Bayes' Theorem Definition - Investopedia
文章推薦指數: 80 %
Bayes' Theorem states that the conditional probability of an event, based on the occurrence of another event, is equal to the likelihood of the second event ... TableofContents Expand TableofContents WhatIsBayes'Theorem? UnderstandingBayes'Theorem SpecialConsiderations FormulaforBayes'Theorem ExamplesofBayes'Theorem FrequentlyAskedQuestions. WhatIstheHistoryofBayes'Theorem? WhatDoesBayes'TheoremState? WhatIsCalculatedinBayes'Theorem? WhatIsaBayes'TheoremCalculator? HowIsBayes'TheoremUsedinMachineLearning? TheBottomLine CorporateFinance FinancialAnalysis WhatIsBayes'Theorem? Bayes'Theorem, namedafter18th-centuryBritishmathematicianThomasBayes,isamathematicalformulafordeterminingconditionalprobability.Conditionalprobabilityisthelikelihoodofanoutcomeoccurring,basedonapreviousoutcomehavingoccurredinsimilarcircumstances. Bayes'theoremprovidesawaytoreviseexistingpredictionsortheories(updateprobabilities)givenneworadditionalevidence. Infinance,Bayes'Theoremcanbeusedtoratetheriskoflendingmoneytopotentialborrowers.ThetheoremisalsocalledBayes'RuleorBayes'LawandisthefoundationofthefieldofBayesianstatistics. KeyTakeaways Bayes'Theoremallowsyoutoupdatethepredictedprobabilitiesofaneventbyincorporatingnewinformation.Bayes'Theoremwasnamedafter18th-centurymathematicianThomasBayes.Itisoftenemployedinfinanceincalculatingorupdatingriskevaluation.Thetheoremhasbecomeausefulelementintheimplementationofmachinelearning.Thetheoremwasunusedfortwocenturiesbecauseofthehighvolumeofcalculationcapacityrequiredtoexecuteitstransactions. UnderstandingBayes'Theorem ApplicationsofBayes'Theoremarewidespreadandnotlimitedtothefinancialrealm.Forexample,Bayes'theoremcanbeusedtodeterminetheaccuracyofmedicaltestresultsbytakingintoconsiderationhowlikelyanygivenpersonistohaveadiseaseandthegeneralaccuracyofthetest.Bayes'theoremreliesonincorporatingpriorprobabilitydistributionsinordertogenerateposteriorprobabilities. Priorprobability,inBayesianstatisticalinference,istheprobabilityofaneventoccurringbeforenewdataiscollected.Inotherwords,itrepresentsthebestrationalassessmentoftheprobabilityofaparticularoutcomebasedoncurrentknowledgebeforeanexperimentisperformed. Posteriorprobabilityistherevisedprobabilityofaneventoccurringaftertakingintoconsiderationthenewinformation.Posteriorprobabilityiscalculatedbyupdatingthe priorprobability using Bayes'theorem.Instatisticalterms,theposteriorprobabilityistheprobabilityofeventAoccurringgiventhateventBhasoccurred. SpecialConsiderations Bayes'Theoremthusgivestheprobabilityofaneventbasedonnewinformationthatis,ormaybe,relatedtothatevent.Theformulacanalsobeusedtodeterminehowtheprobabilityofaneventoccurringmaybeaffectedbyhypotheticalnewinformation,supposingthenewinformationwillturnouttobetrue. Forinstance,considerdrawingasinglecardfromacompletedeckof52cards. Theprobabilitythatthecardisakingisfourdividedby52,whichequals1/13orapproximately7.69%.Rememberthattherearefourkingsinthedeck.Now,supposeitisrevealedthattheselectedcardisafacecard.Theprobabilitytheselectedcardisaking,givenitisafacecard,isfourdividedby12,orapproximately33.3%,asthereare12facecardsinadeck. FormulaforBayes'Theorem P ( A ∣ B ) = P ( A ⋂ B ) P ( B ) = P ( A ) ⋅ P ( B ∣ A ) P ( B ) where: P ( A ) = The probability of A occurring P ( B ) = The probability of B occurring P ( A ∣ B ) = The probability of A given B P ( B ∣ A ) = The probability of B given A P ( A ⋂ B ) ) = The probability of both A and B occurring \begin{aligned}&P\left(A|B\right)=\frac{P\left(A\bigcap{B}\right)}{P\left(B\right)}=\frac{P\left(A\right)\cdot{P\left(B|A\right)}}{P\left(B\right)}\\&\textbf{where:}\\&P\left(A\right)=\text{TheprobabilityofAoccurring}\\&P\left(B\right)=\text{TheprobabilityofBoccurring}\\&P\left(A|B\right)=\text{TheprobabilityofAgivenB}\\&P\left(B|A\right)=\text{TheprobabilityofBgivenA}\\&P\left(A\bigcap{B}\right))=\text{TheprobabilityofbothAandBoccurring}\\\end{aligned} P(A∣B)=P(B)P(A⋂B)=P(B)P(A)⋅P(B∣A)where:P(A)= The probability of A occurringP(B)= The probability of B occurringP(A∣B)=The probability of A given BP(B∣A)= The probability of B given AP(A⋂B))= The probability of both A and B occurring ExamplesofBayes'Theorem BelowaretwoexamplesofBayes'TheoreminwhichthefirstexampleshowshowtheformulacanbederivedinastockinvestingexampleusingAmazon.comInc.(AMZN).ThesecondexampleappliesBayes'theoremtopharmaceuticaldrugtesting. DerivingtheBayes'TheoremFormula Bayes'Theoremfollowssimplyfromtheaxiomsofconditionalprobability.Conditionalprobabilityistheprobabilityofaneventgiventhatanothereventoccurred.Forexample,asimpleprobabilityquestionmayask:"Whatistheprobabilityof Amazon.com'sstockpricefalling?"Conditionalprobabilitytakesthisquestionastepfurtherbyasking:"WhatistheprobabilityofAMZNstockpricefallinggiventhattheDowJonesIndustrialAverage(DJIA)indexfellearlier?" TheconditionalprobabilityofAgiventhatBhashappenedcanbeexpressedas: IfAis:"AMZNpricefalls"thenP(AMZN)istheprobabilitythatAMZNfalls;andBis:"DJIAisalreadydown,"andP(DJIA)istheprobabilitythattheDJIAfell;thentheconditionalprobabilityexpressionreadsas"theprobabilitythatAMZNdropsgivenaDJIAdeclineisequaltotheprobabilitythatAMZNpricedeclinesandDJIAdeclinesovertheprobabilityofadecreaseintheDJIAindex. P(AMZN|DJIA)=P(AMZNandDJIA)/P(DJIA) P(AMZNandDJIA)istheprobabilityofboth Aand Boccurring.Thisisalsothesameastheprobabilityof Aoccurringmultipliedbytheprobabilitythat BoccursgiventhatAoccurs,expressedasP(AMZN)xP(DJIA|AMZN).ThefactthatthesetwoexpressionsareequalleadstoBayes'theorem,whichiswrittenas: if,P(AMZNandDJIA)=P(AMZN)xP(DJIA|AMZN)=P(DJIA)xP(AMZN|DJIA) then,P(AMZN|DJIA)=[P(AMZN)xP(DJIA|AMZN)]/P(DJIA). WhereP(AMZN)andP(DJIA)aretheprobabilitiesofAmazonandtheDowJonesfalling,withoutregardtoeachother. TheformulaexplainstherelationshipbetweentheprobabilityofthehypothesisbeforeseeingtheevidencethatP(AMZN),andtheprobabilityofthehypothesisaftergettingtheevidenceP(AMZN|DJIA),givenahypothesisforAmazongivenevidenceintheDow. NumericalExampleofBayes'Theorem Asanumericalexample,imaginethereisadrugtestthatis98%accurate,meaningthat98%ofthetime,itshowsatruepositiveresultforsomeoneusingthedrug,and98%ofthetime,itshowsatruenegativeresultfornonusersofthedrug. Next,assume0.5%ofpeopleusethedrug.Ifapersonselectedatrandomtestspositiveforthedrug,thefollowingcalculationcanbemadetodeterminetheprobabilitythepersonisactuallyauserofthedrug. (0.98x0.005)/[(0.98x0.005)+((1-0.98)x(1-0.005))]=0.0049/(0.0049+0.0199)=19.76% Bayes'Theoremshowsthatevenifapersontestedpositiveinthisscenario,thereisaroughly80%chancethepersondoesnottakethedrug. FrequentlyAskedQuestions. WhatIstheHistoryofBayes'Theorem? ThetheoremwasdiscoveredamongthepapersoftheEnglishPresbyterianministerandmathematician ThomasBayesandpublishedposthumouslybybeingreadtotheRoyalSocietyin1763.LongignoredinfavorofBooleancalculations,Bayes'Theoremhasrecentlybecomemorepopularduetoincreasedcalculationcapacityforperformingitscomplexcalculations.TheseadvanceshaveledtoanincreaseinapplicationsusingBayes'theorem.Itisnowappliedtoawidevarietyofprobabilitycalculations,includingfinancialcalculations,genetics,druguse,anddiseasecontrol. WhatDoesBayes'TheoremState? Bayes'Theoremstatesthat