Sensitive and critical periods in visual sensory deprivation
文章推薦指數: 80 %
This observation of a critical period of susceptibility to deprivation was among the first to reveal the high degree of sensitivity of the ... ThisarticleispartoftheResearchTopic Whatwelearnandwhenwelearnit:sensitiveperiodsindevelopment Viewall 7 Articles Articles Abstract PlasticityintheVisualSystem ExtremeCircumstances:TheCaseofCompleteBlindness CrossmodalPlasticityinBlindness:BoundedbyCriticalorSensitivePeriods? ImplicationsforSightRestoration FutureConsiderations ConflictofInterestStatement References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.Psychol.,26September2013 |https://doi.org/10.3389/fpsyg.2013.00664 Sensitiveandcriticalperiodsinvisualsensorydeprivation PatriceVoss1,2* 1CognitiveNeuroscienceUnit,MontrealNeurologicalInstitute,McGillUniversity,Montreal,QC,Canada2InternationalLaboratoryforBrain,MusicandSoundResearch,Montreal,QC,Canada Whilethedemonstrationofcrossmodalplasticityiswellestablishedincongenitalandearlyblindindividuals,greatdebatestillsurroundswhetherthosewhoacquireblindnesslaterinlifecanalsobenefitfromsuchcompensatorychanges.Noproperconsensushasbeenreacheddespitethefactthataproperunderstandingofthedevelopmentaltimecourseofthesechanges,andwhethertheiroccurrenceislimitedto—orwithin—specifictimewindows,iscrucialtoourunderstandingofthecrossmodalphenomena.Anextensivereviewoftheliteraturerevealsthatwhilethemajorityofinvestigationstodatehaveexaminedthecrossmodalplasticityavailabletolateblindindividualsinquantitativeterms,recentfindingsrathersuggestthatthisreorganizationalsolikelychangesqualitativelycomparedtowhatisobservedinearlyblindness.Thisobviouslycouldhavesignificantrepercussionsnotonlyforthetrainingandrehabilitationofblindindividuals,butforthedevelopmentofappropriateneuroprosthesesdesignedtoaidandpotentiallyrestorevision.Importantparallelswillalsobedrawnwiththecurrentstateofresearchondeafness,whichisparticularlyrelevantgiveninthedevelopmentofsuccessfulneuroprostheses(e.g.,cochlearimplants)forprovidingauditoryinputtothecentralnervoussystemotherwiseaurallydeafferented.Lastly,thispaperwilladdressimportantinconsistenciesacrosstheliteratureconcerningthedefinitionofdistinctblindgroupsbasedontheageofblindnessonset,andproposeseveralalternativestousingsuchacategorization. Thescientificliteraturehasgrownrichinresearchillustratingtheremarkableabilityofthebraintoreorganizeitselffollowingsensoryloss.Inparticular,visuallydeafferentedregionswithintheoccipitalcortexofearlyblindindividualshavebeenrepeatedlyshowntobefunctionallyrecruitedtocarryoutawidevarietyofnon-visualtasks.Whilethedemonstrationofcrossmodalplasticityiswellestablishedincongenitally(CB)andearlyblind(EB)individuals,significantdebatesurroundswhetherthosewhobecomeblindlaterinlifecanalsobenefitfromsuchcompensatorychanges.Forinstance,severalinitialneuroimagingreports(e.g.,Cohenetal.,1999;Sadatoetal.,2002)suggestedthatthecrossmodalplasticphenomenaobservedintheblindarelikelyregulatedbyaparticularcriticalperiodbeyondwhichnoobservablechangesoccur.However,anumberofotherstudies(e.g.,Bücheletal.,1998;Burtonetal.,2002a,b;Vossetal.,2006)havedemonstratedthatsuchcrossmodalplasticphenomenamightinsteadberegulatedbyasensitiveperiod,asopposedtoamorerigidcriticalperiod,wheresensoryexperiencehasarelativelygreaterinfluenceonbehavioralandcorticaldevelopment,butisnotnecessarilyexclusivetothatperiod.Consequently,worktodatehasfocusedontheamountofmeasurablecrossmodalplasticityasafunctionoftheageofblindnessonset,thusmoreorlessassumingthatdifferencesobservedbetweengroupsofindividualswithdifferingonsetsarequantitativeinnature(i.e.,individualswithanearlierblindnessonsetwillshowmorecrossmodalrecruitmentofoccipitalcortexthanthosewithalateronset).Nonetheless,inlightofrecentfindings,onecouldarguethattheplasticchangesthatoccurfollowingblindnessdonotonlychangequantitativelywithincreasingageofblindnessonset,butalsoqualitativelyinthatcrossmodalrecruitmentofoccipitalcortexmightreflectdifferentprocessesandpurposesforEBandlateblind(LB)individuals.Forinstance,thefunctionalrelevanceofcrossmodalplasticityobservedinlate-onsetblindnesshasyettobeclearlyestablished,whereasithasbeenclearlylinkedtobehaviorinEB;thusevenifweweretoobservesimilarlevelsofcrossmodalrecruitmentofvisualareasinbothEBandLB,theobservedoccipitalactivationsmaynotsharethesamefunctionalorbehavioralrelevanceforbothblindgroups.Asaresult,weshouldperhapsnolongersimplyinvestigatethepresenceorabsenceofplasticityinearlyandlate-onsetblindness,butmoreimportantlyaskourselveshowtheplasticprocessesandmechanismschangewithincreasingageofonset.Evidencesupportingthisclaimwillbediscussedindetailbelow,followingabriefprimeronsomegeneralplasticpropertiesofthevisualsystemandanin-depthreviewoffindingsdepictingthecrossmodalplasticityphenomenonobservedinearlyblindness. PlasticityintheVisualSystem Muchofwhatweknowtodayonthebrainanditsplasticproperties,weoweingreatparttothepioneeringworkofNobellaureatesDavidH.HubelandTorstenN.Wieselperformedintheearly1960s.Theirinvestigationsontheeffectsofmonoculardeprivationrevealedbothanearlyinnateperiodofdevelopmentandalatercriticalperiodofexperience-dependantplasticity.Indeed,theirchoicetodepriveyoungkittensofvisioninonlyoneeyeallowedthemtodirectlycomparetheresponsesofbotheyes,thusactingasaninternalcontrolforvariationsinthedevelopmentalstageoftheanimal.Theyshowedthatmonocularlydeprivingnewbornkittensforaleastamonthinducedadramaticshiftintheprimaryvisualcortex(V1)responsesfromthedeprivedeyetothenon-deprivedeye(over98%oftherecordedneuronswereunresponsivetoinputtotheformerlydeprivedeye)(WieselandHubel,1963).Followupstudiesrevealedthatwhenkittenswerebinocularlydeprivedfrombirth,morethanhalfofthecellscontinuedtorespondtobotheyes(WieselandHubel,1965),andthatwheneyeswerekeptfromworkingtogetherbyalternatingocclusionofthetwoeyes,nearlyallofthecellsstoppedrespondingtobotheyesandwereinsteaddrivenbyoneeyeortheother(HubelandWiesel,1965).Thesefindingsledthemtohypothesizethatthelossofdeprived-eyeresponseswasaresultofcompetitiveprocesseswiththenon-deprivedeyeandnotsimplyfromdisuse. Ofgreaterrelevancetothecurrentspecialtopic,HubelandWiesel(1970)laterinvestigatedwhetherthesephysiologicaleffectsweregovernedbyaperiodofsusceptibility;thatiswhentheseeffectsweregreatestandhowlongtheylasted,thedurationofdeprivationnecessarytoproduceachange,aswellastherelationshipbetweenthetimingofdeprivationandtheabilitytorecovernormalfunction.Toaddresstheseissues,theydeprivedkittensforvariousperiodsoftimeatdifferentagesandcomparedneuralresponsesinthestriatecortexfrombothmonocularinputs.Importantly,theyfirstshowedthataperiodofsusceptibilitydidinfactexist,startingearlyinthe4thweekfollowingbirthandremaininghighforapproximatelythreeweeks,onlytoslowlydeclineuntiltheendofthethirdmonth.Whatreallyhighlightstheimportanceofthisperiodisthefactthatamonoculardeprivationoccurringduringthefirstthreemonths—evenoneasshortas3or4days—leadstoalastingandlargelyirreversibledeclineintheproportionofcellsrespondingtothedeprivedeye,whereasverylongperiodsofmonoculardeprivationintheadultcathasverylittletonophysiologicaleffects(HubelandWiesel,1970).Thisobservationofacriticalperiodofsusceptibilitytodeprivationwasamongthefirsttorevealthehighdegreeofsensitivityoftheimmaturebraintoanalteredsensorystateduringaveryrestrictedtimeperiodinlife. Itisprobablypertinentatthispointtomakeanimportantdistinctionbetweentworelatedconcepts;thatisthedifferencebetweenasensitiveperiodandacriticalperiod.Whilebothconceptshaveattimesbeeninterchangeabletoacertainextentintheliterature,theyarebestsegregatedtoexplaindistinctdevelopmentalphenomena.Sensitiveperiodsgenerallyrefertoalimitedtimewindowindevelopmentduringwhichtheeffectsofexperienceonthebrainareunusuallystrong,whereasacriticalperiodisdefinedasaspecialclassofsensitiveperiodswherebehaviorsandtheirneuralsubstratesdonotdevelopnormallyifappropriatestimulationisnotreceivedduringarestrictedperiodoftime(Knudsen,2004).Theabove-mentionedstudiesonmonoculardeprivationareperfectexamplesofcriticalperiods,wheretheabsenceofnormalsensoryinputduringaspecifictimewindowleadstoirreversiblechangesinbrainfunctionandconnectivity.Indeed,ifnormalbinocularinputisnotachievedbythreemonthsofageinkittens,nocellswilleverrespondtoinputfromtheoccludedeye,evenifvisualinputtotheoccludedeyeisrestoredafterthecriticalperiod. Sofarthefocushasbeenonananimalmodelofmonoculardeprivationtoillustratetheimportanceoftimewindowsindevelopmentduringwhichcompetitiveprocessesdeterminetheroleplayedbyindividualcellsintheprimaryvisualcortex.Animportantquestionthathasnotbeenraisedyetconcernswhathappenswhennovisualinputreachesthevisualprocessingcentersofthebrain(i.e.,binoculardeprivation).Doesthelackofsensoryexperienceleadtodisuse-relatedatrophicprocesseswithintheseregions?Oraretheirstillcompetitiveprocessesatplaytogaincontrolofoccipitalcorticalregionsdespitethelackofvisualinput?Suchquestionshaveledtomanyinvestigationsandrevealedthattheblindconstituteexcellentmodelsforstudyingtheplasticnatureofthebrain(BavelierandNeville,2002;Pascual-Leoneetal.,2005).Thefollowingsectionwilldescribeindetailwhatwecurrentlyknowabouttheconsequencesofcompleteblindnessinhumanadults,bothintermsofbrainandbehavioralchanges. ExtremeCircumstances:TheCaseofCompleteBlindness FunctionalandBehavioralAdaptations Wehaveaprettygoodunderstandingofhowthebrainprocessesvisualinformationandofthespecificrolesplayedbyvariousregionsthroughoutthevisualsystem.However,untilrecently,wehadverylittleknowledgeconcerningwhathappenedtotheseregionswhenanindividualwascutofffromthevisualworldduetoperipherallesionsofthevisualsystem(e.g.,damagetothelens,retinaoropticnerve)andthusleadingtocompleteblindness.Evidently,progresshasrapidlyincreasedwiththeadventofspecializedneuroimagingtoolsthatallowedforthein-vivoinvestigationofthebrain.Thefirstneuroimagingstudiesusedpositronemissiontomography(PET)tostudytheglucosemetabolismoftheoccipitalcortexatrestinbothEB—individualsthatbecomeblindduringthefirstfewyearsoflife(seeBox1)—andsightedindividuals(Wanet-Defalqueetal.,1988;Veraartetal.,1990).Itwasshownthattheglucosemetabolismobservedinoccipitalcortexofblindindividualswasgreaterthanthatobservedinblindfoldedsightedsubjects,butcomparabletowhatwasobservedwhentheblindfoldwasremoved.TheseinitialobservationsobviouslyraisedimportantquestionsonthefunctionalityoftheEB'svisualcortex.Subsequently,Uhletal.