利用共沉法製備釔安定氧化鋯(YSZ)奈米粉末及特性之研究
文章推薦指數: 80 %
本研究係以ZrOCl2‧8H2O與Y(NO3)3‧6H2O為原料,在75oC之酒精-水混合溶液中利用共沉法(Co-precipitation process)低溫合成YSZ (Yttria-stabilized zirconia)的奈米粉末。
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(178.128.221.219)您好!臺灣時間:2022/06/2304:06
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:郭致瑋研究生(外文):Chih-WeiKuo論文名稱:利用共沉法製備釔安定氧化鋯(YSZ)奈米粉末及特性之研究論文名稱(外文):PreparationandcharacterizationofY2O3-stabilizedZrO2(YSZ)nanopowdersbyaco-precipitationprocess指導教授:王木琴指導教授(外文):Moo-ChinWang學位類別:碩士校院名稱:國立高雄應用科技大學系所名稱:機械與精密工程研究所學門:工程學門學類:機械工程學類論文種類:學術論文論文出版年:2005畢業學年度:93語文別:中文論文頁數:115中文關鍵詞:釔安定氧化鋯、奈米粉末、共沉法外文關鍵詞:YSZ、nanopowders、co-precipitationprocess相關次數:
被引用:1點閱:769評分:下載:0書目收藏:0
本研究係以ZrOCl2‧8H2O與Y(NO3)3‧6H2O為原料,在75oC之酒精-水混合溶液中利用共沉法(Co-precipitationprocess)低溫合成YSZ(Yttria-stabilizedzirconia)的奈米粉末。
本研究藉由熱差/熱重分析(Differentialthermalanalysis/thermogravimetricanalyses)、富立葉轉換紅外線光譜分析儀(Fouriertransforminfrared,FTIR)、X-光繞射儀(X-raydiffraction,XRD)、氮氣等溫吸附/脫附量測儀(N2adsorption/desorptionisotherm)、界面電位量測儀(Zetapotential)、掃描式電子顯微鏡(Scanningelectronmicroscopy,SEM)、穿透式電子顯微鏡(Transmissionelectronmicroscope,TEM)及電子繞射(Electrondiffraction,ED)等儀器對合成之粉末做結構與特性之分析。
不同氧化釔含量將影響YSZ乾燥粉末的相變與晶粒成長,且各YSZ之乾燥粉末在500oC煆燒2小時後即可得到具結晶性之粉末。
當氧化釔含量在3mol%與5mol%時,其為正方晶相與單斜晶相兩相共存之氧化鋯,而其氧化釔含量於8mol%以上時則可獲得單一的立方晶相氧化鋯。
利用TEM、XRD與BET的觀察與分析,發現各YSZ之合成粉末的晶粒大小約為10-20nm。
在8YSZ粉末之結晶度隨煆燒溫度之增加而增大,若煆燒時間固定為2小時,當煆燒溫度由500oC增至1000oC時,其晶粒大小亦由7.1增至20.1nm。
由實驗結果計算所得之8YSZ的結晶活化能與成長活化能分別為231.76kJ/mol及7.26kJ/mol。
由非恆溫結晶動力學所得之立方晶相YSZ的結晶成長形態指數與反應機制指數皆為3.0,亦即立方晶相YSZ之晶粒為近球體狀。
將所合成之8YSZ奈米粉末應用電泳沉積法製備YSZ之薄膜,操作條件為碘濃度0-1g/l,外加電壓10-60V,沉積時間為10-60分鐘。
藉由懸浮粒子之界面電位與粒徑的量測,並分析懸浮液在不同pH值對電位與粒徑之影響,發現當懸浮液偏離等電位時可得到較高之界面電位與較佳之分散。
而藉由碘濃度、外加電壓及沉積時間之改變可獲得較平整之表面結構。
當外加電壓於30V沉積10分鐘時,可獲得膜厚為2.4μm之平整表面結構。
TheeffectofvariousY2O3from3mol%to10mol%additiononthephasetransitionandgrowthofyttria-stabilizedzirconia(YSZ)nanocrystallitespreparedbyaco-precipitationprocesswithvariousmixturesofZrOCl2‧8H2OandY(NO3)3‧6H2Oethanol-watersolutionsatlowtemperaturehasbeenstudied.Differentialthermalanalysis/thermogravimetricanalyses(DTA/TG),Fouriertransforminfrared(FTIR),X-raydiffractometry(XRD),Brunaueremmettteller(BET),zetapotential,scanningelectronmicroscopy(SEM),transmissionelectronmicroscopy(TEM),electrondiffraction(ED)wereusedtoidentifythecharacterizationandstructureofthevariousYSZnanocrystallites.ThevariousYSZnanocrystalliteswerecalcinedat500oCfor2h.ThecrystalstructureswerecomposedofcoexistingtetragonalandmonoclinicZrO2whenthe3YSZand5YSZgelpowdersarecalcinedat500oC.PurecubicZrO2isobtainedwhentheaddedY2O3isgreaterthan8mol%.Thenanocrystallitesizesaredistributionfrom10to20nmobtainedbyXRD,BETandTEMexaminations.Thecrystallitesizeofthe8YSZincreasedfrom7.1to20.1nmwithcalciningtemperatureincreasingfrom500to1000oC.Theactivationenergyforthecrystallizationandgrowthofthe8YSZnanoparticlesare231.76kJ/moland7.26kJ/mol,respectively.Thevalueofgrowthmorphologyparameterofn(crystallizationmechanismindex)andm(growthmorphologyindex)arebothapproximatedas3.0,indicatingthree-dimensionalgrowthandresultinginasphere-likemorphology.Theuniform,crack-freeYSZfilmwaspreparedusingthe8YSZ(8mol%Y2O3)nanocrystallitespreparedbyasol-gelprocessbyelectrophoresisdeposition(EPD)technique.TheeffectoftheliquidsuspensionontheparticlezetapotentialanddegreeofaccumulationwithdifferentpHvaluewereinvestigated.WhenpHvaluedeviatedfromthepointofzerocharge(PZC),theadsorptionofprotonsontoparticlesurfacewouldcausehigherzetapotentialandwelldispersivesuspension.Theeffectsoftheiodineconcentration,appliedvoltageanddepositiontimeofthe8YSZcolloidswereinvestigatedtotheoptimumdepositionconditionofYSZfilm.Itisfoundthatcrack-freeYSZfilmispreparedonLSMsubstrateattheappliedvoltageof30Vfor10min,wherethicknessofmembranewas2.4μm.
