Solid oxide electrolyzer cell - Wikipedia
文章推薦指數: 80 %
A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon ... Solidoxideelectrolyzercell FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Typeoffuelcell SOEC60cellstack. Asolidoxideelectrolyzercell(SOEC)isasolidoxidefuelcellthatrunsinregenerativemodetoachievetheelectrolysisofwater(and/orcarbondioxide)[1]byusingasolidoxide,orceramic,electrolytetoproducehydrogengas[2](and/orcarbonmonoxide)andoxygen. Theproductionofpurehydrogeniscompellingbecauseitisacleanfuelthatcanbestored,makingitapotentialalternativetobatteries,methane,andotherenergysources(seehydrogeneconomy).[3]Electrolysisiscurrentlythemostpromisingmethodofhydrogenproductionfromwaterduetohighefficiencyofconversionandrelativelylowrequiredenergyinputwhencomparedtothermochemicalandphotocatalyticmethods.[4] Contents 1Principle 2Operation 3Materials 3.1Electrolyte 3.2FuelElectrode(Cathode) 3.3OxygenElectrode(Anode) 4Considerations 4.1Delamination 5Applications 6Research 7Operatingconditions 8Seealso 9References 10Externallinks Principle[edit] Solidoxideelectrolyzercellsoperateattemperatureswhichallowhigh-temperatureelectrolysis[5]tooccur,typicallybetween500and850 °C.Theseoperatingtemperaturesaresimilartothoseconditionsforasolidoxidefuelcell.Thenetcellreactionyieldshydrogenandoxygengases.Thereactionsforonemoleofwaterareshownbelow,withoxidationofwateroccurringattheanodeandreductionofwateroccurringatthecathode. Anode:2O2−→O2+4e− Cathode:H2O+2e−→H2+O2− NetReaction:2H2O→2H2+O2 Electrolysisofwaterat298K(25 °C)requires285.83kJofenergypermoleinordertooccur,[6]andthereactionisincreasinglyendothermicwithincreasingtemperature.However,theenergydemandmaybereducedduetotheJouleheatingofanelectrolysiscell,whichmaybeutilizedinthewatersplittingprocessathightemperatures.Researchisongoingtoaddheatfromexternalheatsourcessuchasconcentratingsolarthermalcollectorsandgeothermalsources.[7] Operation[edit] ThegeneralfunctionoftheelectrolyzercellistosplitwaterintheformofsteamintopureH2andO2.Steamisfedintotheporouscathode.Whenavoltageisapplied,thesteammovestothecathode-electrolyteinterfaceandisreducedtoformpureH2andoxygenions.Thehydrogengasthendiffusesbackupthroughthecathodeandiscollectedatitssurfaceashydrogenfuel,whiletheoxygenionsareconductedthroughthedenseelectrolyte.TheelectrolytemustbedenseenoughthatthesteamandhydrogengascannotdiffusethroughandleadtotherecombinationoftheH2andO2−.Attheelectrolyte-anodeinterface,theoxygenionsareoxidizedtoformpureoxygengas,whichiscollectedatthesurfaceoftheanode.[8] Materials[edit] Solidoxideelectrolyzercellsfollowthesameconstructionofasolid-oxidefuelcell,consistingofafuelelectrode(cathode),anoxygenelectrode(anode)andasolid-oxideelectrolyte. Electrolyte[edit] Themostcommonelectrolyte,againsimilartosolid-oxidefuelcells,isadenseionicconductorconsistingofZrO2dopedwith8 mol %Y2O3(alsoknownasYSZ).Zirconiumdioxideisusedbecauseofitshighstrength,highmeltingtemperature(approximately2700 °C)andexcellentcorrosionresistance.Yttrium(III)oxide(Y2O3)isaddedtomitigatethephasetransitionfromthetetragonaltothemonoclinicphaseonrapidcooling,whichcanleadtocracksanddecreasetheconductivepropertiesoftheelectrolytebycausingscattering.