(1991,1993)wereamongthefirsttoshowtask-relatedactivationsinresponsetotactilestimulationwithinoccipitalcortexofEB,andshortlythereaftercameamultitudeofbrainimagingstudiesshowingthattheiroccipitalcortexcouldbecrossmodallyactivatedbyavarietyoftactile(Sadatoetal.,1996;Bücheletal.,1998;Burtonetal.,2002a)andauditory(Weeksetal.,2000;Arnoetal.,2001;Burtonetal.,2002b)tasks. BOX1 Box1. Despitetheimpressivenatureoftheobservedcrossmodalactivationsintheoccipitalcortex,importantquestionsstillremainedregardingtheirexactsignificance.Aretheytrulytask-relatedorsimplyanepiphenomenonassociatedwiththeabsenceofvisualinput?Severalfindingssuggestthattheoccipitalcortexdoesindeedplayafunctionalroleinprocessingnon-visualinformationfollowingearlyblindness.ThefirstlineofevidencestemsfromresearchdemonstratingstrongcorrelationsbetweenbrainactivityinoccipitalcortexofEBandbehavioralperformanceonavarietyoftasksincludingverbalmemory(Amedietal.,2003),episodicretrieval(Razetal.,2005)andsoundlocalization(Gougouxetal.,2005).ThisisperhapsnotsosurprisinggiventhewealthofevidencedocumentingthedevelopmentofheightenedcompensatoryperceptualandcognitiveabilitiesinEB(seeVossetal.,2010).Auditoryspatialabilitiesinparticularhavebeenheavilyinvestigatedinlightofsubstantialquestionsconcerningablindperson'sabilitytoformadequatespatialrepresentationsintheabsenceofvision;consequently,anabundanceofcompellingevidencelinkingoccipitalfunctioningandsoundlocalizationinearlyblindnesshasbeenbroughttolight(seeFigure1;seealsoCollignonetal.,2009). FIGURE1 Figure1.Functionalrelevanceofcrossmodalplasticity.Illustratedherearedemonstrationsofthefunctionalroleplayedbytheoccipitalcortexinspatialhearingtasksinearlyblindindividuals.Thetoprow(panelA)depictsthefindingthatoccipitalactivityinearlyblindindividuals(blackdots)waspredictiveoftheirperformanceinasoundlocalizationtask(Gougouxetal.,2005).Thebottomrow(panelB)illustratestheeffectthatTMShaswhenappliedtotheoccipitalcortex(blackbars)whenbothblindandsightedsubjectswereaskedtolocalizesounds(Collignonetal.,2007).ComparedtoSham-TMS(whitebars),TMSappliedoveroccipitalcortexreducedtheperformanceofearlyblindsubjectsonly,whichisindicativethatthisregionisfunctionallyrelevantforspatialprocessingintheearlyblind.AdaptedwithpermissionfromGougouxetal.(2005)andCollignonetal.(2007).*P<0.05. Additionalevidencesupportingthefunctionalrelevanceofthecrossmodalrecruitmentofoccipitalcorticesinearlyblindnesscomesfromtheuseoftrans-magneticstimulation(TMS)whichenablesinferencesoncausalityviathetemporarydisruptionofcorticalfunctioningwithinveryspecificbrainareas.Indeed,theapplicationofTMStooccipitalareassignificantlyhamperstheperformanceofEBintasksassessingsoundlocalization(Collignonetal.,2007),verbalmemory(Amedietal.,2004)andBrailleidentification(Cohenetal.,1997),whileleavingtheperformancescoresofsightedindividualsunaffected.PerhapsthemoststrikingformofevidencecomesfromablindexpertBraillereader,whocompletelylosttheabilitytoreadBraillefollowinganischemicstrokecausingbilaterallesionstoheroccipitalcortex(Hamiltonetal.,2000).Similarly,amiddle-agedblindindividualwasreportedashavingtransientdifficultiesinreadingBraillewhileheexperiencedtemporaryvisualhallucinations(Maedaetal.,2003).ThefactthathisabilityreturnedtonormalfollowingthehallucinationssuggestsacausalrelationshipbetweenoccipitalfunctioningandBraillereadinginthisblindindividual.Takentogether,thesefindingssuggestthatoccipitalcortexmightstillservesomefunctionalpurposefollowingblindness.Whatisnotclearatthispoint,however,ishowthesecrossmodalplasticadaptationscometobe?Properlyunderstandinghownon-visualsensoryinputsareprocessedwithinoccipitalcortexisachallengingtaskandisdiscussedinthefollowingsection. CrossmodalPlasticity:UnderlyingMechanisms Ashighlightedearlier,manyneuralprocessesandconnectionsaretheresultofcompetitiveinteractionsbetweendifferentneuronsandsensoryinputs,andaspreviouslysuggestedbyPascual-LeoneandHamilton(2001),visualinputsmightactuallygainaccesstooccipitalregionsbymeansofsuchcompetitiveprocesseswiththeothersensesduringearlydevelopment.Onepopularhypothesisisthatoccipitalcortexmightbebydesignbestsuitedtocarryoutpredeterminedspecializedfunctionsforwhichthevisualsystemprovidesthemostadequatesensoryinput.However,inthecaseofblindness,othersensesprovidingpotentiallyrelevantsensoryinputcouldgainaccesstothe“visual”regionsofthebrainforfurtherprocessing.Suchaviewthereforeassumesthatthefunctionalspecializationof“visual”corticalregionsispreservedinblindness,andindeedthereareagrowingnumberoffindingsthatsupportit. Forinstance,regionsspecializinginthespatialprocessingofsoundsinblindindividualsappeartomapontoareasofthedorsalvisualstreamknownforsimilarprocessingofvisualstimuli(Collignonetal.,2009,2011).Anotherareawellknownforitsfunctionalspecializationisthelateral-occipitalcomplex(LOC),typicallyinvolvedinobject/formrecognitionprocesses,whichhasbeenshownonseveraloccasionstoberesponsivetonon-visualformprocessinginEB(Amedietal.,2007,2010).Similarly,thevisualwordformarea,which,asitsnameindicates,respondswelltothevisualpresentationofwords,hasbeenshowntobehighlyresponsivetotactuallypresentedBraillewordsinEBsubjects(Reichetal.,2011).Furthermore,Pietrinietal.(2004)hadpreviouslyshownthatthetactileexplorationoffacesactivateddifferentregionsthanthoseelicitedbytheexplorationofobjectsintheblind,suggestingthatthedevelopmentoftopographicallyorganized,category-relatedrepresentationsinextrastriatevisualcortexdoesnotrequirevisualexperience.Similarly,distinctregionswithintheventralvisualpathwayofblindindividualsshowneuralspecializationfornon-livingandlivingstimuliintheauditorymodality,suggestingthattheconceptualdomainorganizationintheventralvisualpathwaydoesnotrequirevisualexperiencetodevelop(Mahonetal.,2009).Lastly,anotherwellknownareaforitsfunctionalspecializationisthehumanextrastriatecorticalregionknownasthemiddletemporalcomplex(hMT+),whichishighlyresponsivetovisualmotion.Severalstudieshaveshownthatthisregioninblindindividualsbecomesresponsivetobothtactilemotiononthefingers(Ricciardietal.,2007)aswellastomovingsoundstimuli(Poirieretal.,2006).Thesefindings,takentogether,providecompellingevidencethatthefunctionalspecializationofoccipitalregionsispreservedinearlyblindness,andthattheoperationssubservedbyeachregionneednotdependonvisualinputtobesolicitedbyagiventask. Althoughmanyhighertiervisualareasseemtohavepreservedtherefunctionalspecializationfollowingblindness,itisstillundeterminedhowthenon-visualinputreachesoccipitalcortex.Twoobviouspossibilitiesareeitherviaalreadyexistingconnectionsorthroughtheestablishmentofnewconnectionsnotpresentinsightedindividuals.Theformercouldresultfromtheunmaskingorstrengtheningoflatentpre-existingpathwaysbetweensensory-specificcorticesand/orbetweenmultisensoryareasandoccipitalcortex.Thelatter,however,appearsunlikelyforatleasttworeasons.Thefirst,asdiscussedlateron,stemsfromagrowingbodyofevidencedemonstratingthatcrossmodalrecruitmentofoccipitalcortexispossibleinnormalsightedindividualsafterbrieftransientperiodsofvisualdeprivation,whichsuggeststhatalreadyexistingintermodalconnectionsareatplay[seereviewsonpotentialmultisensorypathwaysbySchroederetal.(2003);Cappeetal.(2009)].Thesecond,resultsfromanimalworkinvestigatingthedevelopmentalsynapticpruningperiodinearlyinfancy.Ithasbeenshownthatcorticocorticalprojectionsfromauditorytovisualcortexarepresentininfantkittensonlytobesoonafterprunedawayduetocompetitiveprocesses(InnocentiandClarke,1984;Innocentietal.,1988).However,inkittensdeprivedofvisionatbirth,theseextrinsicconnectionstotheoccipitalcortexseemtoremain(Berman,1991;Yakaetal.,1999).Thesefindingsrathersuggestthatitisthestrengtheningofnormallytransientintermodalconnections,andnottheformationofnewconnectionsfollowingblindness,thatislikelytoprovidethesubstrateforthecrossmodalinnervationofoccipitalcortexfollowingearlyblindness. Researchwithanimalmodelsofblindnesshasillustratedseveralsuchpathwaysthatcouldpotentiallymediatethecrossmodalprocessingofsoundinblindness.Forinstance,studieswithblindrodentshaveshowntheexistenceofconnectionsbetweentheinferiorcolliculus(animportantauditoryrelay)andthelateralgeniculatenucleus(LGN—animportantvisualrelay)(DoronandWollberg,1994;Izraelietal.,2002),suggestingthatauditoryinformationmayreachtheoccipitalcortexviatheopticradiationsascendingfromtheLGN.Alternatively,auditoryinformationcouldbefedviadirectconnectionsbetweenthemedialgeniculatenucleus(MGN—animportantauditoryrelay)andtheoccipitalcortex(Laemleetal.,2006).Furthermore,Karlenetal.(2006)haveshownthattheoccipitalcortexofCBoppossumsreceivesprojectionsfromnotonlytheauditory(MGN),butalsofromthesomatosensory(ventralposterior)nucleusofthethalamus,thussuggestingapossibleroutefortactileinformationtobeconveyedtowardtheoccipitalcortex.Morerecently,thefindingsofLaraméeetal.