人工智慧、機器學習和深度學習是什麼? - CloudMile
文章推薦指數: 80 %
深度學習是更進階的機器學習分支,同樣都是為了建立迴歸/分類模型,唯一的差異在於深度學習使用人工類神經網路,而非其他統計模型。
因此,您也可以將DL 視為ML 的次領域。
人工智慧、機器學習和深度學習是什麼?在本文章中,我們將會解釋人工智慧、機器學習和深度學習到底是什麼東西。
大多數人很容易就會弄錯這些所謂的「流行語」的意思,並且經常將它們混為一談。
那麼,它們到底是什麼?
我們來逐一分析這些名詞吧。
群體智慧是指分散系統的集體行為(例如一群鳥的移動方式),這已經在處理最佳化問題的人工智慧中實行。
(來源:STRATIO)icon/enlarge簡言之,自從人工智慧這個名詞被創造出來後,已經涵蓋了各種不同的方法;從以指令碼編程的簡單機器到自然語言生成,都算是人工智慧的應用。
它甚至還能涉及到哲學問題,例如什麼東西能視為「智慧」和「思考」?當然,為了讓AI真的派得上用場,又不會像《魔鬼終結者》電影演的那麼可怕,人們已經學會著重在更適合的AI主題,例如機器學習和深度學習。
ML(機器學習)-取得更好結果的方法
機器學習是AI的次領域,主要是透過數學方式開發可執行特定工作的模型。
這說法聽起來還是相當模糊,我們會舉例說明一下。
icon/enlarge想像您手邊有一組資料,包含學生的學習時間與各自的考試成績。
假設花費的學習時間與考試分數之間有某種關係,我們可以利用機器學習模型(結構通常包含一些數學函數)處理資料,然後試著朝特定方向調整參數,讓模型能夠產生最接近實際資料的結果。
由於這項技術不仰賴人類使用硬式編碼將特定規則寫入模型,而是由模型(在有限功能範圍內)自行「搜尋」最佳參數,因此我們將這個過程視為「學習」。
icon/enlarge機器學習可視為一種逼近法,所以只要提供更多資料,就能執行更加準確的預測。
在過去數十年間,學者開發出多種機器學習模型;這些模型大致上可分成監督式學習與無監督式學習。
監督式學習是指根據標籤化的輸入資料進行學習的演算法。
標籤化資料可視為模型的真值(groundtruth);在學習階段中,模型旨在縮小預測結果與真值之間的差異。
因此,可以說真值會在學習期間「監督」模型。
我們大多將監督式學習用於迴歸問題和分類問題。
另一方面,無監督學習則是指使用無標籤資料進行訓練的模型。
因為沒有一項可以作為標竿的真值,這種方法僅適用於為具有機率密度的輸入資料建立模型。
儘管產生的結果準確性可能無法與監督式學習相提並論,但在資源不足、無法取得足夠標籤化資料的情況下,還是能產生有用的分析結果。
分群(clustering)和降維(dimensionalityreduction)都是無監督學習的經典應用。
若要進一步認識機器學習模型,可參考一下這篇文章,深入瞭解不同類型的ML模型。
深度學習-更加複雜的ML(而且運算也多上許多)
深度學習是更進階的機器學習分支,同樣都是為了建立迴歸/分類模型,唯一的差異在於深度學習使用人工類神經網路,而非其他統計模型。
因此,您也可以將DL視為ML的次領域。
但為什麼它現在變得那麼熱門?
