Bayesian machine learning notebooks - GitHub
文章推薦指數: 80 %
Notebooks about Bayesian methods for machine learning - GitHub - krasserm/bayesian-machine-learning: Notebooks about Bayesian methods for machine learning. Skiptocontent {{message}} krasserm / bayesian-machine-learning Public Notifications Fork 397 Star 1.5k NotebooksaboutBayesianmethodsformachinelearning License Apache-2.0license 1.5k stars 397 forks Star Notifications Code Issues 5 Pullrequests 0 Actions Projects 0 Wiki Security Insights More Code Issues Pullrequests Actions Projects Wiki Security Insights krasserm/bayesian-machine-learning Thiscommitdoesnotbelongtoanybranchonthisrepository,andmaybelongtoaforkoutsideoftherepository. dev Branches Tags Couldnotloadbranches Nothingtoshow {{refName}} default Couldnotloadtags Nothingtoshow {{refName}} default 3 branches 4 tags Code Latestcommit krasserm AddmissingreferencetoBOtutorial … 22c0c6c Jan19,2021 AddmissingreferencetoBOtutorial 22c0c6c Gitstats 134 commits Files Permalink Failedtoloadlatestcommitinformation. Type Name Latestcommitmessage Committime autoencoder-applications bayesian-linear-regression bayesian-neural-networks bayesian-optimization gaussian-processes latent-variable-models noise-contrastive-priors .gitignore LICENSE README.md Viewcode README.md Bayesianmachinelearningnotebooks ThisrepositoryisacollectionofnotebooksaboutBayesianMachineLearning.Thefollowinglinksdisplay someofthenotebooksvianbviewertoensureaproperrenderingofformulas. Dependenciesarespecifiedinrequirements.txtfilesinsubdirectories. Bayesianregressionwithlinearbasisfunctionmodels. IntroductiontoBayesianlinearregression.ImplementationwithplainNumPyandscikit-learn.Seealso PyMC3implementation. Gaussianprocesses. IntroductiontoGaussianprocessesforregression.ImplementationwithplainNumPy/SciPyaswellaswithscikit-learnandGPy. Gaussianprocessesforclassification. IntroductiontoGaussianprocessesforclassification.ImplementationwithplainNumPy/SciPyaswellaswithscikit-learn. SparseGaussianprocesses. IntroductiontosparseGaussianprocessesusingavariationalapproach.ExampleimplementationwithJAX. Bayesianoptimization. IntroductiontoBayesianoptimization.ImplementationwithplainNumPy/SciPyaswellaswithlibrariesscikit-optimize andGPyOpt.Hyper-parametertuningasapplicationexample. VariationalinferenceinBayesianneuralnetworks. DemonstrateshowtoimplementaBayesianneuralnetworkandvariationalinferenceofweights.Exampleimplementation withKeras. Reliableuncertaintyestimatesforneuralnetworkpredictions. UsesnoisecontrastivepriorsforBayesianneuralnetworkstogetmorereliableuncertaintyestimatesforOODdata. ImplementedwithTensorflow2andTensorflowProbability. Latentvariablemodels,part1:GaussianmixturemodelsandtheEMalgorithm. Introductiontotheexpectationmaximization(EM)algorithmanditsapplicationtoGaussianmixturemodels. ImplementationwithplainNumPy/SciPyandscikit-learn.Seealso PyMC3implementation. Latentvariablemodels,part2:Stochasticvariationalinferenceandvariationalautoencoders. Introductiontostochasticvariationalinferencewithavariationalautoencoderasapplicationexample.Implementation withTensorflow2.x. Deepfeatureconsistentvariationalautoencoder. Describeshowaperceptuallosscanimprovethequalityofimagesgeneratedbyavariationalautoencoder.Example implementationwithKeras. ConditionalgenerationviaBayesianoptimizationinlatentspace. DescribesanapproachforconditionallygeneratingoutputswithdesiredpropertiesbydoingBayesianoptimizationin latentspacelearnedbyavariationalautoencoder.ExampleapplicationimplementedwithKerasandGPyOpt. About NotebooksaboutBayesianmethodsformachinelearning Topics machine-learning bayesian-methods gaussian-processes bayesian-optimization bayesian-machine-learning variational-autoencoder Resources Readme License Apache-2.0license Stars 1.5k stars Watchers 71 watching Forks 397 forks Releases 3 v-0.3 Latest Dec12,2020 +2releases Packages0 Nopackagespublished Contributors3 Languages JupyterNotebook 99.8% Python 0.2% Youcan’tperformthatactionatthistime. Yousignedinwithanothertaborwindow.Reloadtorefreshyoursession. Yousignedoutinanothertaborwindow.Reloadtorefreshyoursession.
延伸文章資訊
- 1A Gentle Introduction to Bayes Theorem for Machine Learning
- 2Bayesian Machine Learning
The Bayesian framework for machine learning states that you start out by enumerating all reasonab...
- 3foundations of computational agents -- 7.8 Bayesian Learning
- 4Bayesian machine learning - DataRobot AI Cloud
Bayesian ML is a paradigm for constructing statistical models based on Bayes' Theorem. Learn more...
- 5What is Bayesian machine learning? - Quora
Machine learning is a set of methods for creating models that describe or predicting something ab...