總目錄中文摘要.........................................................................................................................I英文摘要......................................................................................................................III總目錄...........................................................................................................................V圖目錄.......................................................................................................................VIII表目錄........................................................................................................................XII英漢名詞對照...........................................................................................................XIII第一章緒論..................................................................................................................11-1燃料電池................................................................................................................11-2固態氧化物燃料電池(SOFC)..............................................................................41-3固態電解質............................................................................................................41-4氧化鋯....................................................................................................................71-5氧化鋯之基本性質................................................................................................71-6研究動機................................................................................................................91-7研究目的..............................................................................................................11第二章文獻回顧與理論基礎....................................................................................122-1氧化鋯之分類.......................................................................................................122-2氧化鋯之應用.......................................................................................................122-3釔安定氧化鋯.......................................................................................................142-4奈米粉末之合成...................................................................................................152-4-1奈米陶瓷粉體.............................................................................................152-4-2共沉法….....................................................................................................162-4-3DLVO理論.................................................................................................172-5動力學分析..........................................................................................................172-5-1非恆溫結晶動力學.....................................................................................182-5-2成長動力學.................................................................................................232-6電泳沉積法...........................................................................................................232-6-1電泳沉積原理...............................................................................................232-6-2電泳沉積方式...............................................................................................242-6-3電泳沉積之優點與應用...............................................................................24第三章實驗步驟與分析方法....................................................................................253-1藥品成分.............................................................................................................253-2奈米粉末之合成.................................................................................................253-3熱處理.................................................................................................................293-4性質分析.............................................................................................