顧名思義,人工類神經網路是人工神經元構成的網路;而人工神經元則是一個數學單元,可在對輸入值進行簡單計算後,提供一些輸出值。
它跟實際的神經細胞非常相似,因為後者的作用基本上大同小異:接收電子訊號並產生輸出。
而人工類神經網路也在做相同的事:它接收資料值,讓網路中的所有神經元處理資料值,再輸出一些終值。
由於這類網路需要很多層神經元(而且層層堆疊)才能運作,因此學者加了「深度」二字,強調其結構之複雜性。
人工類神經網路的一般結構。
(來源:VIASAT)icon/enlarge有人可能會想,為什麼這麼簡單的神經元,在大量平行和成串組合在一起後,居然能集體造就出AI產業中最出色的應用。
這其實不難想像,只要將它與「實際的」生物演化過程比較就行了。
單細胞生物本身的機能相當有限,不過,隨著大自然將更多細胞組合在一起,構成多細胞生物,更加複雜的生命形態也隨之誕生。
然後,無脊椎動物演化成脊椎動物,魚類演化成靈長類,穴居人演化成智人(亦即我們),不只建造金字塔,還能發射火箭上太空。
如果您可以體認到一大群細胞的力量,大概就能瞭解為什麼深度學習如此強大。
當然,有好必定有壞。
使用深度學習,必須提供大量資料,才足以訓練出能用的統計模型(這也是為什麼「大數據」一詞會隨著深度學習的興起而出現)。
再來,若要處理所有資料,必須具有強大的硬體,方可進行數以萬計的運算迭代。
即使如此,深度學習已經向我們展示它無與倫比的可能性。
以Facebook和Pinterest為例,Pinterest利用深度學習進行更好的影像分類,而Facebook則運用類似技術,在使用者上傳相片時進行臉部辨識。
(好比上傳照片時,Facebook常在您還沒tag好友之前就能自動顯示小方塊指出您的好友。
)
除了社群媒體外,深度學習也同時支援我們日常生活中使用的工具,例如Siri、Gmail(垃圾郵件偵測)、自動駕駛車等。
工程師將深度學習視為AI的未來,因為它為ML的實際應用帶來接近無限的可能性。
總結
簡單來說,DL包含在ML中,而ML又包含在AI領域中。
多虧了深度學習,我們的生活才能變得更加便利。
若要將AI實際運用在個人事業上,維持自己的競爭力,CloudMile能透過「AI服務」提供支援,透過完整端對端AI解決方案可無縫整合至您的事業。
立即致電02-2757-6077,由CloudMileAI專業顧問為您服務。
AI(人工智慧)-模仿生物的機器
當AlanTuring(艾倫.圖靈)在1940年代率先提出電腦的概念時,機器只要能夠進行數學計算就可被視為具備人工智慧。
隨著科技演進,AI成為更加複雜的領域,泛指模仿動物或人類行為的機器或應用程式。
儘管最近數十年來,人們對於AI的定義更加偏重在強調具備人類認知功能(例如「學習」階段和問題解決能力),教科書其實仍舊納入許多借用生物學概念的演算法(如:群體智慧、基因演算法)。
相關文章GoogleWorkspace升級協作體驗,多項AI新功能一次看斷電是否就等於斷網?從全台大停電看網路連線服務資料安全更上層樓的關鍵:機密運算混合辦公資安不是問題!Cloudflare「零信任網路存取」保護企業員工資產訂閱CloudMile電子報所有CloudMile最新消息、產品動態、活動資訊和特別優惠,立即掌握。
名字 *姓氏 *公司 *電子信箱 *我已閱讀並同意CloudMile 隱私權政策 與 個資同意書.送出聯絡我們沒問題,我們可以幫您!只要撥打以下電話,即可聯繫銷售了解更多資訊。
新加坡:+65-6993-2383馬來西亞:+603-2280-6902香港:+852-3481-0068台灣:+886-2-2757-6077撥打電話聯絡我們
延伸文章資訊
- 1什麼是深度學習?
深度學習( DL ) 是機器學習(ML) 的一個子領域,它使用的算法類似於人腦中使用神經元的方式。深度學習根據人腦的工作方式創建人工神經網絡及其不同層級。深度學習是一種 ...
- 2深度學習機構與訓練解決方案| NVIDIA
NVIDIA 深度學習機構(DLI)提供人工智慧、加速運算和加速資料科學的實作訓練課程。
- 33 分鐘搞懂深度學習到底在深什麼 - 泛科技
深度學習其實很簡單,就跟把大象放進冰箱一樣,只需三個步驟:「打開冰箱、放進大象、關上冰箱門。」專攻語音辨識領域深度學習的台大電機系教授李宏毅說, ...
- 4什麼是深度學習?
深度學習是一種機器學習,會使用人工神經網路,讓數位系統能夠根據非結構化、未標記的資料來學習和做出決策。 一般來說,機器學習會訓練AI 透過資料學習已獲得的經驗、 ...
- 5什麼是深度學習 - 語音處理實驗室
因為深度學習中,人類提供的函數集是由類神經網. 絡(artificial neural network)的結構所定義。 類神經網絡和人腦確實有幾分相似之處,我們都.