[9]SomeothercommonchoicesforSOECareScandiastabilizedzirconia(ScSZ),ceriabasedelectrolytesorlanthanumgallatematerials.Despitethematerialsimilaritytosolidoxidefuelcells,theoperatingconditionsaredifferent,leadingtoissuessuchashighsteamconcentrationsatthefuelelectrodeandhighoxygenpartialpressuresattheelectrolyte/oxygenelectrodeinterface.[10]Arecentstudyfoundthatperiodiccyclingacellbetweenelectrolyzerandfuelcellmodesreducedtheoxygenpartialpressurebuildupanddrasticallyincreasedthelifetimeoftheelectrolyzercell.[11] FuelElectrode(Cathode)[edit] ThemostcommonfuelelectrodematerialisaNidopedYSZ.However,highsteampartialpressuresandlowhydrogenpartialpressuresattheNi-YSZinterfacecausesoxidationofthenickelwhichresultsincatalystdegradation.[12]Perovskite-typelanthanumstrontiummanganese(LSM)isalsocommonlyusedasacathodematerial.RecentstudieshavefoundthatdopingLSMwithscandiumtoformLSMSpromotesmobilityofoxideionsinthecathode,increasingreductionkineticsattheinterfacewiththeelectrolyteandthusleadingtohigherperformanceatlowtemperaturesthantraditionalLSMcells.However,furtherdevelopmentofthesinteringprocessparametersisrequiredtopreventprecipitationofscandiumoxideintotheLSMlattice.Theseprecipitateparticlesareproblematicbecausetheycanimpedeelectronandionconduction.Inparticular,theprocessingtemperatureandconcentrationofscandiumintheLSMlatticearebeingresearchedtooptimizethepropertiesoftheLSMScathode.[13]Newmaterialsarebeingresearchedsuchaslanthanumstrontiummanganesechromate(LSCM),whichhasproventobemorestableunderelectrolysisconditions.[14]LSCMhashighredoxstability,whichiscrucialespeciallyattheinterfacewiththeelectrolyte.Scandium-dopedLCSM(LSCMS)isalsobeingresearchedasacathodematerialduetoitshighionicconductivity.However,therare-earthelementintroducesasignificantmaterialscostandwasfoundtocauseaslightdecreaseinoverallmixedconductivity.Nonetheless,LCSMSmaterialshavedemonstratedhighefficiencyattemperaturesaslowas700 °C.[15] OxygenElectrode(Anode)[edit] Lanthanumstrontiummanganate(LSM)isthemostcommonoxygenelectrodematerial.LSMoffershighperformanceunderelectrolysisconditionsduetogenerationofoxygenvacanciesunderanodicpolarizationthataidoxygendiffusion.[16]Inaddition,impregnatingLSMelectrodewithGd-dopedCeO2(GDC)nanoparticleswasfoundtoincreasecelllifetimebypreventingdelaminationattheelectrode/electrolyteinterface.[17]Theexactmechanismbyhowthishappenneedstobeexplorefurther.Ina2010study,itwasfoundthatneodymiumnickelateasananodematerialprovided1.7timesthecurrentdensityoftypicalLSManodeswhenintegratedintoacommercialSOECandoperatedat700 °C,andapproximately4timesthecurrentdensitywhenoperatedat800 °C.Theincreasedperformanceispostulatedtobeduetohigher"overstoichimoetry"ofoxygenintheneodymiumnickelate,makingitasuccessfulconductorofbothionsandelectrons.[18] Considerations[edit] Advantagesofsolidoxide-basedregenerativefuelcellsincludehighefficiencies,astheyarenotlimitedbyCarnotefficiency.