(2011)suggestthatcorticocorticalpathwayscouldalsomediatethecrossmodalinputintodeafferentedvisualareasbyshowingindirectconnectionsbetweentheprimaryauditoryandtheprimaryvisualcortexinvisuallydeprivedmice. AnatomicaltracerstudiesinnormallyseeingprimateshaveshowntheexistenceofdirectconnectionsgoingfromcaudalauditoryareastoperipheralV1/V2(Falchieretal.,2002;RocklandandOjima,2003),suggestingthatthenecessarypathwaystomediatecrossmodalplasticitylikelyexistpriortovisualdeprivation.Evidenceinhumansisalittlesparser,butseveralrecentfindingsalsosupportcorticocorticalpathwaysbetweenauditoryandvisualareasasalikelysourceforstreamingauditoryinputintotheoccipitalcortex.Forinstance,arecentdiffusiontensorimaging(DTI)tractographystudyinnormalseeinghumanshasrevealedtheexistenceofconnectionsbetweenHeschl'sgyrusandthecalcarinesulcus(Beeretal.,2011).Whetherthispathwayisdifferentinblindindividualshasyettobeestablished,althoughitperhapsneednotbetosubservethecrossmodalrecruitmentofvisualareasbysound.Moreover,apairofrecentstudiesuseddynamiccausalmodeling(DCM)toinvestigatetheeffectiveconnectivitybetweenregionsunderlyingauditoryactivationsintheprimaryvisualcortexofEBindividuals.DCMisapowerfulhypothesis-driventoolthatallowsforinferencesonthecausalitybetweentheactivityobservedindifferentbrainareasand,analogously,tostudyhowinformationflowsinthebrain(Fristonetal.,2003).Itwasfoundthatauditory-drivenactivityinV1isbestexplainedbydirectconnectionswithA1(Collignonetal.,2013)andthattheconnectivitybetweenbothstructureswasstrongerintheblindcomparedtosightedindividuals(Klingeetal.,2010).Afinalargumentinfavorofcorticocorticalpathwaysunderlyingauditoryrecruitmentofoccipitalareasstemsfromneuroanatomicalinvestigationsshowingtheopticradiations(geniculocorticaltracts)ofEBhumanstobeseverelyatrophied(Noppeneyetal.,2005;Shimonyetal.,2006;Panetal.,2007;Parketal.,2007;Ptitoetal.,2008),renderingthemunlikelycandidatesforrelayingauditoryinformationtovisuallydeafferentedcorticalareas. CrossmodalPlasticityinBlindness:BoundedbyCriticalorSensitivePeriods? Sofaronlyresearchfindingsrelatingtoearlyorcongenitalblindnesshavebeencovered(seeBox1),moreorlessignoringthenotionofcriticalperiods.Thisispartlyduetothefactthatmostresearchhasprimarilyfocusedontheeffectsofearlyblindness,andalsobecause,thereislittleconsensusontheeffectsoflate-onsetvisualdeprivation.Thefollowingsectionsattempttodisentanglethedifferentfindingsrelatingtolateblindnessandtocontrastthemwiththoserelatingtoearlyblindness. OneofthefirstneuroimagingstudiestoinvestigatetheoccipitalbrainmetabolisminEBindividuals(Veraartetal.,1990)alsoexaminedagroupofLBindividuals.ItwasshownthatoccipitalfunctioninginLBwasdifferentfromthatofEB:whileEBwerefoundtohavehigheroccipitalglucosemetabolismrelativetosightedindividuals,LBshowedareduction.Thisfindingobviouslyservedasanearlyindicationthattheageofblindnessonsetwaspotentiallyadeterminingfactorinthechangesthatoccurinoccipitalcortexfollowingvisualdeprivation.Indeed,apairofearlyinvestigationsoftask-relatedactivationsshowedthatwhilecrossmodalrecruitmentwasobservedinEB,nosuchobservationwasmadeinLB(Cohenetal.,1999;Sadatoetal.,2002).Thisfindingsuggestedtheexistenceofastrictcriticalperiodforthedevelopmentofcrossmodalplasticitywithintheoccipitalcortex(14yearsofage:Cohenetal.,1999;16yearsofage:Sadatoetal.,2002),afterwhichnocrossmodalreorganizationwouldtakeplaceiftheonsetofblindnessoccurredbeyondthisperiod.However,findingsfromalargenumberofotherstudieshavesincechallengedthisview.Kujalaetal.(1997)firstsuggestedthepossibilityofcrossmodalreorganizationinLBindividualsbyshowingposteriorevent-relatedpotential(ERP)responsessimilartothoseobservedinEBwhentheyperformedsound-changedetectiontasks.Subsequently,aPETstudyrevealedactivationofvisualcortex,albeitmanifestingsomewhatdifferentpatterns,duringBraillereadingandauditorywordprocessinginbothEBandLBsubjects(Bücheletal.,1998).ThiswaslaterfollowedbyaseriesofstudiesbyBurtonetal.inwhichLBwereshowntoactivateoccipitalregionsinresponsetoavarietyoftactileandauditorytasks(Burtonetal.,2002a,b,2003,2004,2006;BurtonandMcLaren,2006).Similarly,severalauditoryspatialtaskselicitedoccipitalactivationsinlate-onsetblindindividuals(Vossetal.,2006,2008,2010).However,thesecrossmodalchangeswerenotaccompaniedbybehavioralenhancements,asisthecaseinEBindividuals,raisingquestionsconcerningthefunctionalrelevanceoftheobservedcrossmodalplasticityinLB. Despitesomeexceptions,therethusappearstobesomeagreementthatcrossmodalrecruitmentofdeafferentedvisualareasisnotexclusivetoEBandcanbeobservedincasesoflate-onsetblindnessaswell.Whilethisisthecase,thecrossmodalrecruitmentinLBappearstobenonethelessgenerallyreduced(bothintermsofintensityandspatialextent)relativetoEB,suggestingthatwhilethedevelopmentofcrossmodalplasticprocessesmightnotbeboundbyacriticalperiod,itisdefinitelymodulatedbyasensitiveperiodinearlydevelopmentduringwhichreorganizationislikelytobemorepronounced. CrossmodalChangesinSightedIndividuals Additionalevidencesupportingtheexistenceofadultcrossmodalplasticitystemsfromresearchinvestigatingtheeffectsoftemporaryvisualdeprivationinnormalsightedindividuals.Oneofthefirststudiestodocumentsucheffectsrevealedthatshort-termlightdeprivationenhancestheexcitabilityofvisualcortex.Indeed,abriefperiodofvisualdeprivationwasshowntonotonlyinduceareductionintheTMSthresholdsrequiredforelicitingphosphenesbutalsoleadtoanincreaseinvisualcortexactivationbyphoticstimulation(Boroojerdietal.,2000).Subsequently,usingapharmacologicalapproachincombinationwithTMS,itwasshownthatGABA,NMDA,andcholinergicreceptorslikelyplayanimportantroleinrapidexperience-dependentplasticityinvisualcortex,asadministeringappropriateagonists/antagonistseliminatedtheTMSphosphene-thresholddecreaseassociatedtotransientvisualdeprivation(Boroojerdietal.,2001). ThesefindingsweresoonfollowedbyresearchinspiredbyaschoolfortheblindinSpain,whichrequiredthatitsinstructorsexperiencedailylifewithoutsightforanentireweekduringtraining(Pascual-LeoneandHamilton,2001).Theinstructorsreportedhavingheightenedawarenessforsounds,beingabletobetterdistinguishdifferentspeakersandtobetterorientthemselvesinresponsetoincomingsounds.Tofollowuponthesereports,Pascual-LeoneandHamilton(2001)developedaprotocolinwhichsightedvolunteerswouldbeblindfoldedfor5days.PreliminaryfindingsrevealedanincreaseinBOLDsignalwithintheoccipitalcortexinresponsetotactilestimulationafter5daysofcompletevisualdeprivation,andthatthisincreasewasnolongerpresentthedayfollowingblindfoldremoval.Thesefindingsindicatedthatrapidcrossmodalchangescanoccurintheoccipitalcortexofadultswhentemporarilydeprivedofvision,andwerefurtherdocumentedinMerabetetal.(2008).Remarkably,suchcrossmodaldeprivation-relatedeffectswerelimitedtotheblindfoldingperiodandwererapidlyreversible. Subsequentworkhasimpressivelyshownthatveryshorttimeperiodsofvisualdeprivationaresufficienttoinducemarkedcrossmodalchangesinoccipitalcortex.Forinstance,Weisseretal.(2005)demonstratedthat2hofvisualdeprivationwasenoughtoinducetheneuralchangesfortheprocessingoftactileshapeswithintheoccipitalcortexofnormallysightedindividuals.Inarecentstudy,weusedanoveltechniquetodeterminewhetheroccipitalcortexprocessesauditoryinputinasimilarmannertoauditorycortex(Lazzounietal.,2012).Wedevelopedablindfoldingprotocoltoassesstheeffectsofshort-termvisualdeprivationontheauditorysteadystateresponse(ASSR).TheASSRcanbedefinedasanelectrophysiologicalresponsetorapidlychangingauditorystimuli,whereneuronalpopulationsrespondatthesamefrequencyasthemodulationrateofanamplitude-modulated(AM)toneand,importantly,forwhichthesourcesoftheactivitycanbeextractedusingdipoleanalyses.TheASSRthereforeconstitutesapowerfultoolasitevokesaresponsethatisintrinsicallylinkedtothestimulusandcanbetrackedwithinthebrain.Theresultsshowedthatthetwospectralpeaksassociatedwiththemodulationratesoftwodichoticallypresentedstimuli(39and41Hz)wereobservedonlywithinauditorycortexpriortoblindfolding.Following6hofvisualdeprivation,however,twopeakswerealsoobservedinoccipitalcortex(seeFigure2),thussheddinglightonthetimelineassociatedwithshort-termcrossmodalrecruitmentofinput-deprivedsensorycortices.Thisfindingalsodemonstratesthatvisualcortexcandisplayauditorycortex-likefunctioninginresponsetoauditoryinputduringperiodsofdeprivation. FIGURE2 Figure2.Crossmodalplasticityintemporarilydeprivedsightedindividuals.ThisfigureportraysarecentMEGfindingthattestifiestotheimpressivespeedatwhichthevisualcortexcandisplayauditorycortex-likefunctioningfollowingashortperiodofvisualdeprivation.Theleftgraphshowsthatpriortoblindfoldingthetwospectralpeaks(lefttemporalinred;righttemporalingreen)associatedwithmodulationrateoftheauditorystimulipresentedtobothears(39and41Hz)areclearlyrestrictedtothetemporalelectrodes(auditorycortex).However,asshownintherightgraph,thesamepeakscannowbefoundinvisualcortex(purplepeaks)followinga6hvisualdeprivationperiod.AdaptedwithpermissionfromLazzounietal.(2012). CrossmodalPlasticity:Early-vs.Late-OnsetBlindness Theprevioussectionsdocumentedmultipledemonstrationsofthecrossmodalprocessingthatoccursinthematureoccipitalcortex.However,animportantquestiontoaskconcernswhethertheplasticityobservedintheadultbrainissimilartowhatisobservedinthevisuallydeprivedimmaturebrain.AsidefromthetypicalobservationofreducedcrossmodalrecruitmentinLB(withtheexceptionofBücheletal.