Solid oxide electrolyzer cell - Wikipedia

文章推薦指數: 80 %
投票人數:10人

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon ... Solidoxideelectrolyzercell FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Typeoffuelcell SOEC60cellstack. Asolidoxideelectrolyzercell(SOEC)isasolidoxidefuelcellthatrunsinregenerativemodetoachievetheelectrolysisofwater(and/orcarbondioxide)[1]byusingasolidoxide,orceramic,electrolytetoproducehydrogengas[2](and/orcarbonmonoxide)andoxygen. Theproductionofpurehydrogeniscompellingbecauseitisacleanfuelthatcanbestored,makingitapotentialalternativetobatteries,methane,andotherenergysources(seehydrogeneconomy).[3]Electrolysisiscurrentlythemostpromisingmethodofhydrogenproductionfromwaterduetohighefficiencyofconversionandrelativelylowrequiredenergyinputwhencomparedtothermochemicalandphotocatalyticmethods.[4] Contents 1Principle 2Operation 3Materials 3.1Electrolyte 3.2FuelElectrode(Cathode) 3.3OxygenElectrode(Anode) 4Considerations 4.1Delamination 5Applications 6Research 7Operatingconditions 8Seealso 9References 10Externallinks Principle[edit] Solidoxideelectrolyzercellsoperateattemperatureswhichallowhigh-temperatureelectrolysis[5]tooccur,typicallybetween500and850 °C.Theseoperatingtemperaturesaresimilartothoseconditionsforasolidoxidefuelcell.Thenetcellreactionyieldshydrogenandoxygengases.Thereactionsforonemoleofwaterareshownbelow,withoxidationofwateroccurringattheanodeandreductionofwateroccurringatthecathode. Anode:2O2−→O2+4e− Cathode:H2O+2e−→H2+O2− NetReaction:2H2O→2H2+O2 Electrolysisofwaterat298K(25 °C)requires285.83kJofenergypermoleinordertooccur,[6]andthereactionisincreasinglyendothermicwithincreasingtemperature.However,theenergydemandmaybereducedduetotheJouleheatingofanelectrolysiscell,whichmaybeutilizedinthewatersplittingprocessathightemperatures.Researchisongoingtoaddheatfromexternalheatsourcessuchasconcentratingsolarthermalcollectorsandgeothermalsources.[7] Operation[edit] ThegeneralfunctionoftheelectrolyzercellistosplitwaterintheformofsteamintopureH2andO2.Steamisfedintotheporouscathode.Whenavoltageisapplied,thesteammovestothecathode-electrolyteinterfaceandisreducedtoformpureH2andoxygenions.Thehydrogengasthendiffusesbackupthroughthecathodeandiscollectedatitssurfaceashydrogenfuel,whiletheoxygenionsareconductedthroughthedenseelectrolyte.TheelectrolytemustbedenseenoughthatthesteamandhydrogengascannotdiffusethroughandleadtotherecombinationoftheH2andO2−.Attheelectrolyte-anodeinterface,theoxygenionsareoxidizedtoformpureoxygengas,whichiscollectedatthesurfaceoftheanode.[8] Materials[edit] Solidoxideelectrolyzercellsfollowthesameconstructionofasolid-oxidefuelcell,consistingofafuelelectrode(cathode),anoxygenelectrode(anode)andasolid-oxideelectrolyte. Electrolyte[edit] Themostcommonelectrolyte,againsimilartosolid-oxidefuelcells,isadenseionicconductorconsistingofZrO2dopedwith8 mol %Y2O3(alsoknownasYSZ).Zirconiumdioxideisusedbecauseofitshighstrength,highmeltingtemperature(approximately2700 °C)andexcellentcorrosionresistance.Yttrium(III)oxide(Y2O3)isaddedtomitigatethephasetransitionfromthetetragonaltothemonoclinicphaseonrapidcooling,whichcanleadtocracksanddecreasetheconductivepropertiesoftheelectrolytebycausingscattering.[9]SomeothercommonchoicesforSOECareScandiastabilizedzirconia(ScSZ),ceriabasedelectrolytesorlanthanumgallatematerials.Despitethematerialsimilaritytosolidoxidefuelcells,theoperatingconditionsaredifferent,leadingtoissuessuchashighsteamconcentrationsatthefuelelectrodeandhighoxygenpartialpressuresattheelectrolyte/oxygenelectrodeinterface.