[19] Additionaladvantagesincludelong-termstability,fuelflexibility,lowemissions,andlowoperatingcosts.However,thegreatestdisadvantageisthehighoperatingtemperature,whichresultsinlongstart-uptimesandbreak-intimes.Thehighoperatingtemperaturealsoleadstomechanicalcompatibilityissuessuchasthermalexpansionmismatchandchemicalstabilityissuessuchasdiffusionbetweenlayersofmaterialinthecell[20] Inprinciple,theprocessofanyfuelcellcouldbereversed,duetotheinherentreversibilityofchemicalreactions.[21] However,agivenfuelcellisusuallyoptimizedforoperatinginonemodeandmaynotbebuiltinsuchawaythatitcanbeoperatedinreverse.Fuelcellsoperatedbackwardsmaynotmakeveryefficientsystemsunlesstheyareconstructedtodososuchasinthecaseofsolidoxideelectrolyzercells,highpressureelectrolyzers,unitizedregenerativefuelcellsandregenerativefuelcells.However,currentresearchisbeingconductedtoinvestigatesystemsinwhichasolidoxidecellmayberunineitherdirectionefficiently.[22] Delamination[edit] Fuelcellsoperatedinelectrolysismodehavebeenobservedtodegradeprimarilyduetoanodedelaminationfromtheelectrolyte.Thedelaminationisaresultofhighoxygenpartialpressurebuildupattheelectrolyte-anodeinterface.Poresintheelectrolyte-anodematerialacttoconfinehighoxygenpartialpressuresinducingstressconcentrationinthesurroundingmaterial.Themaximumstressinducedcanbeexpressedintermsoftheinternaloxygenpressureusingthefollowingequationfromfracturemechanics:[23] σ m a x = 2 P O 2 ( c ρ ) 1 / 2 {\displaystyle\sigma_{max}=2P_{O2}({\frac{c}{\rho}})^{1/2}} wherecisthelengthofthecrackorporeand ρ {\displaystyle\rho} istheradiusofcurvatureofthecrackorpore.If σ m a x {\displaystyle\sigma_{max}} exceedsthetheoreticalstrengthofthematerial,thecrackwillpropagate,macroscopicallyresultingindelamination. Virkaretal.createdamodeltocalculatetheinternaloxygenpartialpressurefromtheoxygenpartialpressureexposedtotheelectrodesandtheelectrolyteresistiveproperties.[24]Theinternalpressureofoxygenattheelectrolyte-anodeinterfacewasmodelledas: P O 2 a = P O 2 O x exp [ − 4 F R T { E a r e a R e − ( E a − E N ) r i a R i } ] {\displaystyleP_{O2}^{a}=P_{O2}^{Ox}\exp\left[-{\frac{4F}{RT}}\left\{{\frac{E_{a}r_{e}^{a}}{R_{e}}}-{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}\right\}\right]} = P O 2 O x exp [ − 4 F R T { ( ϕ O x − ϕ a ) − ( E a − E N ) r i a R i } ] {\displaystyle=P_{O2}^{Ox}\exp\left[-{\frac{4F}{RT}}\left\{(\phi^{Ox}-\phi^{a})-{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}\right\}\right]} where P O 2 O x {\displaystyleP_{O2}^{Ox}} istheoxygenpartialpressureexposedtotheoxygenelectrode(anode), r − e a {\displaystyler-e^{a}} istheareaspecificelectronicresistanceattheanodeinterface, r i a {\displaystyler_{i}^{a}} istheareaspecificionicresistanceattheanodeinterface, E a {\displaystyleE_{a}} istheappliedvoltage, E N {\displaystyleE_{N}} istheNernstpotential, R e {\displaystyleR_{e}} and R i {\displaystyleR_{i}} aretheoverallelectronicandionicareaspecificresistancesrespectively,and ϕ O x {\displaystyle\phi^{Ox}} and ϕ a {\displaystyle\phi^{a}} aretheelectricpotentialsattheanodesurfaceandtheanodeelectrolyteinterfacerespectively.