(1998)whoreportedgreateractivationinLB),thefollowingsectionswillhighlightfourmajordistinctionsbetweenthecrossmodalchangesobservedforearlyandlateonsetblindnessthatarguefortheexistenceofimportantunderlyingfunctionaldifferencesbetweenthetwo(seealsoFigure3).Indeedthesefindingspointnotonlytoquantitativedifferences(i.e.,theamountofcrossmodalrecruitmentobserved)betweenthecompensatoryreorganizationthatoccursfollowingearlyandlateonsetblindness,butalsotoqualitativeonesrelatingto,forinstance,theunderlyingmechanismsofcrossmodalrecruitmentanditsfunctionalrelevancetobehavior. FIGURE3 Figure3.Howearlyandlateblinddiffer.Illustratedherearetwoexamplesofhowthecrossmodalplasticityobservedinearlyandlateblindindividualsdiffers.Thetoprow(panelA)illustratesthedifferentialeffectTMShaswhenappliedovertheoccipitalcortex(blackbars)ofLB(firstbargraph)andEB(secondbargraph)ontheirperformanceinaBrailletask,whereonlytheearlyblindshowedanincreaseinerrorrate(Cohenetal.,1999).Thebottomrow(panelB)consistsinaschematicrepresentationofhowauditoryinformationflowstowardV1inthecongenitallyblindandlateblind,illustratingtheDCMfindingsofCollignonetal.(2013).AdaptedwithpermissionfromCohenetal.(1999)andCollignonetal.(2013).*p<0.001. Functionalrelevanceofcrossmodalprocessing Ashighlightedabove,thereisanabundanceofevidencedemonstratingthefunctionalrelevanceofthecrossmodalrecruitmentofoccipitalareasinEB.Severalstudieshaveshowedstrongcorrelationsbetweenbehavioralperformanceandoccipitalactivity(Amedietal.,2003;Gougouxetal.,2005;Razetal.,2005),whereasothershaveshownthatthetemporary(Cohenetal.,1997;Amedietal.,2004;Collignonetal.,2007)andpermanent(Hamiltonetal.,2000)dysfunctionofoccipitalneuronsinterfereswithperformanceinnon-visualtasks.Interestingly,thereislittletonoevidenceofthisinLB.ThisislikelyinpartduetothelimitedevidenceofenhancedperceptualabilitiesinLB,astheyareoftenfoundtobeindistinguishablefromsightedindividualsintermsofperformance.TheobservedcrossmodalrecruitmentinLBthereforeseeminglydoesn'tleadtoanybehavioralgainasitdoesintheEB.ThisassumptionissupportedbydataprovidedbyCohenetal.(1999),whereperformanceonaBraillereadingtaskwasunaffectedinLBbytheapplicationofTMSoveroccipitalcortex,whereasitreducedperformanceinEB.WhilethereareafewexceptionswhereLBhavedemonstratedheightenedperceptualabilitiescomparedtosightedindividuals(e.g.,Vossetal.,2004),suchinstanceshavegenerallynotbeenassociatedwithincreasedcrossmodalplasticity.Indeed,severalotherfactorscouldexplainincreasedperformance(e.g.,training,experience)withouttheinvolvementofoccipitalregions. Onepreviouslyproposedhypothesistoexplainoccipitalactivationsobservedinthelate-blindstatedthattheymightbetheresultofmentalimageryprocesses.ItwasreportedbyBücheletal.(1998)thattheirLBsubjectsimmediatelytransformedtactileandauditorycuesintoavisualrepresentation,implyingthatanyoccipitalactivationcouldbedueto“visualization”ofthetask.Whilesuchvisualimageryprocesseshavebeenshowntoactivatecomponentsofthevisualsysteminnormalsightedindividuals(Kosslynetal.,1995),morerecentparadigms,however,haveshownthatoccipitalrecruitmentnecessitatesmoreactivetasksthatexplicitlyrequiresubjectstousevisualimagery(Kosslynetal.,2001).Moreover,thevisualimageryhypothesislosestractionwhenconsideringthatoccipitalrecruitmentisseldomobservedinthesightedwhenperformingnon-visualtasksthatarealsoperformedbytheblind.ThiswouldimplythattheunlikelyscenariowhereLBresorttovisualimageryandnotsightedindividualstakesplace.Infact,itisoftenreportedthatwhensightedindividualsperformnon-visualtasks,cross-modalinhibitorymechanismsareengaged(e.g.,occipitaldeactivationisobserved)toreducethefunctioningofcorticessubservingtheunattended(andpotentiallydistracting)visualmodality(e.g.,Laurientietal.,2002;Gougouxetal.,2005). Attentionalmechanisms/processes OneexceptionthathaslinkedsuperiorperformanceinLBtobrainchangeshasdonesousinganauditoryspatialchange-detectiontaskandERPmeasurements(Fiegeretal.,2006).LBparticipantsweresignificantlymoreaccuratethansightedparticipantsatlocalizing/detectingdeviantauditorystimuliinperipheralauditoryspace(performanceforbothgroupswasidenticalforcentralauditorypositions).ThiswasalsoataskforwhichtheCBhadbeenshownpreviouslytoexcelat(Röderetal.,1999),andimportantdifferenceswereobservedwhencomparingtheERPresultsfrombothstudies.TheN1ERPcomponentdisplayedamoresharplytunedspatialgradientduringperipheralattentioninCBthaninthesightedgroup,whereastheP3componentwasidenticalinbothgroups(Röderetal.,1999).Conversely,theearlyN1amplitudetoperipheralstandardstimulidisplayednosignificantspatialtuningineithertheLBorthesightedcontrols,whereastheamplitudeofthelaterP3elicitedbytargets/deviantsdisplayedamoresharplytunedspatialgradientduringperipheralattentioninLBcomparedtocontrols(Fiegeretal.,2006).Assuch,itappearsthatCBpersonspossessamoresharplytunedearlyattentionalfiltering,manifestedintheN1component,whileLBshowsuperiorityatdeployinglateattentionalprocessesoftargetdiscriminationandrecognition,indexedbytheP3component.ThesefindingsthereforestronglysuggestthatevenwhenbothCBandLBindividualsshowabehavioraladvantageoversightedsubjectsonagiventask,theseenhancementsarepotentiallymediatedbydifferentunderlyingcerebralmechanisms. Sourceofauditoryinputintotheoccipitalcortex Thepotentialroleplayedbycorticocorticalconnectionsinmediatingthecrossmodalrecruitmentofoccipitalcortexwasspecificallyunderlinedinprevioussections.Forinstance,aDTItractographyanalysishasshowntheexistenceofdirectconnectionsbetweenprimaryauditoryandvisualareasinnormalseeingindividuals(Beeretal.,2011),whereastheuseofDCMenabledresearcherstoestablishthatthefunctionalconnectivitybetweenbothstructuresisstrongerinEBthaninsightedindividuals(Klingeetal.,2010).ToaddressesthepossibledifferencesbetweenEBandLBindividuals,wehaverecentlyshownthattheflowofauditoryinformationintotheoccipitalcortexmightbemediatedbyadifferentpathwayinLBusingDCManalyses(Collignonetal.,2013).Sinceitwasrecentlydemonstrated,usingDCM,thatcrossmodalplasticityobservedinCBindividualsismorelikelytobesupportedbycorticocorticalconnectionsratherthanthalamocorticalconnections(Klingeetal.,2010),weincludedonlycorticocorticalconnectionsinourmodels.OurfindingsindicatedthattheauditoryactivityobservedinoccipitalcortexofCBindividualswasbestexplainedbydirectfeed-forwardconnectionsfromprimaryauditorytoprimaryvisualcortex,whereasinLB,auditoryinformationappearstorelymoreonanindirectfeedbackrouteusingparietalregionsasarelaybetweenbothprimarysensoryareas(Collignonetal.,2013).ThisstronglysuggeststhatthecrossmodalrecruitmentofvisuallydeafferentedareasislikelymediatedbydifferentpathwaysinEBandLB. Indeed,itishighlylikelythatEBindividualshaveaccesstodifferentpathwaysgiventheexcessiveconnectivitybetweenregionsinearlydevelopment.Indeed,thesynapticdensityofvisualcortexreacheslevelsgreaterthanthatofadultsinearlyinfancythroughsynaptogeneticprocesses,andthengraduallydecreasestoadultlevelsbyapproximately5yearsofagethroughthepruningofexuberantconnections(Johnson,1997),aprocessthatisinterruptedbyvisualdeprivation(StrykerandHarris,1986).Moreover,ashighlightedabove,theexistenceofsuchcorticocorticalconnectionsbetweenauditoryandvisualareashasbeenshowninyounginfantanimals,onlyforthemajorityoftheseconnectionstobeprunedawayduringnormaldevelopment(InnocentiandClarke,1984;Innocentietal.,1988).Whethersimilarcorticocorticalconnectionsarealsomoreprominentduringearlydevelopmentinhumansisunclear,butifpresent,EBmayutilizeandstrengthenthesenormallytransientexuberantconnectionstocompensateforthelossofsightthroughexperience-dependentstabilizationprocesses,whereasLBmustrelyonconnectionsthatdevelopwithinthenormalvisualbrain. Preservedfunctionalspecialization Morerecentresearchhasbeguntoexaminewhetherthecrossmodaltakeoverofoccipitalcortexduetoblindnessfollowssomesortoforganizationalprinciple.Therearenowseverallinesofevidencestemmingfromneuroimagingstudies[reviewedinVossandZatorre(2012)]thatillustratehowthepre-existingfunctionalspecializationofspecificcorticalregionsappearstobepreservedfollowingvisualdeprivation.Asdiscussedearlier,awelldocumentedexampleofthisconcernstheLOC,notablyinvolvedinobject/formrecognitionprocesses.Amedietal.(2007,2010)haveshownonmultipleoccasionsthatthisregionisalsorecruitedbyauditoryandtactileformrecognitiontasksinEBindividuals.Similarly,thevisualmotionprocessingcenter(areaMT)hasbeenshowntoberecruitedbybothtactile(Ricciardietal.,2007)andauditory(Poirieretal.,2006)motionstimuli.Bothoftheseexamplesconvincinglysuggestthatvisualdeprivationdoesnotalterthespecializedmodularorganizationofthevisuallydeafferentedoccipitalareasofthebrain,andthattheoperationssubservedbyeachregionneednotdependonvisualinputtobesolicitedbyagiventask.Importantly,withrespecttotheobjectivesofthispaper,tworecentinvestigationshavecomparativelyinvestigatedthistopicinbothCBandLBindividuals.First,wehaverecentlyshownthatwhilebothrecruitoccipitalregionsforsoundprocessing,thepreferentialactivationoftherightdorsalstreamforthespatialprocessingofsounds(comparedtospectralprocessingofsounds)wasonlyobservedinCB(Collignonetal.,2013).Thissuggeststhattheseoccipitalregionsmaintainafunctionalspecializationforspatialprocessinginothersensesonlyifvisionislostearlyinlife.AsecondexamplesupportingsuchaclaimwasprovidedbyBednyetal.(2012)whoinvestigatedtheroleofthevisualcortexinlanguageprocessinginbothCBandLBindividuals.Again,whiletheyobservedthatoccipitalcortexwasrecruitedbygeneralauditoryinputinbothgroups,apreferentialresponsetospeechstimuliinthelefthemisphere(comparedtonon-speech)wasonlyobservedinCB,suggestingthatearlyvisualexperiencemightbedetrimentaltotheoccipitalcortexacquiringaroleinlanguageprocessingfollowingblindness. Theabove-mentionedpointsraiseinterestingquestionsconcerningtheroleplayedbysensitive/criticalperiods.WhilethegeneralobservationofcrossmodalrecruitmentinLBindividualssuggeststhatitissubjecttotheinfluenceofasensitiveperiod,thehighlighteddifferencesindicatethatdifferentprocessesmightbemediatingtheobservedcrossmodalrecruitmentinbothearlyandLBindividuals.Ifthisisindeedthecase,itrathersuggeststhatcriticalperiodsmayplayaroleafterall,withperhapsvaryingcutoffpointswithregardstothedifferentprocessesinplay.Consequently,futureworkwouldbenefitfromattemptingtotargettheseissuesbyrelatingtheageofblindnessonsetwiththedevelopmentofspecificparticularitiesthatsofarhaveonlybeenobservedinearlyblindness(e.g.,functionalrelevanceofrecruitment,corticocorticalconnectivity). ImplicationsforSightRestoration Whathappenstotheabilityofthe“visual”braintoprocessvisualinformationonceit“goesauditory?”Suchaquestionhasimportantrepercussionswhenconsideringthepotentialoutcomesofsightrestorationproceduresandprostheses.Overthreecenturiesago,theIrishphilosopherWilliamMolyneuxposedananalogousquestiontooneofhiscontemporaries,JohnLocke,onhowlongtermblindnesswouldaffectone'sabilitytoseeshouldsightberestored(Degenaar,1996):“Supposeamanbornblind,andnowadult,andthentaughtbyhistouchtodistinguishbetweenacubeandasphereofthesamemetal,andthesamebigness,soastotell,whenhefeltoneandtheother,whichisthecube,whichisthesphere.Supposethen,thecubeandthesphereplacedonatable,andtheblindmantobemadetosee.Query,whetherbysight,beforehetouchedthem,hecoulddistinguish,andtell,whichistheglobe,whichisthecube?”Whilethismatterhassincebeendebatedfordecadesonendbetweenvarioushistoricalfigures,therehavebeenseveralcasestudiesthathaveprovidedsomeinsightintothematter,demonstratingforinstancethatvisualacuityisseverelyreducedaftercataractremovalsurgeryfollowingprolongedperiodsofdeprivation(vonSenden,1960;GregoryandWallace,1963;Fineetal.,2003).Additionally,recentneuroimagingdataallowsfortheinvestigationofpotentialunderlyingmechanisms.Asalreadynoted,thevisualbraingoesthroughdrasticchangesthatmightsignificantlyalteranindividuals'abilitytoprocessvisualinformationshouldsightberestored.Thenextsectionwill,however,firstexamineresearchwithdeafindividuals,astechnologicaladvancesforrestoringhearinginprofoundlydeafindividualshaveachievedafairdealofsuccesswiththedevelopmentofsophisticatedcochlearimplants(CI).SuchprogresshasallowedresearcherstoascertaintheconsequencesofcrossmodalplasticityinthedeafpopulationonthesuccessrateofCIs,andwillthereforeprovideinsightintohowtoapproachthesameissuesinblindness. InsightsfromtheDeaf Oncetheyhavebecomeresponsivetoanewinputmodality,cantheauditorycorticesstillprocesstotheiroriginalsourceofinput?Thisquestionbearsspecialimportancegiventhatprofounddeafnesscansometimesbereversedbyauditorystimulationviaacochlearimplant(CI)(Pontonetal.,1996).Putsimply,thedevicereplacesnormalcochlearfunctionbyconvertingauditorysignalsintoelectricalimpulsesdeliveredtotheauditorynerve(seeMens,2007forfurtherdetails).Severalstudieshaveshowntheexistenceofacriticalperiodthatcannotbeexceededforrecoveryofauditoryfunctionsfollowingauraldeprivation(Kraletal.,2005;Sharmaetal.,2005).Thistimewindowisgenerallylimitedtothefirstfewyearsoflife,withevidencesuggestingthatifimplantedbeforetheageof2,childrencanacquirespokenlanguageinacomparabletime-frametonormalhearingchildren(WaltzmanandCohen,1998;Hammesetal.,2002). Althoughitwasinitiallythoughtthatthedurationofauditorydeprivationshouldaccountformostofthevarianceoftheimplantationoutcome,severallinesofevidenceclearlysuggestothermodulatingfactors(O'Donoghueetal.,2000;Leeetal.,2001;Sarantetal.,2001).Infact,aretrospectivecasereviewshowedthatthedurationofdeprivationonlyaccountedfor9%ofthevariabilityinimplantoutcome(Greenetal.,2007).Analternatepredictorcanbefound,forinstance,inpreoperativemeasuresofcerebralmetabolism.Leeetal.(2001)forinstance,showedthatthetemporalcortexbecomeshypometabolicfollowingauditorydeprivation,andthatthelevelofhypometabolismiscorrelatedtospeechcomprehensionscoresobtainedpost-implantation.Inotherwords,thelongerapersonhasbeendeaf,thelesslikelyitisthattheirtemporalcortexwillbehypometabolicandthemorelikelytheirspeechperceptioncapacitywillbecompromised.Inthesamevein,itwaslatershownthatspeechperceptionperformancewasnegativelyassociatedwithactivityinoccipito-temporalnetworks(Leeetal.,2005),evenwhenfactoringouttheconfoundingeffectofageofimplantation(Leeetal.,2007).Furthermore,otherimportantprocessesmaybealsoatplay,suchasthelevelofcrossmodalreorganizationoftheauditorycortex(seeGiraudandLee,2007).Forinstance,onestudycomparedcorticalevokedpotentialsinvolvedintheprocessingofvisualstimuliinimplantedsubjects(Doucetetal.,2006).Afterevaluatingthespeechperceptionabilitiesoftheimplantedsubjects,theyweresubsequentlydividedintotwogroupsbasedontheirperformance.Itturnedoutthatthegroupwiththepoorestperformersforspeechperceptionwasalsotheonewhereimplantedindividualsshowedbroaderandmoreanteriorscalpdistributionswhenprocessingvisualstimuli(i.e.,likelytheresultofcrossmodalprocessingofthevisualstimuliintemporalauditoryareas),andvice-versa.Itthusappearsthatseveralinteractingfactorsinfluencetheoutcomeofcochlearimplantation,ofwhichimportantlyiscrossmodalreorganization.Awarenessofthisimportantfactwillevidentlyhaveanimportantimpactonhowsimilarconcernswillbeaddressedinblindness. IstheVisualSystemStillVisualFollowingBlindness? Knowingwhethercrossmodalplasticchangesarereversibleiscrucialtotheproperdevelopmentofneuroprosthesesdesignedtorestorevisioninblindindividuals.Althoughsignificantprogresshasbeenmadetowardachievingsuchagoal,futureresearchisextremelydependantonourunderstandingofhowblindnessaffectsthebrain,andonhowtheseeffectsaredrivenormodulatedbytheageofblindnessonset.Indeed,thebrainofaLBindividualmaybemoreapttoprocessvisualinputfollowingaprolongedperiodofvisualdeprivation,whereasthebrainofanEBindividualhaslikelyunderwentpermanentplasticchangesrenderingitunabletoprocessvisualinformation.Forinstance,thefindingthattheoptictractsandradiationsareatrophiedinEB(Noppeneyetal.,2005;Shimonyetal.,2006;Panetal.,2007;Parketal.,2007;Ptitoetal.,2008)raisesseriousquestionsabouttheintegrityofthepathwaysandwhetherornottheycouldconveyelectricalinformationstemmingfromretinal,subretinal,orepiretinalimplants(seeMerabetetal.,2005),oreventransmitretinalimagesobtainedfollowingcataractremovalinindividualswithcongenitalcataracts.Furthermore,thenumerousreportsofsignificantreductionofcorticalgraymatterinoccipitalcortexraisesseriousquestionsregardingthearea'sabilitytoprocessvisualinput(Panetal.,2007;Ptitoetal.,2008;Leporeetal.,2010).AcompensatoryapproachmorelikelytoprovideasuccessfuloutcomeinEBistheuseofsensory-substitutiondevices,whereonesensorymodalityisusedtosupplyinformationnormallygatheredbythedeprivedsense.PerhapsthemostwellknownexampleofthisisBraille,whichofcoursehasbeenhighlysuccessfulinprovidinginformationnormallyacquiredthroughvision(e.g.,readingmaterial)viathetactilemodality.Severalmoresophisticateddevices-thattransformvisualinformationcapturedviacamerasintospatiallyrelevanttactileorauditorystimulation-havesincebeenimplemented(Meijer,1992;Bach-y-Ritaetal.,1998;Capelleetal.,1998)andhaveallowedblindindividuals“tosee”complextwo-dimensionalobjectsandshapes(e.g.,Arnoetal.,1999;RenierandDeVolder,2010),andmorerecentlytoevennavigatearoundobstaclesinahighlycontrolledenvironment(Chebatetal.,2011).Whilethesedevicesarenotatapointwheretheycanbereliedupontosuccessfullynavigateintherealworld,theyprovidenonethelessaverypromisingavenueforfutureresearchdesignedtoaidvisuallydeprivedindividuals. Visualrestoration,however,mightstillbepossibleforLBindividuals.Forinstance,Panetal.(2007)showedthatwhitematter(WM)lossintheoptictractandradiationofEBindividualswasmodulatedbytheageofblindnessonset,suggestingthatalateronsetwouldhavelesseffectontheanatomicalintegrityofthevisualpathways.Moreover,Schothetal.(2006)foundnoevidenceofWMlossineithervisualcortexorinvisualtractsinsubjectsthatcouldbecategorizedasLB(withameanageofblindnessonsetoftwelve),suggestingthatthevisualpathwaysmaystillbeabletocommunicatesignalstowardoccipitalcortex.Consequently,approachesthatinvolvecataractremovalandretinalimplantsarelikelytobeconsiderablymoreviableinindividualsthatbenefittedfromthenormaldevelopmentofthevisualsystem. FutureConsiderations Giventheinfluenceearlydevelopmenthasontheemergenceofcrossmodalplasticphenomenainblindindividuals,whatstepsneedtobetakentofurtherourunderstandingofthedifferentprocessesatplay?Acrucialfirststepwillbetoaddressinconsistenciesacrosstheliteratureregardinghowblindindividualsaresegregatedintodifferentgroupsbasedontheirageattheonsetofblindness(e.g.,EBandLBindividuals).Thissegregationisoftendoneinaveryarbitrarymanner,asveryfewstudiesusethesamedefinitionstoclassifyandcircumscribeearlyandlateonsetblindgroups,andinfactoccasionallyoverlapacrosspublishedreports.Thisisofcoursequitetroublesomewhenwantingtocomparefindingsacrossstudies,andwillrequiregreatercareandcooperationbetweenresearchgroupsinorderforfutureworktoyieldfruitfulresults. AsfirsthighlightedinBox1,thecurrentlackofuniformityacrossstudiesindefiningtherangeofonsetsofblindnessforEBandLBgroupshasyieldedatleasttwosubstantialissues.Thefirstrelatestotheoftennon-inclusionofalargegroupofblindindividualswithagesofblindnessonsetsthatliebetweenchosencut-offsforbothforearlyandlateonsetblindgroups.Thispracticenotonlyintroducesastrongsamplingbias,butalsoremovespotentiallyimportantdatawheninvestigatingblindness-inducedcrossmodalplasticity.Indeed,importantdevelopmentalsensitiveperiodsmaytakeplaceduringthisgapintheagesofonset.Theadditionofoneormoredistinctblindgroupscoveringthisgapcouldhelpalleviatethelossofpotentiallyimportantinformation.Inthisvein,Lietal.