[10]Arecentstudyfoundthatperiodiccyclingacellbetweenelectrolyzerandfuelcellmodesreducedtheoxygenpartialpressurebuildupanddrasticallyincreasedthelifetimeoftheelectrolyzercell.[11] FuelElectrode(Cathode)[edit] ThemostcommonfuelelectrodematerialisaNidopedYSZ.However,highsteampartialpressuresandlowhydrogenpartialpressuresattheNi-YSZinterfacecausesoxidationofthenickelwhichresultsincatalystdegradation.[12]Perovskite-typelanthanumstrontiummanganese(LSM)isalsocommonlyusedasacathodematerial.RecentstudieshavefoundthatdopingLSMwithscandiumtoformLSMSpromotesmobilityofoxideionsinthecathode,increasingreductionkineticsattheinterfacewiththeelectrolyteandthusleadingtohigherperformanceatlowtemperaturesthantraditionalLSMcells.However,furtherdevelopmentofthesinteringprocessparametersisrequiredtopreventprecipitationofscandiumoxideintotheLSMlattice.Theseprecipitateparticlesareproblematicbecausetheycanimpedeelectronandionconduction.Inparticular,theprocessingtemperatureandconcentrationofscandiumintheLSMlatticearebeingresearchedtooptimizethepropertiesoftheLSMScathode.[13]Newmaterialsarebeingresearchedsuchaslanthanumstrontiummanganesechromate(LSCM),whichhasproventobemorestableunderelectrolysisconditions.[14]LSCMhashighredoxstability,whichiscrucialespeciallyattheinterfacewiththeelectrolyte.Scandium-dopedLCSM(LSCMS)isalsobeingresearchedasacathodematerialduetoitshighionicconductivity.However,therare-earthelementintroducesasignificantmaterialscostandwasfoundtocauseaslightdecreaseinoverallmixedconductivity.Nonetheless,LCSMSmaterialshavedemonstratedhighefficiencyattemperaturesaslowas700 °C.[15] OxygenElectrode(Anode)[edit] Lanthanumstrontiummanganate(LSM)isthemostcommonoxygenelectrodematerial.LSMoffershighperformanceunderelectrolysisconditionsduetogenerationofoxygenvacanciesunderanodicpolarizationthataidoxygendiffusion.[16]Inaddition,impregnatingLSMelectrodewithGd-dopedCeO2(GDC)nanoparticleswasfoundtoincreasecelllifetimebypreventingdelaminationattheelectrode/electrolyteinterface.[17]Theexactmechanismbyhowthishappenneedstobeexplorefurther.Ina2010study,itwasfoundthatneodymiumnickelateasananodematerialprovided1.7timesthecurrentdensityoftypicalLSManodeswhenintegratedintoacommercialSOECandoperatedat700 °C,andapproximately4timesthecurrentdensitywhenoperatedat800 °C.Theincreasedperformanceispostulatedtobeduetohigher"overstoichimoetry"ofoxygenintheneodymiumnickelate,makingitasuccessfulconductorofbothionsandelectrons.[18] Considerations[edit] Advantagesofsolidoxide-basedregenerativefuelcellsincludehighefficiencies,astheyarenotlimitedbyCarnotefficiency.[19] Additionaladvantagesincludelong-termstability,fuelflexibility,lowemissions,andlowoperatingcosts.However,thegreatestdisadvantageisthehighoperatingtemperature,whichresultsinlongstart-uptimesandbreak-intimes.Thehighoperatingtemperaturealsoleadstomechanicalcompatibilityissuessuchasthermalexpansionmismatchandchemicalstabilityissuessuchasdiffusionbetweenlayersofmaterialinthecell[20] Inprinciple,theprocessofanyfuelcellcouldbereversed,duetotheinherentreversibilityofchemicalreactions.[21] However,agivenfuelcellisusuallyoptimizedforoperatinginonemodeandmaynotbebuiltinsuchawaythatitcanbeoperatedinreverse.Fuelcellsoperatedbackwardsmaynotmakeveryefficientsystemsunlesstheyareconstructedtodososuchasinthecaseofsolidoxideelectrolyzercells,highpressureelectrolyzers,unitizedregenerativefuelcellsandregenerativefuelcells.However,currentresearchisbeingconductedtoinvestigatesystemsinwhichasolidoxidecellmayberunineitherdirectionefficiently.