................293-4-1熱分析-熱差/熱重分析(DTA/TG).............................................................293-4-2富立葉轉換紅外線光譜分析(FTIR).........................................................293-4-3X-ray繞射分析(XRD).............................................................................303-4-4氮氣等溫吸附/脫附量測............................................................................303-4-5界面電位與粒徑量測.................................................................................313-4-6掃描式電子顯微分析(SEM).....................................................................313-4-7穿透式電子顯微分析(TEM).....................................................................313-5電泳沉積.............................................................................................................323-5-1實驗步驟.....................................................................................................323-5-2實驗參數.....................................................................................................323-5-3鍍層分析.....................................................................................................32第四章氧化釔之添加對安定氧化鋯晶體形成之影響............................................364-1合成YSZ粉末的反應機制.................................................................................364-2YSZ乾燥粉末的熱性質分析.............................................................................384-3YSZ粉末之晶體結構.........................................................................................384-4不同Y2O3的添加量與煆燒溫度對YSZ乾燥粉末之相變與晶粒成長的影響.....……..….…....…………………..………….……..….………………….….454-5奈米微晶YSZ的表面形態................................................................................49第五章立方晶相之YSZ乾燥粉末的熱行為及特性...............................................615-1熱差與熱重(DTA/TG)分析..................................................................................615-2富立葉紅外線光譜(FTIR)...................................................................................615-3立方晶相YSZ微晶的成長分析..........................................................................645-3-1煆燒溫度對立方晶相之YSZ微晶成長的影響.....................................645-3-2煆燒時間對立方晶相之YSZ微晶成長的影響.....................................695-4立方晶相YSZ微晶的動力學分析......................................................................735-4-1立方晶相YSZ的結晶動力學.................................................................735-4-2立方晶相YSZ的成長動力學.................................................................795-5立方晶相之YSZ奈米微晶的顯微結構...............................................................79第六章8YSZ奈米粉末的電泳沉積之研究..............................................................866-1 8YSZ奈米粉末的特性…...................................................................................866-2碘添加量對8YSZ粒子表面電位及團聚之影響................................................866-3電泳沉積參數對鍍層之探討...............................................................................896-3-1外加電壓對電泳沉積量之影響.............................................................896-3-2電泳沉積時間對電泳沉積量及電極反應之影響.................................896-4燒結後之鍍層的X-光繞射分析..........................................................................986-5燒結後之鍍層的顯微結構…...............................................................................98第七章結論..............................................................................................................102參考資料....................................................................................................................104作者敘述及學術著作................................................................................................114誌謝............................................................................................................................115