(2013)veryrecentlyaddressedthisissuebydefiningfourdistinctgroupsininvestigatingbrainanatomicalconnectivitynetworks:CB,EB(onsetafterbirthbutpriortotheageof12),adolescentblind(onsetbetween12and15yearsofageinclusively)andLB(onsetafter15yearsofage).Whilethechosenrangescouldbedebated,thisnonethelessrepresentsanimportantfirststepindirectingfutureresearch.ThisworkalsohighlightsthefactthatitmightalsobewisetodivideCBandEBindividualsintoseparategroups(whichseveralgroupshavestarteddoing),asevenafewyearsofvisualexperiencecouldhaveasignificantimpactonthefunctionalarchitectureofthevisualsystemandonthemanneritiscrossmodallyrecruitedfollowingblindness.Indeedtheuseofacontinuumofonsetsofblindnesswillbetterallowforthedirectinvestigationofthedevelopmentaltime-courseofprocessesthatgoverntheemergenceofcrossmodalplasticity. Thesecond,potentiallymoreseriousissuearisingfromtheinconsistentdefinitions,concernstheoftenoverlappingofgroupsacrossdifferentstudies;i.e.,agivenblindindividualcouldbecategorizedasanEBindividualinonestudyandasaLBindividual.Forinstance,Burtonetal.(2002b,2003,2004,2006)haveoftenconsideredindividualswithonsetsofblindnessoccurringaftertheageof7asaLBindividual;sohasFiegeretal.(2006)andBednyetal.(2012)forindividualswithonsetsoccurringaftertheageofthe9.Thisisinstarkcontrastwithotherreportsthathaveconsideredindividualswithanonsetoccurringpriorto13yearsofageasEB(e.g.,Cohenetal.,1999;Sadatoetal.,2002;Vossetal.,2008).Thisisaclearindicationthatgreatereffortandcareshouldbeputintohomogenizingblindgroupdefinitionsinordertobetterunderstandtheeffectssensitiveandcriticalperiodsinsensorydeprivation. Lastly,theabove-mentionedconcernscouldalsobesignificantlyalleviatedbysimplymovingawayfromcreatinggroupsaltogether.Certainly,itcouldbearguedthatweshouldbelookingtousetheageofblindnessonsetmoreasacontinuousvariableandsearchfornon-linearitiesintheresultingfunctionslinkingtheageofonsetwithvariousdependantvariables,whichwouldbeindicativeofsuddenchangesintheoccurrenceofcrossmodalplasticityandpossiblyresultingfromimportantcriticalorsensitiveperiods.Forinstance,ifcrossmodalplasticitychangesonlyquantitativelyovertime,thantherelationshipbetweentheageofblindnessonsetandvariousdependantvariableswouldbealinearone.However,asdiscussedabove,thereareseverallinesofworksuggestingthatthecrossmodalplasticprocessalsoundergoessomequalitativechangeswithlateronsets,suggestingthattherelationshipcouldinfactbenon-linear.Suchanapproachwouldhavemultiplebenefits,perhapsnonegreaterthantheremovalofthegroupdefinitionswhichareoftenhighlyarbitraryandthecauseofdiscrepanciesbetweenstudies.Moreover,treatingtheageofblindnessonsetasacontinuousvariableshouldallowfortheextractionofimportanttime-pointsduringthedevelopmentofcrossmodalplasticphenomenainadata-drivenway,ratherthanbytheuseofa-prioridefinitionsofparticularsubgroupsbasedontheageatblindnessonset. ConflictofInterestStatement Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. References Amedi,A.,Floel,A.,Knecht,S.,Zohary,E.,andCohen,L.G.(2004).Transcranialmagneticstimulationoftheoccipitalpoleinterfereswithverbalprocessinginblindsubjects.Nat.Neurosci.7,1266–1270.doi:10.1038/nn1328 PubmedAbstract|PubmedFullText|CrossRefFullText Amedi,A.,Raz,N.,Azulay,H.,Malach,R.,andZohary,E.(2010).Corticalactivityduringtactileexplorationofobjectsinblindandsightedhumans.Restor.Neurol.Neurosci.28,143–156. PubmedAbstract|PubmedFullText Amedi,A.,Raz,N.,Pianka,P.,Malach,R.,andZohary,E.(2003).Early‘visual’cortexactivationcorrelateswithsuperiorverbalmemoryintheblind.Nat.Neurosci.6,758–766.doi:10.1038/nn1072 PubmedAbstract|PubmedFullText|CrossRefFullText Amedi,A.,Stern,W.M.,Camprodon,J.A.,Bermpohl,F.,Merabet,L.,Rotman,S.,etal.(2007).Shapeconveyedbyvisual-to-auditorysensorysubstitutionactivatesthelateraloccipitalcomplex.Nat.Neurosci.10,687–689.doi:10.1038/nn1912 PubmedAbstract|PubmedFullText|CrossRefFullText Arno,P.,DeVolder,A.G.,Vanlierde,A.,Wanet-Defalque,M.C.,Streel,E.,Robert,A.,etal.(2001).Occipitalactivationbypatternrecognitionintheearlyblindusingauditorysubstitutionforvision.Neuroimage13,632–645.doi:10.1006/nimg.2000.0731 PubmedAbstract|PubmedFullText|CrossRefFullText Arno,P.,Capelle,C.,Wanet-Defalque,M.C.,Catalan-Ahumada,M.,andVeraart,C.(1999).Auditorycodingofvisualpatternsfortheblind.Perception28,1013–1029.doi:10.1068/p2607 PubmedAbstract|PubmedFullText|CrossRefFullText Bach-y-Rita,P.,Kaczmarek,K.A.,Tyler,M.E.,andGarcia-Lara,J.(1998).Formperceptionwitha49-pointelectrotactilestimulusarrayonthetongue:atechnicalnote.J.Rehabil.Res.Dev.35,427–430. PubmedAbstract|PubmedFullText Bavelier,D.,andNeville,H.J.(2002).Cross-modalplasticity:whereandhow?Nat.Rev.Neurosci.2,443–452.doi:10.1038/nrn848 PubmedAbstract|PubmedFullText|CrossRefFullText Bedny,M.,Pascual-Leone,A.,Dravida,S.,andSaxe,R.(2012).Asensitiveperiodforlanguageinthevisualcortex:distinctpatternsofplasticityincongenitallyversuslateblindadults.BrainLang.122,162–170.doi:10.1016/j.bandl.2011.10.005 PubmedAbstract|PubmedFullText|CrossRefFullText Beer,A.L.,Plank,T.,andGreenlee,M.W.(2011).Diffusiontensorimagingshowswhitemattertractsbetweenhumanauditoryandvisualcortex.Exp.BrainRes.213,299–308.doi:10.1007/s00221-011-2715-y PubmedAbstract|PubmedFullText|CrossRefFullText Berman,N.E.(1991).Alterationsofvisualcorticalconnectionsincatsfollowingearlyremovalofretinalinput.BrainRes.Dev.BrainRes.63,163–180.doi:10.1016/0165-3806(91)90076-U PubmedAbstract|PubmedFullText|CrossRefFullText Boroojerdi,B.,Battaglia,F.,Muellbacher,W.,andCohen,L.G.(2001).Mechanismsunderlyingrapidexperience-dependentplasticityinthehumanvisualcortex.Proc.Natl.Acad.Sci.U.S.A.98,4698–4701.doi:10.1073/pnas.251357198 PubmedAbstract|PubmedFullText|CrossRefFullText Boroojerdi,B.,Bushara,K.O.,Corwell,B.,Immisch,I.,Battaglia,F.,Muellbacher,W.,etal.(2000).Enhancedexcitabilityofthehumanvisualcortexinducedbyshort-termlightdeprivation.Cereb.Cortex10,529–534.doi:10.1093/cercor/10.5.529 PubmedAbstract|PubmedFullText|CrossRefFullText Büchel,C.,Price,C.,Frackowiak,R.S.,andFriston,K.(1998).Differentactivationpatternsinthevisualcortexoflateandcongenitallyblindsubjects.Brain121,409–419.doi:10.1093/brain/121.3.409 PubmedAbstract|PubmedFullText|CrossRefFullText Burton,H.,Diamond,J.B.,andMcDermott,K.B.(2003).Dissociatingcorticalregionsactivatedbysemanticandphonologicaltasks:aFMRIstudyinblindandsightedpeople.J.Neurophysiol.90,1965–1982.doi:10.1152/jn.00279.2003 PubmedAbstract|PubmedFullText|CrossRefFullText Burton,H.,andMcLaren,D.G.(2006).Visualcortexactivationinlate-onset,Braillenaiveblindindividuals:anfMRIstudyduringsemanticandphonologicaltaskswithheardwords.Neurosci.Lett.392,38–42.doi:10.1016/j.neulet.2005.09.015 PubmedAbstract|PubmedFullText|CrossRefFullText Burton,H.,McLaren,D.G.,andSinclair,R.J.(2006).Readingembossedcapitalletters:anfMRIstudyinblindandsightedindividuals.Hum.BrainMapp.27,325–339.doi:10.1002/hbm.20188 PubmedAbstract|PubmedFullText|CrossRefFullText Burton,H.,Sinclair,R.J.,andMcLaren,D.G.(2004).Corticalactivitytovibrotactilestimulation:anfMRIstudyinblindandsightedindividuals.Hum.BrainMapp.23,210–228.doi:10.1002/hbm.20064 PubmedAbstract|PubmedFullText|CrossRefFullText Burton,H.,Snyder,A.Z.,Conturo,T.E.,Akbudak,E.,Ollinger,J.M.,andRaichle,M.E.(2002a).Adaptivechangesinearlyandlateblind:afMRIstudyofBraillereading.J.Neurophysiol.87,589–611. PubmedAbstract|PubmedFullText Burton,H.,Snyder,A.Z.,Diamond,J.,andRaichle,M.E.(2002b).Adaptivechangesinearlyandlateblind:afMRIstudyofverbgenerationtoheardnouns.J.Neurophysiol.88,3359–3371.doi:10.1152/jn.00129.2002 PubmedAbstract|PubmedFullText|CrossRefFullText Capelle,C.,Trullemans,C.,Arno,P.,andVeraart,C.(1998).Areal-timeexperimentalprototypeforenhancementofvisionrehabilitationusingauditorysubstitution.IEEETrans.Biomed.Eng.45,1279–1293.doi:10.1109/10.720206 PubmedAbstract|PubmedFullText|CrossRefFullText Cappe,C.,Rouiller,E.M.,andBarone,P.(2009).Multisensoryanatomicalpathways.Hear.Res.258,28–36.doi:10.1016/j.heares.2009.04.017 PubmedAbstract|PubmedFullText|CrossRefFullText Chebat,D.R.,Schneider,F.C.,Kupers,R.,andPtito,M.(2011).Navigationwithasensorysubstitutiondeviceincongenitallyblindindividuals.Neuroreport22,342–347.doi:10.1097/WNR.0b013e3283462def PubmedAbstract|PubmedFullText|CrossRefFullText Cohen,L.G.,Celnick,P.,Pascual-Leone,A.,Corwell,B.,Faiz,L.,Dambrosia,J.,etal.(1997).Functionalrelevanceofcross-modalstructuralchangesinblindhumans.Nature389,180–183.doi:10.1038/38278 PubmedAbstract|PubmedFullText|CrossRefFullText Cohen,L.G.,Weeks,R.A.,Sadato,N.,Celnik,P.,Ishii,K.,andHallett,M.(1999).Periodofsusceptibilityforcross-modalchangesintheblind.Ann.Neurol.45,451–460. PubmedAbstract|PubmedFullText Collignon,O.,Dormal,G.,Albouy,G.,Vandewalle,G.,Voss,P.,Phillips,C.,etal.(2013).Impactofblindnessonsetonthefunctionalorganizationandtheconnectivityoftheoccipitalcortex.Brain136,2769–2783.doi:10.1093/brain/awt176 PubmedAbstract|PubmedFullText|CrossRefFullText Collignon,O.,Lassonde,M.,Lepore,F.,Bastien,D.,andVeraart,C.(2007).Functionalcerebralreorganizationforauditoryspatialprocessingandauditorysubstitutionofvisioninearlyblindsubjects.Cereb.Cortex17,457–465.doi:10.1093/cercor/bhj162 PubmedAbstract|PubmedFullText|CrossRefFullText Collignon,O.,Vandewalle,G.,Voss,P.,Albouy,G.,Charbonneau,G.,Lassonde,M.,etal.(2011).Functionalspecializationforauditory-spatialprocessingintheoccipitalcortexofcongenitallyblindhumans.Proc.Natl.Acad.Sci.U.S.A.108,4435–4440.doi:10.1073/pnas.1013928108 PubmedAbstract|PubmedFullText|CrossRefFullText Collignon,O.,Voss,P.,Lassonde,M.,andLepore,F.(2009).Cross-modalplasticityforthespatialprocessingofsoundsinvisuallydeprivedsubjects.Exp.BrainRes.192,343–358.doi:10.1007/s00221-008-1553-z PubmedAbstract|PubmedFullText|CrossRefFullText Degenaar,M.(1996).Molyneux'sProblem:ThreecenturiesofDiscussiononthePerceptionofForms.Dordrecht:KluwerAcademic. Doron,N.,andWollberg,Z.