[22] Delamination[edit] Fuelcellsoperatedinelectrolysismodehavebeenobservedtodegradeprimarilyduetoanodedelaminationfromtheelectrolyte.Thedelaminationisaresultofhighoxygenpartialpressurebuildupattheelectrolyte-anodeinterface.Poresintheelectrolyte-anodematerialacttoconfinehighoxygenpartialpressuresinducingstressconcentrationinthesurroundingmaterial.Themaximumstressinducedcanbeexpressedintermsoftheinternaloxygenpressureusingthefollowingequationfromfracturemechanics:[23] σ m a x = 2 P O 2 ( c ρ ) 1 / 2 {\displaystyle\sigma_{max}=2P_{O2}({\frac{c}{\rho}})^{1/2}} wherecisthelengthofthecrackorporeand ρ {\displaystyle\rho} istheradiusofcurvatureofthecrackorpore.If σ m a x {\displaystyle\sigma_{max}} exceedsthetheoreticalstrengthofthematerial,thecrackwillpropagate,macroscopicallyresultingindelamination. Virkaretal.createdamodeltocalculatetheinternaloxygenpartialpressurefromtheoxygenpartialpressureexposedtotheelectrodesandtheelectrolyteresistiveproperties.[24]Theinternalpressureofoxygenattheelectrolyte-anodeinterfacewasmodelledas: P O 2 a = P O 2 O x exp ⁡ [ − 4 F R T { E a r e a R e − ( E a − E N ) r i a R i } ] {\displaystyleP_{O2}^{a}=P_{O2}^{Ox}\exp\left[-{\frac{4F}{RT}}\left\{{\frac{E_{a}r_{e}^{a}}{R_{e}}}-{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}\right\}\right]} = P O 2 O x exp ⁡ [ − 4 F R T { ( ϕ O x − ϕ a ) − ( E a − E N ) r i a R i } ] {\displaystyle=P_{O2}^{Ox}\exp\left[-{\frac{4F}{RT}}\left\{(\phi^{Ox}-\phi^{a})-{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}\right\}\right]} where P O 2 O x {\displaystyleP_{O2}^{Ox}} istheoxygenpartialpressureexposedtotheoxygenelectrode(anode), r − e a {\displaystyler-e^{a}} istheareaspecificelectronicresistanceattheanodeinterface, r i a {\displaystyler_{i}^{a}} istheareaspecificionicresistanceattheanodeinterface, E a {\displaystyleE_{a}} istheappliedvoltage, E N {\displaystyleE_{N}} istheNernstpotential, R e {\displaystyleR_{e}} and R i {\displaystyleR_{i}} aretheoverallelectronicandionicareaspecificresistancesrespectively,and ϕ O x {\displaystyle\phi^{Ox}} and ϕ a {\displaystyle\phi^{a}} aretheelectricpotentialsattheanodesurfaceandtheanodeelectrolyteinterfacerespectively.[25] Inelectrolysismode ϕ O x {\displaystyle\phi^{Ox}} > ϕ a {\displaystyle\phi^{a}} and E a {\displaystyleE_{a}} > E N {\displaystyleE_{N}} .Whether P O 2 a {\displaystyleP_{O2}^{a}} isgreaterthan P O 2 O x {\displaystyleP_{O2}^{Ox}} isdictatedbywhether( ϕ O x {\displaystyle\phi^{Ox}} - ϕ a {\displaystyle\phi^{a}} )or E a r e a R e {\displaystyle{\frac{E_{a}r_{e}^{a}}{R_{e}}}} isgreaterthan ( E a − E N ) r i a R i {\displaystyle{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}} .Theinternaloxygenpartialpressureisminimizedbyincreasingtheelectronicresistanceattheanodeinterfaceanddecreasingtheionicresistanceatanodeinterface. Delaminationoftheanodefromtheelectrolyteincreasestheresistanceofthecellandnecessitateshigheroperatingvoltagesinordertomaintainastablecurrent.[26]Higherappliedvoltagesincreasestheinternaloxygenpartialpressure,furtherexacerbatingthedegradation. Applications[edit] SOECshavepossibleapplicationinfuelproduction,carbondioxiderecycling,andchemicalssynthesis.Inadditiontotheproductionofhydrogenandoxygen,anSOECcouldbeusedtocreatesyngasbyelectrolyzingwatervaporandcarbondioxide.