theconditionalprobabilityofanevent,basedontheoccurrenceofanotherevent,isequaltothelikelihoodofthesecondeventgiventhefirsteventmultipliedbytheprobabilityofthefirstevent. WhatIsCalculatedinBayes'Theorem? Bayes'Theoremcalculatestheconditionalprobabilityofanevent,basedonthevaluesofspecificrelatedknownprobabilities. WhatIsaBayes'TheoremCalculator? ABayes’TheoremCalculatorfigurestheprobabilityofanevent A conditionalonanotherevent B,giventhepriorprobabilitiesof A and B,andtheprobabilityof B conditionalon A.Itcalculatesconditionalprobabilitiesbasedonknownprobabilities. HowIsBayes'TheoremUsedinMachineLearning? BayesTheoremprovidesausefulmethodforthinkingabouttherelationshipbetweenadatasetandaprobability.Inotherwords,thetheoremsaysthattheprobabilityofagivenhypothesisbeingtruebasedonspecificobserveddatacanbestatedasfindingtheprobabilityofobservingthedatagiventhehypothesismultipliedbytheprobabilityofthehypothesisbeingtrueregardlessofthedata,dividedbytheprobabilityofobservingthedataregardlessofthehypothesis. TheBottomLine Atitssimplest,Bayes'Theoremtakesatestresultandrelatesittotheconditionalprobabilityofthattestresultgivenotherrelatedevents.Forhighprobabilityfalsepositives,theTheoremgivesamorereasonedlikelihoodofaparticularoutcome. CompareAccounts AdvertiserDisclosure × TheoffersthatappearinthistablearefrompartnershipsfromwhichInvestopediareceivescompensation.Thiscompensationmayimpacthowandwherelistingsappear.Investopediadoesnotincludealloffersavailableinthemarketplace. Provider Name Description RelatedTerms WhatIsPriorProbability? Priorprobability,inBayesianstatisticalinference,istheprobabilityofaneventbasedonestablishedknowledge,beforeempiricaldataiscollected. more ConditionalProbability Conditionalprobabilityisthelikelihoodofaneventoroutcomeoccurringbasedontheoccurrenceofsomeotherpreviouseventoroutcome. more UnderstandingPosteriorProbability Posteriorprobabilityistherevisedprobabilityofaneventoccurringaftertakingintoconsiderationnewinformation. more WhatP-ValueTellsUs P-valueisthelevelofmarginalsignificancewithinastatisticalhypothesistest,representingtheprobabilityoftheoccurrenceofagivenevent. more WhatIsaTwo-TailedTest? Atwo-tailedtestisthestatisticaltestingofwhetheradistributionistwo-sidedandifasampleisgreaterthanorlessthanarangeofvalues. more WhatIsaOne-TailedTest? Aone-tailedtestisastatisticaltestinwhichthecriticalareaofadistributioniseithergreaterorlessthanacertainvalue,butnotboth. more PartnerLinks RelatedArticles Tools HowtoUsetheBayesianMethodofFinancialForecasting MathandStatistics WhatIsaRelativeStandardError? TradingPsychology TheMathBehindBettingOdds&Gambling InvestingEssentials WhattheDowMeansandHowItIsCalculated QuantitativeAnalysis ExplainingTheCapitalAssetPricingModel(CAPM) Separation&Divorce OutlandishDivorceLawsandWhySoManyAreStillontheBooks
延伸文章資訊
- 1Bayes Theorem - Statement, Formula, Derivation, Examples
Bayes theorem is a theorem in probability and statistics, named after the Reverend Thomas Bayes, ...
- 2贝叶斯定理- 维基百科,自由的百科全书
貝葉斯定理(英語:Bayes' theorem)是概率論中的一個定理,描述在已知一些条件下,某事件的发生機率。比如,如果已知某人媽媽得癌症与寿命有关,使用贝叶斯定理则可以 ...
- 3Bayes' Theorem - Definition, Formula, and Example
The Bayes theorem (also known as the Bayes' rule) is a mathematical formula used to determine the...
- 4Bayes' theorem - Wikipedia
In probability theory and statistics, Bayes' theorem named after Thomas Bayes, describes the prob...
- 5Bayes' Theorem - Math is Fun
Bayes' Theorem is a way of finding a probability when we know certain other probabilities. The fo...