參考文獻1.衣寶廉,燃料電池:高效、環保的發電方式=Fuelcell,五南,台北(2003).2.丁志明,方冠榮,吳季珍,周維揚,胡裕民,翁鴻山,陳東煌,傅昭銘,馮榮豐,黃榮俊,黃耀輝,張鼎張,劉全璞,蔡振章,蕭璦莉,謝達賓等編著,奈米科技-基礎、應用與實作,南區奈米科技K-12教育發展中心,高立圖書有限公司,269(2005).3.L.Jiang,L.Wei,L.Zhe,P.Li,J.Li,H.LanyingandS.Wenhui,“StudyonthepropertiesofYSZelectrolytemadebyplastercastingmethodandtheapplicationsinsolidoxidefuelcells”SolidStateIonics,118,67(1999).4.T.Hatae,N.Kakuda,T.TaniyamaandY.Yamazaki,“LowtemperaturepreparationandperformanceofNi/YSZanodewithamulti-layeredstructureforSOFC”J.PowerSources,135,25(2004).5.M.P.YoungandM.C.Gyeong,“MixedionicandelectronicconductioninYSZ-NiOcomposite”J.Electrochem.Soc.,146,883(1999).6.V.A.C.Haanappel,J.Mertens,D.Rutenbeck,C.Tropartz,W.Herzhof,D.SeboldandF.Tietz,“OptimisationofprocessingandmicrostructuralparametersofLSMcathodestoimprovetheelectrochemicalperformanceofanode-supportedSOFCs”JournalofPowerSources,141,216(2005).7.K.KordeschandG.Simader,in:Fuelcellsandtheirapplications.51(1996).8.J.Guindet,C.Roux,andA.Hammou,inProceedingsofthe2ndInternationalSymposiumonSOFCs,CommissionoftheEuropeanCommunities,569(1991).9.W.HughesandH.Ray,“ProspectsforfusedzirconiaproductioninnewSouthWales”Australia,May2002.10.E.C.Subbarao,“Zirconia-anOverview”Adv.Int.Ceram.,3,1(1981).11.H.Heuer,“TransformationTougheninginZrO2-ContainingCeramics”J.Am.Ceram.Soc.,70,689,(1987).12.A.KumarandD.Rajdev,“EffectofoxidedefectstructureontheelectricalpropertiesofZrO2”J.Am.Ceram.Soc.,55,439(1972).13.N.Q.Minh,“CeramicFuelCell”J.Am.Ceram.Soc.,76,563(1993).14.B.C.H.SteeleandA.Heinzel,“Materialsforfuel-celltechnologies”Natural414,354(2001).15.Z.Y.Can,H.Narita,J.MizusakiandH.Tagawa,“Detectionofcarbonmonoxidebyusingzirconiaoxygensensor”SolidStateIonics,79,344(1995).16.R.P.IngelandD.LewisШ,“LatticeParametersandDensityforY2O3-StabilizedZrO2”J.Am.Ceram.Soc.,69,325(1986).17.陳立民,奈米微晶二氧化鋯作為閘極氧化層之製備與特性研究,成功大學材料科學與工程學系碩士論文,(2004).18.Y.M.Chiang,D.BirnieШandW.D.Kingery,“PhysicalCeramics:Principlesforceramicscienceandengineering,(Wiley,NewYork,1997).19.M.M.NasrallahandD.L.Douglas,”IonicandElectronicConductivityinY2O3-dopedMonclinicZrO2”,J.Electrochem.Soc.,6,255(1974).20.R.Riedel,“HandbookofCeramicHardMaterials”Wiley-Vch,V1,(2004).21.遲秉成,李亮志,高品質氧化鋯粉體之應用,三采精密陶瓷,(2003).22.G.M.Wolten,“Diffusionlessphasetransformationsinzirconiaandhafnia”J.Am.Ceram.Soc.,46,418(1963).23.S.P.S.Badwal,in:AMarterialsScienceandTechnology,AComprehensiveTreatment,ed.M.V.Swain,vol.11(VCHVerlagsgesellschaft,Weinheim,Germany),tobepublished.24.Y.Li,Y.Xie,J.Gong,Y.Chen,andZ.Zhang,“PreparationofNi/YSZmaterialsforSOFCanodesbybuffer-solutionmethod”Mater.Sci.Eng.B:Solid-StateMaterialsforAdvancedTechnology,86,119(2001).25.Y.Gu,G.Li,G.Meng,andD.Peng,“SinteringandelectricalpropertiesofcoprecipitationpreparedCe0.8Y0.2O1.9ceramics”Mater.Res.Bull.,35,297(2000).26.B.Aiken,W.P.Hsu,andE.Matijevic,“PreparationandPropertiesofUniformMixedandCoatedColloidalParticles”J.Mater.Sci.,25,1886(1990).27.S.SōmiyaandT.Akiba,“HydrothermalZirconiaPowders:ABibliography”J.Eur.Ceram.Soc.,19,81(1999).28.C.Sakurai,T.FukuiandM.Okuyama,“Preparationofzirconiacoatingsbyhydrolysisofzirconiumalkoxidewithhydrogenperoxide”J.Am.Ceram.Soc.,76,1061(1993).29.V.Hebert,C.His,J.Guille,S.VilminatandT.L.Wen“PreparationandcharacterizationofprecursorsofY2O3stabilizedZrO2bymetal-organiccompounds”J.Mater.Sci.,26,87(1997).30.L.M.Falter,D.A.Pane,T.A.Friedmann,W.H.WrightandD.M.Ginsberg,“ReparationofCeramicSuperconductorsbythePechiniMethod”Bri.Ceram.Proc.,41,261(1988).31.H.Salze,P.OdierandB.Cales,“Laborationoffinemicropowdersfromorganometallicplymersprecursors”J.Non-Cryst.Solids,82,314(1986).32.S.G.Cho,P.F.JohnsonandR.A.Condrate,“Hermaldecompositionof(Sr,Ti)organicprecursorduringthePechiniprocess”J.Mater.Sci.,25,4738(1990).33.C.W.Kuo,Y.H.Lee,K.Z.FungandM.C.Wang,“EffectofY2O3additiononthephasetransitionandgrowthofYSZnanocrystallitespreparedbyasol-gelprocess”,J.Non-Cryst.Solids,351,304(2005).34.H.LiuandQ.Xue,“InvesetigationoftheCrystallizationofZrO2(Y2O33mol%)nanopowder”J.Mater.Res.,11,917(1996).35.G.F.Tu,Z.T.Sui,Q.HuangandC.Z.Wang,“Sol-GelProcessedY-PSZCeramicswith5wt%Al2O3”J