智慧型商業資料分析之研究__臺灣博碩士論文知識加值系統
文章推薦指數: 80 %
本研究的主要目的即在發展智慧型商業資料分析方法及建構分析模型,這些模型克服了傳統 ... 論文名稱(外文):, On Some Aspecsts of Intelligent Business Data Analysis.
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(178.128.221.219)您好!臺灣時間:2021/12/2814:10
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:鄒濟民研究生(外文):Chi-MingTsou論文名稱:智慧型商業資料分析之研究論文名稱(外文):OnSomeAspecstsofIntelligentBusinessDataAnalysis指導教授:黃登源、黃榮華指導教授(外文):Teng-YuangHuang、Rong-HwaHuang學位類別:博士校院名稱:輔仁大學系所名稱:商學研究所學門:商業及管理學門學類:一般商業學類論文種類:學術論文論文出版年:2006畢業學年度:94語文別:中文論文頁數:103中文關鍵詞:資料分析、知識發現、資料探勘外文關鍵詞:DataAnalysis、KnowledgeDiscovery、DataMining相關次數:
被引用:2點閱:1319評分:下載:358書目收藏:3
資料分析是由資料探測智慧的必經途徑,然而在商業的應用上卻充滿著各種挑戰,因而智慧型商業資料分析,就是針對一多變量的資料集,進行高層次概念分析模型的建立。
此一結合統計與資料探勘運算技術的工具,克服了商業應用上常面臨的資料集變動頻繁、資料衡量尺度種類很多、資料欄位過多、資料欄位間關係複雜及模型配適不易等諸多問題,且所得出的模型具有統計上的可靠性,並能供領域專家很容易的進行解釋與評估。
換言之,智慧型商業資料分析就是針對商業上的應用,結合了統計與資料探勘運算技術,且能滿足知識周全性原則的資料分析方法。
本研究以三種基本知識概念,包括關聯規則、結構方程式及列聯表等在商業上的應用,包括市場購物籃分析、知識的發現與創新及企業經營績效評量等問題,來進行智慧型商業資料分析方法與模型建構的探討。
本研究的主要目的即在發展智慧型商業資料分析方法及建構分析模型,這些模型克服了傳統統計與資料探勘方法在本質上的限制,滿足了知識周全性的原則,而將其整合在一個工具中,這些工具提供了使用者,可依問題的特性由資料庫中進行各種不同方式的知識發現工作,來建構可供解釋與決策所需的模型,以解決實務上所面臨的諸多問題,此即為本研究的主要貢獻。
Dataanalysisisontheuniqueroutefromdatatowardswisdom,whilethereexistsvariouschallengesforbusinessapplications,hence;intelligentbusinessdataanalysisisjustlikeakeytoopenadoorwhichcangetoverthosechallengesduringproceedinghighlevelconceptualandanalyticalmodelconstructionagainstamulti-dimensionaldataset.Thosedataminingtoolsincorporatestatisticandcomputationaltechnologiescansolvetheproblemsthatencounteredinbusinessapplicationssuchaslargedatavolume,incompletedata,inconsistentdatascale,hugenumberofdatafields,complexrelationshipsbetweendatafieldsandmodeloverfitting;andtheresultingmodelsthatweobtainedwillbebuiltwithstatisticalreliability,andcanbeinterpretedandevaluatedeasilybydomainexperts.Inotherwords,intelligentbusinessdataanalysisistheadvancedknowledgediscoverytoolswhichincorporatestatisticandcomputation,andfulfillsthecomprehensivenessruleofknowledge.Theresearchadopts3basicknowledgeconceptsincludingassociationrule,structuralequationandcontingencytable,withtheircorrespondingapplicationsonbusinessasmarketbasketanalysis,knowledgediscoveringandinnovationandperformanceevaluation,toproceedthecontextexplorationonintelligentbusinessdataanalysis.Themainpurposeofthisstudyistodeveloptheanalyticalmethodsandmodelbuildingforintelligentbusinessdataanalysis.Thoseanalyticalmodelsnotonlyovercomethelimitationsoftraditionalstatisticanddataminingmethods,butalsofulfillthecomprehensivenessruleofknowledge;andincorporatethemintoonetoolsset,thosetoolsfurnishthecapabilityforusertoproceedvariousknowledgediscoverytasksbyusingdatabasebasedonthedistinctionofproblems.Modelsestablishedbythosetoolscanbeinterpretedandareusefulfordecisionmakingtosolvetheproblemsthatweencounteredintherealworld,anditisourcontributiontothefieldofintelligentbusinessdataanalysis.