(1994).Cross-modalneuroplasticityintheblindmoleratSpalalxehrenbergi:aWGA-HRPtracingstudy.Neuroreport5,2697–2701.doi:10.1097/00001756-199412000-00072 PubmedAbstract|PubmedFullText|CrossRefFullText Doucet,M.E.,Bergeron,F.,Lassonde,M.,Perron,P.,andLepore,F.(2006).Cross-modalreorganizationandspeechperceptionincochlearimplantusers.Brain129,3376–3383.doi:10.1093/brain/awl264 PubmedAbstract|PubmedFullText|CrossRefFullText Falchier,A.,Clavagnier,S.,Barone,P.,andKennedy,H.(2002).Anatomicalevidenceofmultimodalintegrationinprimatestriatecortex.J.Neurosci.22,5749–5759. PubmedAbstract|PubmedFullText Fieger,A.,Röder,B.,Teder-Sälejärvi,W.,Hillyard,S.A.,andNeville,H.J.(2006).Auditoryspatialtuninginlate-onsetblindnessinhumans.J.Cogn.Neurosci.18,149–157.doi:10.1162/jocn.2006.18.2.149 PubmedAbstract|PubmedFullText|CrossRefFullText Fine,I.,Wade,A.R.,Brewer,A.A.,May,M.G.,Goodman,D.F.,Boynton,G.M.,etal.(2003).Long-termdeprivationaffectsvisualperceptionandcortex.Nat.Neurosci.6,915–916.doi:10.1038/nn1102 PubmedAbstract|PubmedFullText|CrossRefFullText Friston,K.J.,Harrison,L.,andPenny,W.(2003).Dynamiccausalmodelling.Neuroimage19,1273–1302.doi:10.1016/S1053-8119(03)00202-7 PubmedAbstract|PubmedFullText|CrossRefFullText Giraud,A.L.,andLee,H.J.(2007).Predictingcochlearimplantoutcomefrombrainorganizationinthedeaf.Restor.Neurol.Neurosci.25,381–390. PubmedAbstract|PubmedFullText Gougoux,F.,Zatorre,R.J.,Lassonde,M.,Voss,P.,andLepore,F.(2005).Afunctionalneuroimagingstudyofsoundlocalization:visualcortexactivitypredictsperformanceinearly-blindindividuals.PLoSBiol.3,324–333.doi:10.1371/journal.pbio.0030027 PubmedAbstract|PubmedFullText|CrossRefFullText Green,K.M.J.,Bhatt,Y.M.,Mawman,D.J.,O'Driscoll,M.P.,Saeed,S.R.,andRamsden,R.T.(2007).Predictorsofaudiologicaloutcomefollowingcochlearimplantationinadults.CochlearImplantsInt.8,1–11.doi:10.1002/cii.326 PubmedAbstract|PubmedFullText|CrossRefFullText Gregory,R.L.,andWallace,J.(1963).RecoveryfromEarlyBlindness:ACaseStudy.ExperimentalPsychologySocietyMonographNo2.Cambridge:Heffers. Hamilton,R.H.,Keenan,J.P.,Catala,M.,andPascual-Leone,A.(2000).AlexiaforBraillefollowingbilateraloccipitalstrokeinanearlyblindwoman.Neuroreport11,237–240.doi:10.1097/00001756-200002070-00003 PubmedAbstract|PubmedFullText|CrossRefFullText Hammes,D.M.,Novak,M.A.,Rotz,L.A.,Willis,M.,Edmondson,D.M.,andThomas,J.F.(2002).Earlyidentificationandcochlearimplantation:criticalfactorsforspokenlanguagedevelopment.Ann.Otol.Rhinol.Laryngol.Suppl.189,74–78. PubmedAbstract|PubmedFullText Hubel,D.H.,andWiesel,T.N.(1970).Theperiodofsusceptibilitytothephysiologicaleffectsofunilateraleyeclosureinkittens.J.Physiol.206,419–436. PubmedAbstract|PubmedFullText Hubel,D.H.,andWiesel,T.N.(1965).Binocularinteractioninstriatecortexofkittensrearedwithartificialsquint.J.Neurophysiol.28,1041–1059. PubmedAbstract|PubmedFullText Innocenti,G.M.,Berbel,P.,andClarke,S.(1988).Developmentofprojectionsfromauditorytovisualareasinthecat.J.Comp.Neurol.272,242–259.doi:10.1002/cne.902720207 PubmedAbstract|PubmedFullText|CrossRefFullText Innocenti,G.M.,andClarke,S.(1984).Bilateraltransitoryprojectiontovisualareasfromauditorycortexinkittens.BrainRes.316,143–148.doi:10.1016/0165-3806(84)90019-1 PubmedAbstract|PubmedFullText|CrossRefFullText Izraeli,R.,Koay,G.,Lamish,M.,Heicklen-Klein,A.J.,Heffner,H.E.,Heffner,R.S.,etal.(2002).Cross-modalneuroplasticityinneonatallyenucleatedhamsters:structure,electrophysiologyandbehaviour.Eur.J.Neurosci.25,693–712.doi:10.1046/j.1460-9568.2002.01902.x PubmedAbstract|PubmedFullText|CrossRefFullText Johnson,M.(1997).DevelopmentalCognitiveNeuroscience.Cambridge,MA:Blackwell. Karlen,S.J.,Kahn,D.M.,andKrubitzer,L.(2006).Earlyblindnessresultsinabnormalcorticocorticalandthalamocorticalconnections.Neuroscience142,843–858.doi:10.1016/j.neuroscience.2006.06.055 PubmedAbstract|PubmedFullText|CrossRefFullText Klinge,C.,Eippert,F.,Röder,B.,andBüchel,C.(2010).Corticocorticalconnectionsmediateprimaryvisualcortexresponsestoauditorystimulationintheblind.J.Neurosci.30,12798–12805.doi:10.1523/JNEUROSCI.2384-10.2010 PubmedAbstract|PubmedFullText|CrossRefFullText Knudsen,E.(2004).Sensitiveperiodsinthedevelopmentofthebrainandbehavior.J.Cogn.Neurosci.16,1412–1425.doi:10.1162/0898929042304796 PubmedAbstract|PubmedFullText|CrossRefFullText Kosslyn,S.M.,Behrmann,M.,andJeannerod,M.(1995).Thecognitiveneuroscienceofmentalimagery.Neuropsychologia33,1335–1344.doi:10.1016/0028-3932(95)00067-D PubmedAbstract|PubmedFullText|CrossRefFullText Kosslyn,S.M.,Ganis,G.,andThompson,W.L.(2001).Neuralfoundationsofimagery.Nat.Rev.2,635–642.doi:10.1038/35090055 PubmedAbstract|PubmedFullText|CrossRefFullText Kral,A.,Heid,S.,Tillein,J.,Hartmann,R.,andKlinke,R.(2005).Postnatalcorticaldevelopmentincongenitalauditorydeprivation.Cereb.Cortex15,552–562.doi:10.1093/cercor/bhh156 PubmedAbstract|PubmedFullText|CrossRefFullText Kujala,T.,Alho,K.,Huotilainen,M.,Ilmoniemi,R.J.,Lehtokoski,A.,Leinonen,A.,etal.(1997).Electrophysiologicalevidenceforcross-modalstructuralchangesinhumanswithearly-andlate-onsetblindness.Psychophysiology34,213–216.doi:10.1111/j.1469-8986.1997.tb02134.x PubmedAbstract|PubmedFullText|CrossRefFullText Laemle,L.K.,Strominger,N.L.,andCarpenter,D.O.(2006).Cross-modalinnervationofprimaryvisualcortexbyauditoryfibersincongenitallyanophthalmicmice.Neurosci.Lett.396,108–112.doi:10.1016/j.neulet.2005.11.020 PubmedAbstract|PubmedFullText|CrossRefFullText Laramée,M.E.,Kurotani,T.,Rockland,K.S.,Bronchti,G.,andBoire,D.(2011).IndirectpathwaybetweentheprimaryauditoryandvisualcorticesthroughlayerVpyramidalneuronsinV2Linmouseandtheeffectsofbilateralenucleation.Eur.J.Neurosci.34,65–78.doi:10.1111/j.1460-9568.2011.07732.x PubmedAbstract|PubmedFullText|CrossRefFullText Laurienti,P.J.,Burdette,J.H.,Wallace,M.T.,Yen,Y.F.,Field,A.S.,andStein,B.E.(2002).Deactivationofsensory-specificcortexbycross-modalstimuli.J.Cogn.Neurosci.14,420–429.doi:10.1162/089892902317361930 PubmedAbstract|PubmedFullText|CrossRefFullText Lazzouni,L.,Voss,P.,andLepore,F.(2012).Short-termcrossmodalplasticityoftheauditorysteady-stateresponseinblindfoldedsightedindividuals.Eur.J.Neurosci.35,1630–1636.doi:10.1111/j.1460-9568.2012.08088.x PubmedAbstract|PubmedFullText|CrossRefFullText Lee,D.S.,Lee,J.S.,Oh,S.H.,Kim,S.K.,Kim,J.W.,Chung,J.K.,etal.(2001).Crossmodalplasticityandcochlearimplants.Nature409,149–150.doi:10.1038/35051653 PubmedAbstract|PubmedFullText|CrossRefFullText Lee,H.J.,Giraud,A.L.,Kang,E.,Oh,S.H.,Kang,H.,Kim,C.S.,etal.(2007).Corticalactivityatrestpredictscochlearimplantationoutcome.Cereb.Cortex17,909–917.doi:10.1093/cercor/bhl001 PubmedAbstract|PubmedFullText|CrossRefFullText Lee,H.J.,Kang,E.,Oh,S.H.,Kang,H.,Lee,D.S.,Lee,M.C.,etal.(2005).Preoperativedifferencesofcerebralmetabolismrelatetotheoutcomeofcochlearimplantsincongenitallydeafchildren.Hear.Res.203,2–9.doi:10.1016/j.heares.2004.11.005 PubmedAbstract|PubmedFullText|CrossRefFullText Lepore,N.,Voss,P.,Lepore,F.,Chou,Y.Y.,Fortin,M.,Gougoux,F.,etal.(2010).Brainstructurechangesvisualizedinearly-andlate-onsetblindsubjects.Neuroimage49,134–140.doi:10.1016/j.neuroimage.2009.07.048 PubmedAbstract|PubmedFullText|CrossRefFullText Li,J.,Liu,Y.,Qin,W.,Jiang,J.,Qiu,Z.,Xu,J.,etal.(2013).Ageofonsetofblindnessaffectsbrainanatomicalnetworksconstructedusingdiffusiontensortractography.Cereb.Cortex23,542–551.doi:10.1093/cercor/bhs034 PubmedAbstract|PubmedFullText|CrossRefFullText Maeda,K.,Yasuda,H.,Haneda,M.,andKashiwagi,A.(2003).Braillealexiaduringvisualhallucinationinablindmanwithselectivecalcarineatrophy.PsychiatryClin.Neurosci.57,227–229.doi:10.1046/j.1440-1819.2003.01105.x PubmedAbstract|PubmedFullText|CrossRefFullText Mahon,B.Z.,Anzellotti,S.,Schwarzbach,J.,Zampini,M.,andCaramazza,A.(2009).Category-specificorganizationinthehumanbraindoesnotrequirevisualexperience.Neuron63,397–405.doi:10.1016/j.neuron.2009.07.012 PubmedAbstract|PubmedFullText|CrossRefFullText Meijer,P.B.(1992).Anexperimentalsystemforauditoryimagerepresentations.IEEETrans.Biomed.Eng.39,112–121.doi:10.1109/10.121642 PubmedAbstract|PubmedFullText|CrossRefFullText Mens,L.H.(2007).Advancesincochlearimplanttelemetry:evokedneuralresponses,electricalfieldimaging,andtechnicalintegrity.TrendsAmplif.11,143–159.doi:10.1177/1084713807304362 PubmedAbstract|PubmedFullText|CrossRefFullText Merabet,L.B.,Hamilton,R.,Schlaug,G.,Swisher,J.D.,Kiriakopoulos,E.T.,Pitskel,N.B.,etal.(2008).Rapidandreversiblerecruitmentofearlyvisualcortexfortouch.PLoSONE3:e3046.doi:10.1371/journal.pone.0003046 PubmedAbstract|PubmedFullText|CrossRefFullText Merabet,L.B.,Rizzo,J.F.,Amedi,A.,Somers,D.C.,andPascual-Leone,A.(2005).Whatblindnesscantellusaboutseeingagain:mergingneuroplascitityandneuroprostheses.Nat.Rev.Neurosci.6,71–77.doi:10.1038/nrn1586 PubmedAbstract|PubmedFullText|CrossRefFullText Noppeney,U.,Friston,K.J.,Ashburner,J.,Frackowiak,R.,andPrice,C.J.(2005).Earlyvisualdeprivationinducesstructuralplasticityingreyandwhitematter.Curr.Biol.15,R488–R490.doi:10.1016/j.cub.2005.06.053 PubmedAbstract|PubmedFullText|CrossRefFullText O'Donoghue,G.M.,Nikopoulos,T.P.,andArchbold,S.M.(2000).Determinantsofspeechperceptioninchildrenaftercochlearimplantation.Lancet356,466–468.doi:10.1016/S0140-6736(00)02555-1 PubmedAbstract|PubmedFullText|CrossRefFullText Pan,W.J.,Wu,G.,Li,C.X.,Lin,F.,Sun,J.,andLei,H.(2007).ProgressiveatrophyintheopticpathwayandvisualcortexofearlyblindChineseadults:avoxel-basedmorphometrymagneticresonanceimagingstudy.Neuroimage37,212–220.doi:10.1016/j.neuroimage.2007.05.014 PubmedAbstract|PubmedFullText|CrossRefFullText Park,H.J.,Jeong,S.O.,Kim,E.Y.,Kim,J.,Park,H.,Oh,M.K.,etal.