.Am.Ceram.Soc.,75,1032(1992).36.N.L.Wu,L.F.Wu,Y.C.YangandS.J.Huang,“SpontaneousSolutionSol-GelProcessforPreparingTinOxideMonolith”J.Mater.Res.,11,813(1996).37.W.Li,L.GaoandJ.K.Guo,“Synthesisofyttria-stabilizedzirconiananoparticlesbyheatingofalcohol-aqueoussaltsolutions”NanostructuredMater.,10,1043(1998).38.Y.T.Moon,H.K.ParkandD.K.Kin,“Preparationofmonodisperseandsphericalzirconiapowdersbyheatingofalcohol-aqueoussaltsolutions”J.Am.Ceram.Soc.,78,2690(1995).39.H.Heuer,“TransformationTougheninginZrO2-ContainingCeramics”,J.Am.Ceram.Soc.,70,689(1987).40.A.G.King,P.J.Yavorsky,J.Am.Ceram.Soc.51,38-42,1968.41.A.H.Heuer,“StabilityofTetragonalZrO2ParticlesinCeramicMatrices”J.Am.Ceram.Soc.,65,642(1982).42.F.F.Lange,“Transformationtoughening.Part3,ExperimentalObservationsintheZrO2-Y2O3System”J.Mater.Sci.,17,240(1982).43.D.B.Marshall,“StrengthCharacteristicsofTransformation-ToughenedZirconia”J.Am.Ceram.Soc.,69,173(1986).44.S.Srinivasan,R.O.Scattergood,G.Pfeiffer,R.G.SparksandM.A.Paesler,“LowTemperatrueTreatmentofTransformationToughenedParticallyStabilizedMagnesia-DopedZirconia”J.Am.Ceram.Soc.,73,1421(1990).45.T.Masaki,“MachanicalPropertiesofToughenedZrO2-Y2O3Ceramics”J.Am.Ceram.Soc.,69,638(1986).46.K.Noguchi,M.Fujita,T.MasakiandM.Mizushina,“TensileStrengthofYttria-StabilizedTetragonalZirconiaPolycrystals”J.Am.Ceram.Soc.,72,1305(1989).47.N.NakanishiandT.Shigematsu,“MartensiticTransformationsinZirconiaCeramics”Mater.Trans.,33,318(1992).48.R.C.GarvieandP.S.Nicholson,“PhaseanalysisinZirconiaSystems”J.Am.Ceram.Soc.,55,303(1972).49.R.D.Shannon,“Revisedeffectiveionicradiiandsystematicstudiesofinteratomicdistancesinhalidesandchalcogenides“Acta.Cryst.,A32,751(1976).50.紀廷瑋,以反應式濺鍍製備安定性氧化鋯(3YSZ)薄膜之研究,台灣科技大學材料科技研究所碩士論文,(2003).51.M.R.Alvarez,A.R.Landa,L.C.Otero-DiazandM.J.Torralvo,“StructuralandtexturalstudyonZrO2-Y2O3powders”J.Eur.Ceram.Soc.,18,1201(1998).52.M.Hasegawa,M.WatabeandK.Hoshino,“Sizedependenceofmeltingpointinsmallparticles”Surf.Sci.,256,1425(1981).53.I.W.ChenandY.H.Chiao,“MartensiticnucleationinZrO2”ActaMetall.,31,1627(1983).54.T.Chrasha,A.H.KingandC.C.Berndt,“Onthesize-dependentphasetransformationinnanoparticulatezirconia”Mater.Sci.Eng.A.,206,169(2002).55.D.Huang,K.R.Venkatachari,andG.C.Stangle,“Influemeoftheyttriacontentonthepreparationofnanocrystallineyttria-dopedzirconia”J.Mater.Res.,10,762(1995).56.R.C.Garvie,andM.F.Goss,“Intrinsicsizedependenceofthephasetransformationtemperatureinzirconiamicrocrystals”J.Mater.Sci.,21,1253(1986).57.S.Gutzov,“Phasecharacterizationofprecipitatedzirconia”J.Am.Ceram.Soc.,77,1649(1994).58.K.Sattler,J.Műhlbach,E.RechnagelandA.Reyes-Flotte,“Electronictime-of-flightmassspectrometerandseparatorformetalclusters”J.Phys.E:Sci.Instrum,13,673(1980).59.張立德,牟季美,奈米材料和奈米結構,滄海,台北(2002).60.P.BallandL.Garwin,“Scienceattheatomicscale”Nature,355,761(1992).61.J.Karch,R.BirringerandH.Gleiter,“Ceramicsductileatlowtemperature”Nature,330,556(1987).62.L.ZychandK.Haberko,“Zirconiananopowder–Itsshapingandsintering”DiffusionandDefectDataPt.B:SolidStatePhenomena,94,157(2003).63.V.OelgandS.Yoshio,“Synthesisandcolloidalprocessingofzirconiananopowder”J.Am.Ceram.Soc.,48,2489(2001).64.高濂,李蔚,奈米陶瓷,五南圖書出版公司,台北(2003).65.J.L.Woodhead,“ScienceofCeramics”Bri.Ceram.Soc.,4,105(1968).66.吳俊德,以化學共沉法製備鑭銦(鎵)鋯氧化物及其性質研究,成功大學化學工程學系碩博士論文,七月(2002).67.