第一章緒論11.1研究背景11.2研究動機與目的21.3研究架構與流程4第二章文獻探討72.1由資料探測智慧之過程72.1.1知識的特徵82.1.2知識的表現格式92.2商業資料探勘112.2.1知識發現的程序與目的132.2.2資料探勘在商業應用上的挑戰142.3多變量商業資料分析方法162.3.1關聯規則相關研究162.3.2創新知識探測182.3.3績效評量考核21第三章關聯規則研究263.1局部關聯規則之建構263.1.1關聯資訊量計算273.1.2建立項目關聯聚類323.2屬性局部關聯分類法363.3關聯規則案例探討423.3.1市場購物籃案例分析423.3.2多屬性資料集局部關聯443.3.3多屬性資料集局部關聯規則分類46第四章潛在結構模型探測研究504.1潛在結構模型之探測過程504.1.1尺度不變性(ScaleInvariant)524.1.2潛在結構矩陣(LatentStructureMatrix,LSM)524.1.3結構殘差矩陣(StructureResidualMatrix,SRM)544.2潛在結構模型建構程序544.3潛在結構模型探測案例探討564.3.1完整變數集潛在結構矩陣574.3.2部份變數集潛在結構矩陣60第五章績效評量研究625.1績效衡量與評估方法625.1.1尺度主成份分析635.1.2效率評估矩陣655.1.3效率評估排序法675.1.4效率對應分析675.1.5效率評估與排序程序685.2績效評量案例探討705.2.1效率對應與排序715.2.2效率評估矩陣線性規劃模型755.3績效排序探討765.3.1供應商評選765.3.2製造設備評選825.3.3藥局績效評估84第六章結論與建議906.1結論906.1.1局部關聯規則916.1.2潛在結構模型探測916.1.3績效衡量評估926.2建議946.2.1局部關聯規則946.2.2潛在結構模型探測956.2.3績效衡量評估95參考文獻97
1.Ackoff,R.L.,1989.FromDatatoWisdom.JournalofAppliesSystemsAnalysis,Vol.16,pp.3-92.Adler,N.,Friedman,L.,andZilla,S.S.,2002.Reviewofrankingmethodsinthedataenvelopmentanalysiscontext.EuropeanJournalofOperationalResearch,140,pp.249-265.3.Adomavicius,G.andTuzhilin,A.,1997.Discoveryofactionablepatternsindatabases:theactionhierarchyapproach.InD.Heckerman,H.manila,andD.Pregibon,editors,ProceedingoftheThirdInternationalConferenceonKnowledgeDiscovery&DataMining,pp.111-114.AAAIPress.4.Adriaans,P.W.andZantinge,1996.DataMining.Addison-Wesley.5.Agrawal,R.,Imielinski,T.,Swami,A.,1993.Miningassociationrulesbetweensetsofitemsinverylargedatabases.ProceedingsoftheACMSIGMODConferenceonManagementofdata,volume22:2ofSIGMODRecord,pp.207-216.ACMPress.6.Agrawal,R.,andPsaila,G.,1995.ActiveDataMining.InProceedingsoftheFirstInternationalConferenceonKnowledgeDiscoveryandDataMining(KDD-95),pp.3-8.MenloPark,Calif.:AmericanAssociationforArtificialIntelligence.7.Aggarwal,C.C.,Procopiuc,C.,andYu,P.S.,2002.Findinglocalizedassociationinmarketbasketdata.IEEETransactionsonKnowledgeandDataEngineering,14(1),pp.51-62.8.Aigner,D.J.,Lovell,C.A.K.andSchmidt,P.,1977.FormulationandEstimationofStochasticFrontierModels.JournalofEconomics,6,pp.21-37.9.Andersen,P.,andPetersen,N.C.,1993.Aprocedureforrankingefficientunitsindataenvelopmentanalysis.ManagementScience,39(10),pp.1261-1264.10.Antonie,M-L.andZaïane,O.R.,2004.MiningPositiveandNegativeAssociationRules:AnApproachforConfinedRules.DepartmentofComputingScience,UniversityofAlberta,Edmonton,Alberta,Canada.11.Banker,R.D.,Charnes,A.,andCooper,W.W.,1984.Somemodelsforestimatingtechnicalandscaleinefficienciesindataenvelopmentanalysis.ManagementScience30(9),pp.1078-1092.12.Banker,R.D.andMorey,R.C.,1986.TheUseofCategoricalVariablesinDataEnvelopmentAnalysis.ManagementScience,32(12),pp.1613-1627.13.Besemann,C.andDenton,A.,2005.IntegrationofProfileHiddenMarkovModelOutputintoAssociationRuleMining.KDD’05,August21-24,Chicago,Illinois,USA.14.Berhold,M.andHand,D.J.,2003.IntelligentDataAnalysis:AnIntroduction.2ndrevisedandextendedEdition.Springer-VerlagBerlinHeideberg.15.Bezdek,J.,1996.Computationalintelligencedefinedbyeveryone!.In:ComputationalIntelligence:SoftComputingandFuzzy-NeuroIntegrationwithApplications,O.Kaynaketal.(Eds.),SpringerVerlag,Germany.16.Blake,C.L.,andMerz,C.J.,1998.UCIRepositoryofMachineLearningDatabases.(downloaddate:2005/10)(http://www.ics.uci/edu/~mlern/MLRepository.html).Dept.ofInformationandComputerScience,UniversityofCalifornia,IrvineCA.17.Boussofiane,A.,Dyson,R.G.,andThanassoulis,E.,1991.Applieddataenvelopmentanalysis.EuropeanJournalofOperationalResearch,52,pp.1-15.18.Brijs,T.,Vanhoof,K.,andWets,G.,2000.Reducingredundancyincharacteristicrulediscoverybyusingintegerprogrammingtechniques.InInteligentDataAnalysisJournal,volume4:3.Elsevier.19.Brijs,T,.Vanhoof,K.,andWets,G.,2003.Defininginterestingnessforassociationrules.Internationaljournalofinformationtheoriesandapplications,10(4),pp.370-376.20.Buntine,W.,1996.GraphicalModelsforDiscoveringKnowledge.InAdvancesinKnowledgeDiscoveryandDataMining,eds.U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusmy,MenloPark,Calif.:AAAIPress,pp.59-82.21.Camstra,A.,1998.Cross-validationincovariancestructureanalysis.Unpublisheddoctoraldissertation,UniversityofGroningen.22.Charnes,A.,Cooper,W.W.,andRhodes,E.,1978.Measuringtheefficiencyofdecision-makingunits.EuropeanJournalofOperationalResearch2,pp.429-444.23.Charnes,A.,Cooper,W.W.,Golany,B.,Seiford,L.,andStutz,J.,1985.FoundationofdataenvelopmentanalysisforPareto-Koopmansefficientempiricalproductionfunctions.JournalofEconometrics30,pp.91-107.24.Cheeseman,P.,1990.OnFindingtheMostProbableModel.InComputationalModelsofScientificDiscoveryandTheoryFormation,eds.J.ShragerandP.Langley,pp.73-95.SanFrancisco,Calif.:MorganKaufmann.25.Cheng,J.,Hatzis,C.,Hayashi,H.,Krogel,M.,Morishita,S.,Page,D.,andSese,J.,2001.KDDcupreport,AcmSIGKDDExplorations2(2).26.Cinca,C.S.,andMolinero,C.M.,2001.SelectionDEASpecificationandUnitsviaPCA.UniversityofSouthampton(ISSN1356-3548),NumberM01-3.27.Ding,C.,He,X.,Zha,H.,andSimon,H.,2002.UnsupervisedLearning:Self-aggregationinScaledPrincipalComponentSpace.Proc.ofPKDD2002,pp.112-124.28.Djoko,S.,Cook,D.,andHolder,L.,1995.AnalyzingtheBenefitsofDomainKnowledgeinSubstructureDiscovery.InProceedingsofKDD-95:FirstInternationalConferenceonKnowledgeDiscoveryandDataMining,MenloPark,Calif.:AmericanAssociationforArtificialIntelligence.pp.75-80.29.Doyle,J.,andGreen,R.,1994.Efficiencyandcross-efficiencyinDEA:Derivations,meaninganduses.JournaloftheOperationResearchSociety,45(50),pp.567-578.30.Duda,R.O.,Hart,P.E.,andStork,D.G.,2001.Patternclassification,Wiley2ndedition.31.Dyson,R.G.,andThannassoulis,E.,1988.Reducingweightflexibilityindataenvelopmentanalysis.JournalofOperationalResearchSociety,39(6),pp.563-576.32.Dzeroski,S.,1996.InductiveLogicProgrammingforKnowledgeDiscoveryinDatabases.InAdvancesinKnowledgeDiscoveryandDataMining,eds.U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusmy,MenloPark,Calif.:AAAIPress,pp.59-82.33.El-Hajj,M.andZaïane,O.,2004.COFIApproachforMiningFrequentItemsetsRevisited.DMKD’04June13,Paris,France.34.Farrel,M.J.,1957.Themeasurementofproductiveefficiency.JournaloftheRoyalStatisticalSocietyA120,pp.253-281.35.Ferrer,E.andMcArdle,J.J.,2003.AlternativeStructuralModelsforMultivariateLongitudinalDataAnalysis.StructuralEquationModeling,Vol.10(4),pp.493-524.36.Guillaume,S.,Guillet,F.,andPhilipp,J.,1998.Improvingthediscoveryofassociationruleswithintensityofimplication.InPrinciplesofDataMiningandKnowledgeDiscovery,volume1510ofLectureNotesinArtificialIntelligence,pp.318-327.37.Heckerman,D.,1996.BayesianNetworksforKnowledgeDiscovery.InAdvancesinKnowledgeDiscoveryandDataMining,eds.U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusmy,MenloPark,Calif.:AAAIPress,pp.273-306.38.Heckerman,D.,1998.AtutorialonlearningwithBayesiannetworks.In:M.I.Jordan(Ed.),LearninginGraphicalModels,MITpress,pp.301-354.39.Hoogland,J.J.,1999.Therobustnessofestimationmethodsforcovariancestructureanalysis.Amsterdam:ThelaThesis.(doctoraldissertation,UniversityofGroningen).40.Jobson,J.D.,1992.AppliedMultivariateDataAnalysis.Springer-Verlag,NewYork,pp.513-515.41.Jöreskog,K.G.,1967.Somecontributionstomaximumlikelihoodfactoranalysis.Psychometrika,32(4),pp.443-482.42.Jöreskog,K.G.andSörbom,D.,1979.AdvancesinFactorAnalysisandStructureEquationModels.Cambridge,MA:AbtBooks.43.Jöreskog,K.G.,1970.Ageneralmethodforanalysisofcovariancestructures.Biometrika,57,pp.409-426.44.Kleinberg,J.,Papadimitriou,C.,andRaghavan,P.,1998.Amicroeconomicviewofdatamining.InKnowledgeDiscoveryandDataMining,KluwerAcademicPublishers.Vol.2:4,pp.254-260.45.Klementtinen,M.,Mannila,H.,Ronkainen,P.,Toivonen,H.,andVerkamo,I.,1994.FindingInterestingRulesfromLargeSetsofdiscoveredassociationrules.ThirdInternationalConferenceonInformationandKnowledgeManagement,pp.401-407.46.Kohavi,R.,John,G.,Long,R.,Manley,D.,andPfleger,K.,1994.MLC++:amachinelearninglibraryinC++.ToolswithartificialIntelligence,pp.740-743.47.Kohonen,T.,1990.Theself-organizingmap,ProceedingsoftheIEEE78(9),pp.1464-1480.48.Kuntz,L.andScholtes,S.,2000.MeasuringtheRobustnessofEmpiricalEfficiencyValuations.ManagementScience,Vol.46,No.6,June,pp.807-823.49.Liu,B.,andHsu,W.,1996.Post-analysisoflearnedrules.InProceedingsoftheThirteenthNationalConferenceonArtificialIntellignece,LectureNotesinArtificialIntelligence,AAAIPress/MITPress,pp.828-834.50.Liu,B.,Hsu,W.,andMa,Y.,1997.Pruningandsummarizingthediscoveredassociations.InD.Heckerman,