[27] Thisconversioncouldbeusefulforenergygenerationandenergystorageapplications. Research[edit] In2014MITsuccessfullytestedadevicesusedinMarsOxygenISRUExperimentonthePerseveranceroverasameanstoproduceoxygenforbothhumansustenanceandliquidoxygenrocketpropellant.[28][29]OnApril2021NASAclaimedithassuccessfullyproduced1gallonofearth-equivalentoxygen(4and5gramsofoxygenonMars)fromCO2intheMarsatmosphere.[30] Operatingconditions[edit] SOECmodulescanoperateinthreedifferentmodes:exothermic,endothermicandthermoneutral.Inexothermicmode,thestacktemperatureincreasesduringoperationduetoheataccumulation,andthisheatisusedforinletgaspreheating.Therefore,anexternalheatsourceisnotneededwhiletheelectricalenergyconsumptionincreases.Intheendothermicstackoperationmode,thereisanincreaseinheatenergyconsumptionandareductioninelectricalenergyconsumptionandhydrogenproductionbecausetheaveragecurrentdensityalsodecreases.Thethirdmodeisthermoneutralinwhichtheheatgeneratedthroughirreversiblelossesisequaltotheheatrequiredbythereaction.Astherearesomethermallosses,anexternalheatsourceisneeded.Thismodeconsumesmoreelectricitythanendothermicoperationmode.[31] Seealso[edit] Glossaryoffuelcellterms Hydrogentechnologies References[edit] ^Zheng,Yun;Wang,Jianchen;Yu,Bo;Zhang,Wenqiang;Chen,Jing;Qiao,Jinli;Zhang,Jiujun(2017)."Areviewofhightemperatureco-electrolysisofHOandCOtoproducesustainablefuelsusingsolidoxideelectrolysiscells(SOECs):advancedmaterialsandtechnology".Chem.Soc.Rev.46(5):1427–1463.doi:10.1039/C6CS00403B.PMID 28165079. ^DurabilityofsolidoxideelectrolysiscellsforhydrogenproductionArchived2009-07-11attheWaybackMachine ^NiM,LeungMKH,LeungDYC,SumathyK.Areviewandrecentdevelopmentsinphotocatalyticwater-splittingusingTiO2forhydrogenproduction.RenewableSustainableEnergyRev2007;11(3):401–25. ^Ni,M.,Leung,M.K.H.,&Leung,D.Y.C.(2008).Technologicaldevelopmentofhydrogenproductionbysolidoxideelectrolyzercell(SOEC).InternationalJournalofHydrogenEnergy,33,2337–2354.doi:10.1016/j.ijhydene.2008.02.048 ^Areversibleplanarsolidoxidefuel-assistedelectrolysiscell ^ElectrolysisofWater ^Canhightemperaturesteamelectrolysisfunctionwithgeothermalheat? ^Ni,M.,Leung,M.K.H.,&Leung,D.Y.C.(2008).Technologicaldevelopmentofhydrogenproductionbysolidoxideelectrolyzercell(SOEC).InternationalJournalofHydrogenEnergy,33,2337–2354.doi:10.1016/j.ijhydene.2008.02.048 ^Bocanegra-Bernal,M.H.,&DelaTorre,S.D.(2002).Phasetransitionsinzirconiumdioxideandrelatedmaterialsforhighperformanceengineeringceramics.JournalofMaterialsScience,37,4947–4971 ^Laguna-Bercero,M.A.Recentadvancesinhightemperatureelectrolysisusingsolidoxidefuelcells:Areview.JournalofPowerSources2012,203,4–16DOI:10.1016/j.jpowsour.2011.12.019. ^Graves,C.;Ebbesen,S.D.;Jensen,S.H.;Simonsen,S.B.;Mogensen,M.B.Eliminatingdegradationinsolidoxideelectrochemicalcellsbyreversibleoperation.NatMater2014,advanceonlinepublication. ^Laguna-Bercero,M.A.Recentadvancesinhightemperatureelectrolysisusingsolidoxidefuelcells:Areview.JournalofPowerSources2012,203,4–16DOI:10.1016/j.jpowsour.2011.12.019. ^Yue,X.,Yan,A.,Zhang,M.,Liu,L.,Dong,Y.,&Cheng,M.(2008).Investigationonscandium-dopedmanganateLa0.8Sr0.2Mn1-xScxO3-cathodeforIntermediateTemperatureSolidOxideFuelCells.JournalofPowerSources,185,691–697.doi:10.1016/j.jpowsour.2008.08.038 ^X.Yang,J.T.S.Irvine,J.Mater.Chem.18(2008)2349–2354. ^Chen,S.,Xie,K.,Dong,D.,Li,H.,Qin,Q.,Zhang,Y.,&Wu,Y.