[25] Inelectrolysismode ϕ O x {\displaystyle\phi^{Ox}} > ϕ a {\displaystyle\phi^{a}} and E a {\displaystyleE_{a}} > E N {\displaystyleE_{N}} .Whether P O 2 a {\displaystyleP_{O2}^{a}} isgreaterthan P O 2 O x {\displaystyleP_{O2}^{Ox}} isdictatedbywhether( ϕ O x {\displaystyle\phi^{Ox}} - ϕ a {\displaystyle\phi^{a}} )or E a r e a R e {\displaystyle{\frac{E_{a}r_{e}^{a}}{R_{e}}}} isgreaterthan ( E a − E N ) r i a R i {\displaystyle{\frac{(E_{a}-E_{N})r_{i}^{a}}{R_{i}}}} .Theinternaloxygenpartialpressureisminimizedbyincreasingtheelectronicresistanceattheanodeinterfaceanddecreasingtheionicresistanceatanodeinterface. Delaminationoftheanodefromtheelectrolyteincreasestheresistanceofthecellandnecessitateshigheroperatingvoltagesinordertomaintainastablecurrent.[26]Higherappliedvoltagesincreasestheinternaloxygenpartialpressure,furtherexacerbatingthedegradation. Applications[edit] SOECshavepossibleapplicationinfuelproduction,carbondioxiderecycling,andchemicalssynthesis.Inadditiontotheproductionofhydrogenandoxygen,anSOECcouldbeusedtocreatesyngasbyelectrolyzingwatervaporandcarbondioxide.[27] Thisconversioncouldbeusefulforenergygenerationandenergystorageapplications. Research[edit] In2014MITsuccessfullytestedadevicesusedinMarsOxygenISRUExperimentonthePerseveranceroverasameanstoproduceoxygenforbothhumansustenanceandliquidoxygenrocketpropellant.[28][29]OnApril2021NASAclaimedithassuccessfullyproduced1gallonofearth-equivalentoxygen(4and5gramsofoxygenonMars)fromCO2intheMarsatmosphere.[30] Operatingconditions[edit] SOECmodulescanoperateinthreedifferentmodes:exothermic,endothermicandthermoneutral.Inexothermicmode,thestacktemperatureincreasesduringoperationduetoheataccumulation,andthisheatisusedforinletgaspreheating.Therefore,anexternalheatsourceisnotneededwhiletheelectricalenergyconsumptionincreases.Intheendothermicstackoperationmode,thereisanincreaseinheatenergyconsumptionandareductioninelectricalenergyconsumptionandhydrogenproductionbecausetheaveragecurrentdensityalsodecreases.Thethirdmodeisthermoneutralinwhichtheheatgeneratedthroughirreversiblelossesisequaltotheheatrequiredbythereaction.Astherearesomethermallosses,anexternalheatsourceisneeded.Thismodeconsumesmoreelectricitythanendothermicoperationmode.[31] Seealso[edit] Glossaryoffuelcellterms Hydrogentechnologies References[edit] ^Zheng,Yun;Wang,Jianchen;Yu,Bo;Zhang,Wenqiang;Chen,Jing;Qiao,Jinli;Zhang,Jiujun(2017)."Areviewofhightemperatureco-electrolysisofHOandCOtoproducesustainablefuelsusingsolidoxideelectrolysiscells(SOECs):advancedmaterialsandtechnology".Chem.Soc.Rev.46(5):1427–1463.doi:10.1039/C6CS00403B.PMID 28165079. ^DurabilityofsolidoxideelectrolysiscellsforhydrogenproductionArchived2009-07-11attheWaybackMachine ^NiM,LeungMKH,LeungDYC,SumathyK.Areviewandrecentdevelopmentsinphotocatalyticwater-splittingusingTiO2forhydrogenproduction.RenewableSustainableEnergyRev2007;11(3):401–25. ^Ni,M.,Leung,M.K.H.,&Leung,D.Y.C.