H.manila,andD.Pregibon,editors,ProceedingoftheFifthInternationalConferenceonKnowledgeDiscovery&DataMining,AAAIPress,pp.125-134.51.Liu,B.,Hsu,W.,andMa,Y.,1998.Integratingclassificationandassociationrulemining.InKDD-98,NewYork,Aug27-31.52.Liu,C.M.,Hsu,H.S.,Wang,S.T.,andLee,H.K.,2005.APerformanceEvaluationModelBasedonAHPandDEA.JournaloftheChineseInstituteofIndustrialEngineers,Vol.22(3),pp.243-251.53.Mannila,H.,Toivonen,H.,andVerkamo,A.I.,1995.DiscoveringFrequentEpisodesinSequences.INProceedingsoftheFirstInternalConferenceonKnowledgeDiscoveryandDataMining(KDD-95),MenloPark,Calif.:AmericanAssociationforArtificialIntelligence,pp.210-215.54.Matheus,C.,Piatetsky-Shapiro,G.,andMcNeill,D.,1996.SelectingandReportingWhatISInteresting:TheKefiRApplicationtoHealthcareData.InAdvancesinKnowledgeDiscoveryandDataMining,eds.U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusamy,MenloPark,Calif.:AAAIPress,pp.495-516.55.Metes,G.,Gundry,J.,andBradish,P.,1997.Agilenetworking:competingforthefuturethroughtheinternetandintranets,PrenticeHallPTR,UpperSaddleRiver,NJ.56.Muesen,W.andVandenBroeck,J.,1977.EfficiencyEstimationfromCobb-DouglasProductionFunctionswithComposedError.InternationalEconomicReview,18,pp.435-444.57.Omiecinski,E.R.,2003.AlternativeInterestMeasuresforMiningAssociationRuleinDatabases.IEEETransactionsonKnowledgeandDataEngineering,15(1),pp.57-69.58.Padmanabhan,B.andTuzhilin,A.,1999.Unexpectnessasameasureofinterestingnessinknowledgediscovery.InDecisionSupportSystems,ElsevierScience.Vol.27,pp.303-318.59.Post,T.,2001.PerformanceEvaluationinStochasticEnvironmentsUsingMean-VarianceDataEnvelopmentAnalysis.OperationResearch,49(2),pp.281-292.60.Pramudiono,I.andKitsuregawa,M.,2004.FP-tax:TreeStructureBasedGeneralizedAssociationRuleMining.DMKD’04,June13,Paris,France.ISBN1-58113-908-X/04/06.61.Premachandra,I.M.,2001.AnoteonDEAvsprincipalcomponentanalysis:AnimprovementtoJoeZhu’sapproach.EuropeanJournalofOperationalResearch,132(3),pp.553-560.62.Quinlan,J.R.,1993.C4.5:ProgramsforMachineLaerning.SanMateo,CA:MorganKaufmann.63.Rousseau,J.J.,andSemple,J.H.,1995.Twopersonratioefficiencygames.ManagementScience,41(3),pp.435-441.64.Savasere,A.,Omiecinski,E.,andNavathe,S.,1998.Miningforstrongnegativeassociationsinalargedatabasesofcustomertransactions.In:Proc.ofICDE,pp.494-502.65.Sexton,T.R.,Silkman,R.H.,andHogan,A.,1986.Dataenvelopmentanalysis:Critiqueandextensions.InR.H.Silkman(Ed.),Measuringefficiency:Anassessmentofdataenvelopmentanalysis.Publicationno.32intheseriesNewDirectionsofProgramEvaluation,JosseyBass,SanFrancisco.66.Silverstein,C.,Motwani,R.,andBrin,S.,1998.BeyondMarketBaskets:GeneralizingAassociationRulestoDependenceRules.SataMiningandKnowledgeDiscovery,Vol.2,pp.39-68.67.Simoudis,E.,Livezey,B.,andKerber,R.,1995.UsingReconforDataCleaning.InProceedingsofKDD-95:FirstInternationalConferenceonKnowledgeDiscoveryandDataMiningMenloPark,Calif.:AmericanAssociationforArtificialIntelligence,pp.275-281.68.Stolorz,P.,Nakamura,H.,Mesrobian,E.,Muntz,R.,Shek,E.,Santos,J.,Yi,J.,Ng,K.,Chien,S.,Mechoso,C.,andFarrara,J.,1995.FastSpatio-TemporalDataMiningofLargeGeophysicalDatasets.NProceedingsofKdd-95:FirstInternationalConferenceonKnowledgeDiscoveryandDataMining,MenloPark,Calif.:AmericanAssociationforArtificialIntelligence,pp.300-305.69.Talluri,S.andYoonK.P.,2000.Acone-ratioDEAapproachforAMTjustification.InternationalJournalofProductionEconomics,66,pp.119-129.70.Teng,W.,Hsieh,M.,andChen,M.,2002.Ontheminingofsubstitutionrulesforstatisticallydependentitems.In:Proc.OfICDM.pp.442-449.71.Tiyagura,A.,1999.MiningAssociationRulesBasedonMutualInformation.M.SthesisDissertationatIowaStateUniversity.72.Wang,K.,Tay,S.H.W.,andLiu,B.,1998.Interestingness-basedintervalmergerfornumericassociationrules.InR.Agrawal,P.Stolorz,andG.Piatetsky-Shaprio,editors,ProceedingsoftheFourthInternationalConferenceonKnowledgeDiscovery&DataMining,AAAIPress,pp.121-127.73.Wheaton,B.,Muthen,B.,Alwin,D.,andSummers,G.,1977.Assessingthereliabilityandstabilityinpanelmodels.InD.R.Heise(ed),SociologicalMethodology1977.SanFrancisco:Jossey-Bass.74.Wong,Y.H.B.,andBeasley,J.E.,1990.Restrictingweightflexibilityindataenvelopmentanalysis.JournaloftheOperationalResearchSociety,41(9),pp.829-835.75.Wu,X.,Zhang,C.,andZhang,S.,2004.Miningbothpositiveandnegativeassociationrules.ACmTransactiononInformationSystems,22(3),pp.381-405.76.Xia,Y.Yang,Y.andChi,Y.,2004.MiningAssociationRuleswithNon-uniformPriovacyConcerns.DMKD’04June13,Paris,France.ISBN1-58113-908-X/04/06.77.Yuan,X.,Buckles,B.P.,Yuan,Z.,andZhang,J.,2002.MiningNegativeAssociationRules.ProceedingsoftheSeventhInternationalSymposiumonComputersandCommunications(ISCC’02).78.Zadeh,L.,1998.Rolesofsoftcomputingandfuzzylogicintheconception,designanddeploymentofinformation/intelligentsystems,in:ComputationalIntelligence:SoftComputingandFuzzy-NeuroIntegrationwithApplications,O.Kaynaketal.(Eds.),SpringerVerlag,Germany,pp.1-9.79.Zaïane,O.,Antonie,M.L.,andComan,A.,2002.MammorgaphyClassificationbyanAssociationRule-basedClassifier.MDM/KDD2002:IntenationalWorkshoponMultimediaDataMining(withACMSIGKDD2002).80.Zaki,M.J.,2004.MiningNon-RedundanctAssociationRules.DataMiningandKnowledgeDiscovery,Vol.9,pp.223-248.81.Zhu,J.,1998.DataEnvelopmentAnalysisvs.PrincipalComponentAnalysis:AnIllustrativeStudyofEconomicPerformanceofChineseCities.EuropeanJournalofOperationalResearch,Vol.111,pp.50-61.82.Żytkow,J.M.,1997.Knowledge=concepts:aharmfulequation.InProceedingsofKDD-97,.MenloPark,CA:AAAIPress,pp.104-109.
電子全文
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
醫院門診資料探勘─以虎尾若瑟醫院為例
2.
地理資訊系統與人工智慧整合之研究
3.