(2015).Acompositecathodebasedonscandium-dopedchromatefordirecthigh-temperaturesteamelectrolysisinasymmetricsolidoxideelectrolyzer.JournalofPowerSources,274,718–729.doi:10.1016/j.jpowsour.2014.10.103 ^W.Wan,S.P.Jiang,SolidStateIonics177(2006)1361–1369. ^K.Chen,N.Ai,S.P.Jiang,J.Electrochem.Soc.157(2010)P89–P94. ^Chauveau,F.,Mougin,J.,Bassat,J.M.,Mauvy,F.,&Grenier,J.C.(2010).Anewanodematerialforsolidoxideelectrolyser:Theneodymiumnickelate.JournalofPowerSources,195,744–749.doi:10.1016/j.jpowsour.2009.08.003 ^IntermediatetemperaturesolidoxideelectrolysiscellusingLaGaO3basedperovskiteelectrolyte ^Solidoxidefuelcells ^SimpleandAttractiveDemonstrationoftheReversibilityofChemicalReactions ^AProposedMethodforHighEfficiencyElectricalEnergyStorageUsingSolidOxideCells ^Courtney,T.N.(2000)MechanicalBehaviorofMaterials.Groveland,IL:WavelandPress ^Virkar,A.V.(2010)."Mechanismofoxygenelectrodedelaminationinsolidoxide electrolyzercells"InternationalJournalofHydrogenEnergy35:9527-9543 ^Virkar,A.V.(2010)."Mechanismofoxygenelectrodedelaminationinsolidoxide electrolyzercells"InternationalJournalofHydrogenEnergy35:9527-9543 ^GazzarriJ.I.,KeslerO.(2007)“Non-destructivedelaminationdetectioninsolidoxidefuelcells”.JournalofPowerSources;167:430-441. ^CeramatecSolidOxideCo-ElectrolysisCellArchived2011-06-08attheWaybackMachine ^"GoingtotheRedPlanet".MITNews|MassachusettsInstituteofTechnology.Retrieved2021-11-26. ^"MITtosendoxygen-creatinginstrumentonMars2020missionbyNASA-WorldNews,Firstpost".Firstpost.2014-08-04.Retrieved2021-11-26. ^Niiler,Eric."NASA'sMOXIEExperimentIsMakingOxygenonMars".Wired.ISSN 1059-1028.Retrieved2021-11-26. ^R.Daneshpour,M.MehrpooyaDesignandoptimizationofacombinedsolarthermophotovoltaicpowergenerationandsolidoxideelectrolyserforhydrogenproductionEnergyConversManage,176(2018),pp.274-286 Externallinks[edit] 2007DOEHydrogenProgramReview RELHY vteFuelcellsByelectrolyte Alkalinefuelcell Moltencarbonatefuelcell Phosphoricacidfuelcell Proton-exchangemembranefuelcell Solidoxidefuelcell Byfuel Direct-ethanolfuelcell Directmethanolfuelcell Formicacidfuelcell Reformedmethanolfuelcell Directcarbonfuelcell Zinc-airbattery Metalhydridefuelcell Directborohydridefuelcell Biofuelcells Enzymaticbiofuelcell Microbialfuelcell Others Blueenergy Electro-galvanicfuelcell Flowbattery Photoelectrochemicalcell Regenerativefuelcell Solidoxideelectrolysercell Unitizedregenerativefuelcell Proton-exchangemembrane Membraneelectrodeassembly MembranelessFuelCells Protonicceramicfuelcell Hydrogen Economy Storage Station Vehicle Glossary vteArticlesrelatedtoelectrolysis/StandardelectrodepotentialElectrolyticprocesses Bettselectrolyticprocess Castnerprocess Castner–Kellnerprocess Chloralkaliprocess Downscell Electrolysisofcarbondioxide Electrolysisofwater Electrowinning Hall–Héroultprocess Hofmannvoltameter Kolbeelectrolysis FFCCambridgeprocess Hoopesprocess Dowprocess Electrochemicalfluorination Wohlwillprocess Materialsproducedbyelectrolysis Aluminium(extraction) Calciummetal Chlorine Copper Electrolysedwater Fluorine Hydrogen Lithiummetal Magnesiummetal Potassiummetal Sodiummetal Sodiumhydroxide Zinc Seealso Electrochemistry Gascracker Standardelectrodepotential(datapage) Electrology Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Solid_oxide_electrolyzer_cell&oldid=1093861649" Categories:FuelcellsHiddencategories:WebarchivetemplatewaybacklinksArticleswithshortdescriptionShortdescriptionmatchesWikidata Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages DeutschEspañolFrançaisNederlands日本語 Editlinks



請為這篇文章評分?