林淑萍,LaMnO3粉末之製備及其性質之研究,成功大學成大材料科學與工程學系碩士論文,七月(2001).68.J.Hunter,“Zeta-PotentialinColloidalScience-PropertiesandApplications”AcademicPress,London(1981).69.C.J.BrinkerandG.W.Scherer,“Sol-GelScience”AcademicPress,NewYork(1990).70.BoE.Sernelius,“Surfacemodesinphysics”Wiley-VCHVerlagBerlinGmbH,Berlin,137-138(2001).71.E.S.FreemanandB.Carroll,“Theapplicationofthermoanalyticaltechniquestoreactionkinetics.Thethermogravimetricevaluationofthekineticofthedecompositionofcalciumoxalatemonhydrate”J.Phy.Chem.,62,394(1958).72.H.J.BorchardtandF.Danields,“Theapplicationofdifferentialthermalanalysistothestudyofreactionkinetics”J.Am.Chem.Soc.,79,41(1957).73.A.R.Boccaccini,T.K.KhalilandM.Bűcker,“Activationenergyforthemullitizationofadiphasicgelobtainedfromfumedsilicaandboehmitesol”Mater.Lett.,38,116(1999).74.A.L.Campos,N.T.Silva,F.C.L.MeloandM.A.S.Oliveria,“Crystallizationkineticsoforthorhombicmullitefromdiphasicgels”J.Non-Cryst.Solids,304,19(2002).75.F.S.Yen,M.Y.WangandJ.L.Chang,“Temperaturereductionofθ-toα-phasetransformationinducedbyhigh-pressurepretreatmentsofnano-sizealuminapowdersderivedfromboehmite”J.Cryst.Growth,236,197(2002).76.F.S.Yen,J.L.ChangandP.C.Yu,“RelationshipsbetweenDTAandDILcharacteristicsofnano-sizealuminapowderduringθ-toα-phasetransformation”J.Cryst.Growth,246,90(2002).77.Y.F.Chen,M.C.WangandM.H.Hon,“Phasetransformationandgrowthofmulliteinkaolinceramics”J.Euro.Ceram.Soc.,24,2389(2004).78.A.Marotta,A.BuriandG.L.Valenti,“Crystallizationkineticsofgehlentiteglass”J.Mater.Sci.,13,2483(1978).79.A.MarottaandA.Buri,“Kineticsofdevitrificationanddifferentialthermalanalysis”Thermo.Acta.25,155(1978).80.K.Matusita,S.Sakka,T.MakiandM.Tashiro,“Studyoncrystallizationofglassbydifferentialthermalanalysis.EffectofaddedoxideoncrystallizationofLiO2-SiO2glasses”J.Mater.Sci.,10,94(1975).81.K.MatusitaandS.Sakka,“Kineticstudyofthecrystallizationofglassbydifferentialscanningcalorimetry”Phys.Chem.Glasses,20,81(1979).82.K.MatusitaandM.Tashiro,“Rateofhomogeneousnucleationinalkalidisilicateglasses”J.Non-Cryst.Solids,11,471(1973).83.K.Matusita,T.MakiandM.Tashiro,“EffectofaddedoxidesonthecrystallizationandphaseseparationofLi2O-3SiO2glasses”Phys.Chem.Glasses,15,106(1974).84.K.Matusita,S.SakkaandY.Matsui,“Determinationoftheactivationenergyforcrystalgrowthbydifferentialthermalanalysis”J.Mater.Sci.,10,961(1975).85.K.MatusitaandM.Tashiro,“EffectofaddedoxidesonthecrystallizationofLi2O-2SiO2glasses”Phys.Chem.Glasses,14,77(1973).86.許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,271(1996).87.S.G.Chen,Y.S.Yin,D.P.WangandJ.Li,“Reducedactivationenergyandcrystallinesizeforyttria-stabilizedzirconianano-crystals:anexperimentalandtheoreticalstudy”J.Cryst.Growth,267,100(2004).88.M.P.KlugandL.E.Alexander,“X-raydiffractionprocedureforpolycrystallineandamorphousmaterial”Wiley,NewYork,USA,634(1974).89.W.Stichert,F.Schüth,S.KubaandH.Knözinger,“Monoclinicandtetragonalhighsurfaceareasulfatedzirconiasinbutaneisomerization:COadsorptionandcatalyticresults”J.Catal.,198,277(2001).90.S.M.Herman,L.O.RodrigoandA.P.M.Alexandra,“Characterizationofpoly(vinylalcohol)/poly(ethyleneglycol)hydrogelsandPVA-derivedhybridsbysmall-angleX-rayscatteringandFTIRspectroscopy”Polymer,45,7193(2004).91.M.J.Roberts,M.D.BentlyandJ.M.Harris,“ChemistryforpeptideandproteinPEGylation”Adv.Drug.Deliv.Rev,54,459(2002).92.W.LiandL.Gao,“NanoZrO2(Y2O3)particlesprocessingbyheatingofethanol-aqueoussaltsolutions”Ceram.Inter.,27,543(2001).93.W.LiandL.Gao,“CompactingandsinteringbehaviorofnanoZrO2powders”Scr.Mater.,44,2269(2001).94.M.Q.LiandG.L.Messing,“CeramicTranscation”CeramicPowderScienceIII,12,129(1990).95.Y.T.Moon,H.K.ParkandD.K.Kin,“Preparationofmonodisperseandsphericalzirconiapowdersbyheatingofalcohol-aqueoussaltsolutions”J.Am.Ceram.Soc.,78,2690(1995).96.A.H.Heuer,N.Claussen,W.M.KrivenandM.Rühle,“StabilityoftetragonalZrO2particlesinceramicmatrices”J.Am.Chem.Soc.,65,642(1982).97.S.K.SahaandP.Pramanik,“Innovativechemicalmethodforpreparationofcalcia-stabilizedzirconiapowders”Br.Ceram.Trans.,94,123(1995).98.H.Toraya,M.YostimuraandS.Sõmiya,“Calibrationcurveforquantitativeanalysistothemonoclinic-tetragonalZrO2systembyX-raydiffraction”J.Am.Ceram.Soc.,67,C-199(1984).99.N.L.WuandT.F.Wu,“Enhcmcedphasestabilityfortetragonalzirconiainprecipitationsynthesis”J.Am.Ceram.Soc.,88,3225(2000).100.R.P.IngelandD.Lewis,“LatticeParametersandDensityforY2O3-StabilizedZrO2”J.Am.Ceram.Soc.,69,325(1986).101.I.Haase,Y.Li,E-M.Nicht,X.HuangandJ.Guo,“Preparationandcharacterizationofultrafinezirconiapowder”Ceram.Int.,18,343(1992).102.E.Kato,M.Hirano,Y.Kobaashi,K.Asoh,M.Mori,andM.Nakata,“Preparationofmonodispersezirconiaparticlesbythermalhydrolysisinhighlyconcentratedsolutions”J.Am.Ceram.Soc.,79,972(1996).103.J.D.Lin,andJ.G.Duh,“CoprecipitationandHydrothermalSynthesisofUltrafine5.5mol%CeO2-2mol%YO1.5-ZrO2Powders”J.Am.Ceram.Soc.,80,92(1997).104.R.C.Garvie,“TheOccarrenceofmetastabletetragonalzirconiaasacrystallineeffect”J.Phys.Chem.,69,1238(1965).105.R.C.Garvie,“Stabilizationofthetetragonalstructureinzirconiamicrocrystals”J.Phys.Chem.,82,218(1978).106.蘇品書,超微粒子材料技術,複漢出版社(1989).107.S.Brunauer,L.S.Deming,W.S.DemingandE.T.Teller,“Onatheoryofthevanderwaalsadsorptionofgases”J.Am.Chem.Soc.,62,1723(1940).108.P.K.Sharma,R.NassandH.Schmidt,“Effectofsolvent,hostprecursor,dopantconcentrationandcrystallitesizeonthefluorescencepropertiesofEu(III)dopedyttria”OpticalMater.,10,161(1998).109.S.W.Wang,X.X.Huang,J.K.GuoandB.S.Li,Mater.Lett.28,43(1996).110.A.Monika,R.D.G.MarkandH.H.Arthur,“SynthesisofZrO2andY2O3-dopedZrO2Thinfilmsusingself-assembledmonolayers”J.Am.Ceram.Soc.,80,2967(1997).111.A.Bertoluzza,C.Fagnano,M.A.Morelli,V.Gottardi,andM.Guglielmi,“Ramanandinfraredspectraonsilicagelevolvingtowardglass”J.Non-Cryst.Solids,48,117(1982).112.H.Tao,J.Xiuling,C.Dairon,L.Mengkai,Y.DuorongandX.Dong,“Synthesisofzirconiumsolsandfibersbyelectrolysisofzirconiumoxychloride”J.Non-Cryst.Solids,283,56(2001).113.M.Jarcho,C.H.Bolen,MB.Thomas,J.Bobick,J.F.KayandR.H.Doremus,“Hydroxylapatitesynthesisandcharacterizationindensepolycrystallineform”J.Mater.Sci.,11,2027(1976).114.M.C.Wang,“TheeffectofTiO2additiononthethermalbehaviorofsol-gelderivedβ-spodumenepowders”J.Mater.Res.,14,97(1999).115.W.D.Kingery,H.K.BowenandD.R.Uhlmann,“IntroductiontoCeramic”(JohnWileyandSons,NewYork),354(1976).116.RobertE.Reed-Hill,“PhysicalMetallurgyPrinciples”Pwspublishingcompany,262(1991).117.李正中,物理冶金學(上),國立台北科技大學材料及資源工程系,448(2001).118.S.W.FreimanandL.L.Hench,“KineticsofcrystallizationinLi2O-SiO2glasses”J.Am.Ceram.Soc.,51,382(1968).119.M.Z.C.Hu,R.D.Hunt,E.A.PayzantandC.R.Hubbard,“Nanocrystallizationandphasetransformationinmonodispersedultrafinezirconiaparticlesfromvarioushomogenousprecipitationmethods”J.Am.Ceram.Soc.,82,2313(1999).120.M.C.Wang,M.H.LinandH.S.Liu,“EffectofTiO2additiononthepreparationofβ-spodumenepowdersbysol-gelprocess”J.Mater.Res.,14196(1999).121.S.G.Chen,Y.S.Yin,D.P.WangandJ.Li,“Reducedactivationenergyandcrystallinesizeforyttria-stabilizedzirconianano-crystals:anexperimentalandtheoreticalstudy”J.Cryst.Growth.,267,100(2004).122.G.Baldinozzi,D.Simeone,D.GossetandM.Dutheil,“Neutrondiffractionstudyofthesize-Inducedtetragonaltomonoclinicphasetransitioninzirconiananocrystals”Phys.Rev.Lett.,90,216103(2003).123.A.P.Hynes,R.H.DoremusandR.W.Siegel,“Sinteringandcharacterizationofnanophasezincoxide”J.Am.Ceram.Soc.,85,1979(2002).124.T.G.NeighandJ.Wadsworth,“Superelasticbehaviourofafine-grained,yttria-stabilized,tetragonalzirconiapolycrystal(Y-TZP)”ActaMetall.Mater.,38,1121(1990).125.C.J.BrinkerandG.W.Scherer,“Sol-GelScience”(AcademicPress,Inc.,NewYork),196(1990).126.G.H.BogushandC.F.Zukoski,inUltrastructureProcessingofAdvancedCeramics,editedbyJ.D.MackenzieandD.R.Ulrich(JohnWiley&Sons,NewYork),477(1988).127.C.W.Hong,“Newconceptforsimulatingparticlepackingincolloidalformingprocess”J.Am.Ceram.Soc.,80,2517(1997).128.I.Zhitomirsky,“Cathodicelectrodepositionofceramicandorganoceramicmaterials.Fundamentalaspects,”Advancesincolloidandinterfacescience,97,279(2002).129.N.Koura,T.Tsukamoto,H.ShojiandT.Hotta,“Preparationofvariousoxidefilmsbyanelectrophoreticdepositionmethod:Astudyofthemechanism”Jpn.J.Appl.Phys.,34,1643(1995).130.翁鋕榮,電泳沉積法(EPD)在釔安定氧化鋯(YSZ)薄膜化之研究,成功大學材料科學與工程學系碩士論文,六月(2003).131.A.J.BardandL.R.Faulkner,“ElectrochemicalMethods:FundamentalsandApplications”2ndEd.,JohnWiley&SonsInc.,161(2001).
