralБългарскиBosanskiBrezhonegБуряадCatalàCebuanoČeštinaChiShonaCymraegDanskالدارجةDeutschEestiΕλληνικάEspañolEsperantoEstremeñuEuskaraفارسیFijiHindiFrançaisFryskGaeilgeGaelgGàidhligGalegoГӀалгӀайગુજરાતી한국어Հայերենहिन्दीHrvatskiIdoIlokanoBahasaIndonesiaInterlinguaIsiXhosaÍslenskaItalianoעבריתJawaಕನ್ನಡKapampanganქართულიҚазақшаKiswahiliKreyòlayisyenKriyòlgwiyannenKurdîКыргызчаLatinaLatviešuЛезгиLietuviųLimburgsLugandaMagyarमैथिलीМакедонскиMalagasyമലയാളംमराठीဘာသာမန်BahasaMelayuМонголမြန်မာဘာသာNederlandsNedersaksiesनेपालीनेपालभाषा日本語НохчийнNordfriiskNorskbokmålNorsknynorskOccitanOʻzbekcha/ўзбекчаਪੰਜਾਬੀپنجابیپښتوPlattdüütschPolskiPortuguêsRomânăRunaSimiРусиньскыйРусскийСахатылаसंस्कृतम्ScotsShqipසිංහලSimpleEnglishSlovenčinaSlovenščinaSoomaaligaکوردیСрпски/srpskiSrpskohrvatski/српскохрватскиSundaSuomiSvenskaTagalogதமிழ்Татарча/tatarçaతెలుగుไทยТоҷикӣᏣᎳᎩTürkçeУкраїнськаاردوئۇيغۇرچە/UyghurcheVènetoVepsänkel’TiếngViệt文言Winaray吴语ייִדיש粵語ZazakiŽemaitėška中文 Editlinks
延伸文章資訊
- 1Photosynthesis - Wikipedia
Photosynthesis is a process used by plants and other organisms to convert light energy into chemi...
- 2What is photosynthesis? | Live Science
Photosynthesis is the process used by plants, algae and certain bacteria to turn sunlight, carbon...
- 3Intro to photosynthesis (article) | Khan Academy
Photosynthesis is the process in which light energy is converted to chemical energy in the form o...
- 4What is Photosynthesis | Smithsonian Science Education ...
- 5Photosynthesis - Definition, Process, and Diagrams - BYJU'S
Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which...