(2007).Reroganizationofneuralcircuitsintheblindondiffusiondirectionanalysis.Neuroreport18,1757–1760.doi:10.1097/WNR.0b013e3282f13e66 PubmedAbstract|PubmedFullText|CrossRefFullText Pascual-Leone,A.,Amedi,A.,Fregni,F.,andMerabet,L.B.(2005).Theplastichumanbraincortex.Annu.Rev.Neurosci.28,377–401.doi:10.1146/annurev.neuro.27.070203.144216 PubmedAbstract|PubmedFullText|CrossRefFullText Pascual-Leone,A.,andHamilton,R.(2001).Themetamodalorganizationofthebrain.Prog.BrainRes.134,427–445.doi:10.1016/S0079-6123(01)34028-1 PubmedAbstract|PubmedFullText|CrossRefFullText Pietrini,P.,Furey,M.L.,Ricciardi,E.,Gobbini,M.I.,Wu,W.H.,Cohen,L.,etal.(2004).Beyondsensoryimages:object-basedrepresentationinthehumanventralpathway.Proc.Natl.Acad.Sci.U.S.A.101,5658–5663.doi:10.1073/pnas.0400707101 PubmedAbstract|PubmedFullText|CrossRefFullText Poirier,C.,Collignon,O.,Scheiber,C.,Renier,L.,Vanlierde,A.,Tranduy,D.,etal.(2006).Auditorymotionperceptionactivatesvisualmotionareasinearlyblindsubjects.Neuroimage31,279–285.doi:10.1016/j.neuroimage.2005.11.036 PubmedAbstract|PubmedFullText|CrossRefFullText Ponton,C.W.,Don,M.,Eggermont,J.J.,Waring,M.D.,Kwong,B.,andMasuda,A.(1996).Auditorysystemplasticityinchildrenafterlongperiodsofcompletedeafness.Neuroreport8,61–65.doi:10.1097/00001756-199612200-00013 PubmedAbstract|PubmedFullText|CrossRefFullText Ptito,M.,Schneider,F.C.,Paulson,O.B.,andKupers,R.(2008).Alterationsofthevisualpathwaysincongenitalblindness.Exp.BrainRes.187,41–49.doi:10.1007/s00221-008-1273-4 PubmedAbstract|PubmedFullText|CrossRefFullText Raz,N.,Amedi,A.,andZohary,E.(2005).V1activationincongenitallyblindhumansisassociatedwithepisodicretrieval.Cereb.Cortex15,1459–1468.doi:10.1093/cercor/bhi026 PubmedAbstract|PubmedFullText|CrossRefFullText Reich,L.,Szwed,M.,Cohen,L.,andAmedi,A.(2011).Aventralvisualstreamreadingcenterindependentofvisualexperience.Curr.Biol.21,363–368.doi:10.1016/j.cub.2011.01.040 PubmedAbstract|PubmedFullText|CrossRefFullText Renier,L.,andDeVolder,A.G.(2010).Visionsubstitutionanddepthperception:earlyblindsubjectsexperiencevisualperspectivethroughtheirears.Disabil.Rehabil.Assist.Technol.5,175–183.doi:10.3109/17483100903253936 PubmedAbstract|PubmedFullText|CrossRefFullText Ricciardi,E.,Vanello,N.,Sani,L.,Gentilli,C.,Scilingo,E.P.,Landini,L.,etal.(2007).TheeffectofvisualexperienceonfunctionalarchitectureinhMT+.Cereb.Cortex17,2933–2939.doi:10.1093/cercor/bhm018 PubmedAbstract|PubmedFullText|CrossRefFullText Rockland,K.S.,andOjima,H.(2003).Multisensoryconvergenceincalcarinevisualareasinmacaquemonkey.Int.J.Psychophysiol.50,19–26.doi:10.1016/S0167-8760(03)00121-1 PubmedAbstract|PubmedFullText|CrossRefFullText Röder,B.,Teder-Sälejärvi,W.,Sterr,A.,Rösler,F.,Hillyard,S.A.,andNeville,H.J.(1999).Improvedauditoryspatialtuninginblindhumans.Nature400,162–166.doi:10.1038/22106 PubmedAbstract|PubmedFullText|CrossRefFullText Sadato,N.,Okada,T.,Honda,M.,andYonekura,Y.(2002).Criticalperiodforcross-modalplasticityinblindhumans:afunctionalMRIstudy.Neuroimage16,389–400.doi:10.1006/nimg.2002.1111 PubmedAbstract|PubmedFullText|CrossRefFullText Sadato,N.,Pascual-Leone,A.,Grafman,J.,Ibanez,V.,Deiber,M.P.,Dold,G.,etal.(1996).ActivationoftheprimaryvisualcortexbyBraillereadinginblindsubjects.Nature380,526–528.doi:10.1038/380526a0 PubmedAbstract|PubmedFullText|CrossRefFullText Sarant,J.Z.,Blamey,P.J.,Dowell,R.C.,Clark,G.M.,andGibson,W.P.(2001).Variationinspeechperceptionscoresamongchildrenwithcochlearimplants.EarHear.22,18–28.doi:10.1097/00003446-200102000-00003 PubmedAbstract|PubmedFullText|CrossRefFullText Schoth,F.,Burgel,U.,Dorsh,R.,Reinges,M.H.T.,andKrings,T.(2006).Diffusiontensorimaginginacquiredblindhumans.Neurosci.Lett.398,178–182.doi:10.1016/j.neulet.2005.12.088 PubmedAbstract|PubmedFullText|CrossRefFullText Schroeder,C.E.,Smiley,J.,Fu,K.G.,McGinnis,T.,O'Connell,M.N.,andHackett,T.A.(2003).Anatomicalmechanismsandfunctionalimplicationsofmultisensoryconvergenceinearlycorticalprocessing.Int.J.Psychophysiol.50,5–17.doi:10.1016/S0167-8760(03)00120-X PubmedAbstract|PubmedFullText|CrossRefFullText Sharma,A.,Dorman,M.F.,andKral,A.(2005).Theinfluenceofasensitiveperiodoncentralauditorydevelopmentinchildrenwithunilateralandbilateralimplants.Hear.Res.203,134–143.doi:10.1016/j.heares.2004.12.010 PubmedAbstract|PubmedFullText|CrossRefFullText Shimony,J.S.,Burton,H.,Epstein,A.A.,McLaren,D.G.,Sun,S.W.,andSnyder,A.Z.(2006).Diffusiontensorimagingrevealswhitematterreorganizationinearlyblindindividuals.Cereb.Cortex16,1653–1661.doi:10.1093/cercor/bhj102 PubmedAbstract|PubmedFullText|CrossRefFullText Stryker,M.P.,andHarris,W.A.(1986).Binocularimpulseblockadepreventstheformationofoculardominancecolumnsincatvisualcortex.J.Neurosci.6,2117–2133. PubmedAbstract|PubmedFullText Uhl,F.,Franzen,P.,Lindinger,G.,Lang,W.,andDeecke,L.(1991).Onthefunctionalityofthevisuallydeprivedoccipitalcortexinearlyblindpersons.Neurosci.Lett.125,256–259.doi:10.1016/0304-3940(91)90107-5 PubmedAbstract|PubmedFullText|CrossRefFullText Uhl,F.,Franzen,P.,Podreka,I.,Steiner,M.,andDeecke,L.(1993).Increasedregionalcerebralbloodflowininferioroccipitalcortexandcerebellumofearlyblindhumans.Neurosci.Lett.150,162–164.doi:10.1016/0304-3940(93)90526-Q PubmedAbstract|PubmedFullText|CrossRefFullText Veraart,C.,DeVolder,A.G.,Wanet-Defalque,M.C.,Bol,A.,Michel,C.,andGoffinet,A.M.(1990).Glucoseutilizationinhumanvisualcortexisabnormallyelevatedinblindnessofearlyonsetbutdecreasedinblindnessoflateonset.BrainRes.510,115–121.doi:10.1016/0006-8993(90)90735-T PubmedAbstract|PubmedFullText|CrossRefFullText vonSenden,M.(1960).SpaceandSight:ThePerceptionofSpaceandShapeintheCongenitallyBlindBeforeandAfterOperation.London:Methuen.doi:10.1017/S0031819100030977 CrossRefFullText Voss,P.,Collignon,O.,Lassonde,M.,andLepore,F.(2010).Adaptationtosensoryloss.WileyIntdiscip.Rev.Cogn.Sci.1,308–328.doi:10.1002/wcs.13 CrossRefFullText Voss,P.,Gougoux,F.,Lassonde,M.,Fortin,M.,Guillemot,J.P.,andLepore,F.(2004).Early-andlate-onsetblindindividualsshowsupra-normalauditoryabilitiesinfarspace.Curr.Biol.14,1734–1738.doi:10.1016/j.cub.2004.09.051 PubmedAbstract|PubmedFullText|CrossRefFullText Voss,P.,Gougoux,F.,Lassonde,M.,Zatorre,R.J.,andLepore,F.(2006).APETstudyduringauditorylocalizationbylate-onsetblindindividuals.Neuroreport17,383–388.doi:10.1097/01.wnr.0000204983.21748.2d PubmedAbstract|PubmedFullText|CrossRefFullText Voss,P.,Gougoux,F.,Zatorre,R.J.,Lassonde,M.,andLepore,F.(2008).Differentialoccipitalresponsesinearlyandlateblindindividualsduringasound-sourcediscriminationtask.Neuroimage40,746–758.doi:10.1016/j.neuroimage.2007.12.020 PubmedAbstract|PubmedFullText|CrossRefFullText Voss,P.,andZatorre,R.(2012).Organizationandreorganizationofsensorydeprivedcortex.Curr.Biol.22,R168–R173.doi:10.1016/j.cub.2012.01.030 PubmedAbstract|PubmedFullText|CrossRefFullText Waltzman,S.B.,andCohen,N.L.(1998).Cochlearimplantationinchildrenyoungerthan2yearsold.Am.J.Otol.19,158–162. PubmedAbstract|PubmedFullText Wanet-Defalque,M.C.,Veraart,C.,DeVolder,A.,Metz,R.,Michel,C.,Dooms,G.,etal.(1988).Highmetabolicactivityinthevisualcortexofearlyblindhumansubjects.BrainRes.446,369–373.doi:10.1016/0006-8993(88)90896-7 PubmedAbstract|PubmedFullText|CrossRefFullText Weeks,R.,Horwitz,B.,Aziz-Sultan,A.,Tian,B.,Wessinger,C.M.,Cohen,L.G.,etal.(2000).Apositronemissiontomographicstudyofauditorylocalizationinthecongenitallyblind.J.Neurosci.20,2664–2672. PubmedAbstract|PubmedFullText Weisser,V.,Stilla,R.,Peltier,S.,Hu,X.,andSathian,K.(2005).Shortermvisualdeprivationaltersneuralprocessingoftactileform.Exp.BrainRes.166,572–582.doi:10.1007/s00221-005-2397-4 PubmedAbstract|PubmedFullText|CrossRefFullText Wiesel,T.N.,andHubel,D.H.(1963).Single-cellresponseinstriatecortexofkittensdeprivedofvisioninoneeye.J.Neurophysiol.26,1003–1017. Wiesel,T.N.,andHubel,D.H.(1965).Comparisonoftheeffectsofunilateralandbilateraleyeclosureoncorticalunitresponsesinkittens.J.Neurophysiol.28,1029–1040. PubmedAbstract|PubmedFullText Yaka,R.,Yinon,U.,andWollberg,Z.(1999).Auditoryactivationofcorticalvisualareasincatsafterearlyvisualdeprivation.Eur.J.Neurosci.11,1301–1312.doi:10.1046/j.1460-9568.1999.00536.x PubmedAbstract|PubmedFullText|CrossRefFullText Keywords:blindness,crossmodalplasticity,earlyandlateblind,criticalperiods,sensitiveperiods Citation:VossP(2013)Sensitiveandcriticalperiodsinvisualsensorydeprivation.Front.Psychol.4:664.doi:10.3389/fpsyg.2013.00664 Received:30April2013;Accepted:05September2013;Publishedonline:26September2013. Editedby:VirginiaPenhune,ConcordiaUniversity,Canada Reviewedby:CatherineY.Wan,BethIsraelDeaconessMedicalCenterandHarvardMedicalSchool,USAHaroldBurton,WashingtonUniversitySchoolofMedicine,USA Copyright©2013Voss.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:PatriceVoss,Neuropsychology/CognitiveNeuroscienceUnit,MontrealNeurologicalInstitute,McGillUniversity,Room276,3801UniversityStreet,Montreal,QCH3A2B4,Canadae-mail:[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1Critical/Sensitive Periods | Encyclopedia.com
A critical or sensitive period is defined as a period when certain experiences are particularly i...
- 2Critical and Sensitive Periods in Development and Nutrition
In a sensitive period, the degree of plasticity is relatively higher, but plasticity never ends. ...
- 3Critical period - Wikipedia
In developmental psychology and developmental biology, a critical period is a maturational stage ...
- 4Critical & Sensitive Periods
- 5Review about Critical period
探討生物發展過程中,針對一個特定的時間範圍,有各. 種不同主題的研究,因此也衍生了各種不同的名稱,最常出現的兩個名詞為關鍵期. (critical period) 和敏感期(sensitive ...