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
LaMnO3粉末之製備及其性質之研究
2.
奈米微晶二氧化鋯作為閘極氧化層之製備與特性研究
3.
以反應式濺鍍製備安定性氧化鋯(3YSZ)薄膜之研究
4.
電泳沉積法(EPD)在釔安定氧化鋯(YSZ)薄膜化之研究
5.
濕式化學法製備Bi2-xZrxO3+x/2粉體應用於X光不透性之研究
1.
林明地(民89)。
校長專業發展課程設計理念與教學方法之探討。
教育資料與研究,37,10-20。
2.
李芝靜(民92)。
學習型組織導向的中、小學校長領導風格及組織文化自評量表建構之研究。
教育研究資訊,11(6),103-134。
3.
12. 張英信/黃欣怡。
(2003年01月)。
高速、大容量需求殷切光儲存產業將進入世代交替年代。
新電子科技雜誌。
4.
8. 黃得瑞。
(2000年)。
世代交替的明星光碟-DVD。
ITIS產業論壇。
5.
7. 林穎毅。
(2005年1月)。
平穩中求成長的2004全球光電產業。
光連雙月刊。
55期。
6.
范熾文(民93)。
國小教師組織承諾與學校組織績效關係之研究。
教育研究資訊,12卷1期,29-48。
7.
張慶勳(民93)。
國小校長領導風格與行為之研究。
屏東師院學報,20,1-38。
8.
陳昆仁(民92)。
九年一貫課程的校長領導理念與藝術。
教育資料與研究,53,80-89。
9.
黃國隆(民75)。
中學教師的組織承諾與專業承諾之研究。
國立政治大學學報,55,55-83。
10.
潘慧玲、梁文蓁、陳宜宣(民89)。
台灣近十年教育領導碩博士論文分析:女性主義的觀點。
婦女與兩性學刊,11,151-190。
11.
蔡進雄(民87)。
教師組織承諾研究之回顧與前瞻。
教育資料文摘,241,133-141。
12.
賴佳敏、張德銳(民92)。
「她的故事」—一位國小女校長領導風格之個案研究。
學校行政雙月刊,26,16-34。
1.
3mol%氧化釔部分安定氧化鋯(3Y-PSZ)奈米粉體相變態與微晶成長之研究
2.
溶膠-凝膠法製備介孔釔安定氧化鋯
3.
奈米微晶二氧化鋯作為閘極氧化層之製備與特性研究
4.
Ti-6Al-4V合金被覆生醫用磷酸鹽
5.
三嗪樹枝狀高分子之合成及其與粧品原料結合性之探討
6.
添加物對釔安定氧化鋯/氧化鋁複合材料機械性質之影響
7.
氧化釔(Y2O3)粒體粗化現象觀察
8.
添加物對氧化鋯燒結及物理性質的影響
9.
以溶膠凝膠法製備Y2O3-Al2O3薄膜及其應用於閘極介電層之特性研究
10.
溶膠凝膠法製備具中孔洞結構釔安定氧化鋯之製程與性質探討
11.
奈米級氧化鋯之相變動力學與燒結性質之研究
12.
二莫耳百分比之釔安定氧化鋯奈米粉末的性質研究
13.
添加氮化鈦於釔安定氧化鋯微觀結構分析及應用
14.
時效處理對Sn-9Zn-1.5Ag-xBi系無鉛銲錫合金機械性質之研究
15.
Na2O之添加對(1-x)Li2O-xNa2O-Al2O3-4SiO2玻璃之性質及結晶性的影響
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1Protocol (Translated to Chinese) - JoVE
Scientific Article | 一种用于在1000℃和1400℃之间的温度的制造多孔纳米结构的氧化钇稳定的氧化锆(YSZ)的支架协议被呈现。...
- 2Yttria Stabilized Zirconia - an overview | ScienceDirect Topics
Yttria-stabilized zirconia (YSZ) is currently the mostly commonly used electrolyte due to its acc...
- 3YSZ-釔安定氧化鋯 - 台灣陶瓷學會Taiwan Ceramic Society
釔安定氧化鋯(英文:Yttria-stabilized zirconia,YSZ) 為常見之陶瓷材料,主要藉由添加氧化釔來改變二氧化鋯的相變態溫度範圍,使其可於室溫下穩定的 ...
- 4通过纳米氧化钇稳定的二氧化锆(YSZ)的支架的高温加工…
Scientific Video Article | 一种用于在1000℃和1400℃之间的温度的制造多孔纳米结构的氧化钇稳定的氧化锆(YSZ)的支架协议被呈现。...
- 5電泳沉積法(EPD)在釔安定氧化鋯(YSZ)薄膜化之研究 - 碩博士 ...
本研究利用電泳沉積法製備YSZ電解質薄膜,因其具製程簡易、設備成本低、產品外型限制少及適合商業化大量生產等優點,於前人的相關研究中,利用電泳沉積法可成功的將YSZ ...