田口品質設計之資料倉儲的規劃與製作
4.
建構半導體製造過程產品異常資料挖礦技術及其雛型系統之研究
5.
以資料分析技術評估顧客服務管理之績效
6.
應用資料分析及探勘技術於健保醫療費用管控及申報異常篩選作業
7.
應用資料探勘技術於教材瀏覽結構之自動粹取之研究
8.
數量化資料模糊挖掘模式之研究
9.
應用模糊法則歸納法探採分類知識
10.
資料發掘之模糊分類
11.
以分層抽樣之規則歸納法探勘信用卡族群共同特性
12.
從電子化政府建立政府統計知識挖掘系統模型架構之研究~以內政統計為例
13.
類神經模糊系統在營建知識發掘中資料缺漏問題之研究
14.
企業知識發掘架構透過資料庫關聯規則探勘
15.
合理門診量與藥價基準之因應─知識發現與行為回饋系統
1.
楊宗文(2001)。
學校體育訪視。
載於學校體育雙月刊,11(2),58-60。
2.
楊振昇(2000)。
教育研究與教育評鑑之反省與展望。
暨大學報,4(2),27-49。
3.
陳添財(2001)。
運用CIPP評鑑模式檢討改進高職評鑑之實施。
技術及職業教育雙月刊,65,47-50。
4.
張清濱(1991)。
學校效能與教育評鑑。
師友月刊,291,34-37。
5.
高熏芳(1998)。
校長評鑑之應為與難為。
教師天地,96,19-24。
6.
吳清山、王湘栗(2004)。
教育評鑑的概念與發展。
教育資料集刊教
7.
王振德(2004)。
我國特殊教育評鑑及相關研究。
教育資料集刊育
1.
遺傳程式規劃為基礎的信用貸款逾期流入率預測之研究
2.
黃季剛先生說文學之研究
3.
運用赫序函數之通行碼身份認證設計的分析與改進
4.
聖桑低音管奏鳴曲作品168之分析與詮釋
5.
應用文化演算法於多代理人系統之共同演化
6.
卡謬《薛西弗斯的神話》中對自殺的省思:探討生命意義與自殺的關係,及以自殺做為解決之道的正確性如何
7.
哈布斯堡王朝的音樂發展-由宮廷音樂邁向大眾音樂生活的歷程
8.
探討鬆弛訓練對外科加護病房術後病患急性疼痛及焦慮緩解之成效
9.
運動休閒服消費者行為之研究
10.
次線性泛函之平滑性與嚴格凸性的Asplund平均化
11.
中世紀農民之形成
12.
金融業電子帳單系統導入與成效關係之研究
13.
從「默觀」看東西文化交流與對話──十字若望與莊子的對談
14.
舒曼《大衛同盟舞曲》作品六之音樂分析與詮釋
15.
扶養義務類型論之研究--以生活保持義務之論述為中心--
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1第三章研究方法
為達到本研究之目的,研究過程兼重理論探討與實徵資料分析,其研究方法如下 ... 二、研讀和探討相關文獻,蒐集文獻包括國內外專著、期刊論文、以及政府出版.
- 2從方法規劃、資料分析到論文寫作—以SAGE Research ...
搞定你的畢業論文」系列講座,2019年12月5日由SAGE公司亞洲暨太平洋區圖書館資源培訓經理的林啟賢博士分享「從方法規劃、資料分析到論文寫作—以SAGE ...
- 3論文的研究方法有哪些?
調查法中最常用的是問卷調查法,它是以書面提出問題的方式搜集資料的一種 ... 具體地說是運用歸納和演繹、分析與綜合以及抽象與概括等方法,對獲得的 ...
- 4目次
因此它和其他研究方法同樣,必須透過嚴謹的分析來探究. 過去事實的資料。 (七)評估研究法(Evaluational Research). 針對某一方案或計畫作計量或計質的研究以取得 ...
- 5論文撰寫的方法與技巧 - iLMS學習
甚至有的研究者將其. 所蒐集到的數據資料也放在附錄裡,以讓其他的讀者能進一步對自己感興趣的部. 份加以分析。 二、期刊論文撰寫的基本格式. 期刊論文因受限於篇幅(每篇 ...