(2008).Technologicaldevelopmentofhydrogenproductionbysolidoxideelectrolyzercell(SOEC).InternationalJournalofHydrogenEnergy,33,2337–2354.doi:10.1016/j.ijhydene.2008.02.048 ^Areversibleplanarsolidoxidefuel-assistedelectrolysiscell ^ElectrolysisofWater ^Canhightemperaturesteamelectrolysisfunctionwithgeothermalheat? ^Ni,M.,Leung,M.K.H.,&Leung,D.Y.C.(2008).Technologicaldevelopmentofhydrogenproductionbysolidoxideelectrolyzercell(SOEC).InternationalJournalofHydrogenEnergy,33,2337–2354.doi:10.1016/j.ijhydene.2008.02.048 ^Bocanegra-Bernal,M.H.,&DelaTorre,S.D.(2002).Phasetransitionsinzirconiumdioxideandrelatedmaterialsforhighperformanceengineeringceramics.JournalofMaterialsScience,37,4947–4971 ^Laguna-Bercero,M.A.Recentadvancesinhightemperatureelectrolysisusingsolidoxidefuelcells:Areview.JournalofPowerSources2012,203,4–16DOI:10.1016/j.jpowsour.2011.12.019. ^Graves,C.;Ebbesen,S.D.;Jensen,S.H.;Simonsen,S.B.;Mogensen,M.B.Eliminatingdegradationinsolidoxideelectrochemicalcellsbyreversibleoperation.NatMater2014,advanceonlinepublication. ^Laguna-Bercero,M.A.Recentadvancesinhightemperatureelectrolysisusingsolidoxidefuelcells:Areview.JournalofPowerSources2012,203,4–16DOI:10.1016/j.jpowsour.2011.12.019. ^Yue,X.,Yan,A.,Zhang,M.,Liu,L.,Dong,Y.,&Cheng,M.(2008).Investigationonscandium-dopedmanganateLa0.8Sr0.2Mn1-xScxO3-cathodeforIntermediateTemperatureSolidOxideFuelCells.JournalofPowerSources,185,691–697.doi:10.1016/j.jpowsour.2008.08.038 ^X.Yang,J.T.S.Irvine,J.Mater.Chem.18(2008)2349–2354. ^Chen,S.,Xie,K.,Dong,D.,Li,H.,Qin,Q.,Zhang,Y.,&Wu,Y.(2015).Acompositecathodebasedonscandium-dopedchromatefordirecthigh-temperaturesteamelectrolysisinasymmetricsolidoxideelectrolyzer.JournalofPowerSources,274,718–729.doi:10.1016/j.jpowsour.2014.10.103 ^W.Wan,S.P.Jiang,SolidStateIonics177(2006)1361–1369. ^K.Chen,N.Ai,S.P.Jiang,J.Electrochem.Soc.157(2010)P89–P94. ^Chauveau,F.,Mougin,J.,Bassat,J.M.,Mauvy,F.,&Grenier,J.C.(2010).Anewanodematerialforsolidoxideelectrolyser:Theneodymiumnickelate.JournalofPowerSources,195,744–749.doi:10.1016/j.jpowsour.2009.08.003 ^IntermediatetemperaturesolidoxideelectrolysiscellusingLaGaO3basedperovskiteelectrolyte ^Solidoxidefuelcells ^SimpleandAttractiveDemonstrationoftheReversibilityofChemicalReactions ^AProposedMethodforHighEfficiencyElectricalEnergyStorageUsingSolidOxideCells ^Courtney,T.N.(2000)MechanicalBehaviorofMaterials.Groveland,IL:WavelandPress ^Virkar,A.V.(2010)."Mechanismofoxygenelectrodedelaminationinsolidoxide electrolyzercells"InternationalJournalofHydrogenEnergy35:9527-9543 ^Virkar,A.V.(2010)."Mechanismofoxygenelectrodedelaminationinsolidoxide electrolyzercells"InternationalJournalofHydrogenEnergy35:9527-9543 ^GazzarriJ.I.,KeslerO.(2007)“Non-destructivedelaminationdetectioninsolidoxidefuelcells”.JournalofPowerSources;167:430-441. ^CeramatecSolidOxideCo-ElectrolysisCellArchived2011-06-08attheWaybackMachine ^"GoingtotheRedPlanet".MITNews|MassachusettsInstituteofTechnology.Retrieved2021-11-26. ^"MITtosendoxygen-creatinginstrumentonMars2020missionbyNASA-WorldNews,Firstpost".Firstpost.2014-08-04.Retrieved2021-11-26. ^Niiler,Eric."NASA'sMOXIEExperimentIsMakingOxygenonMars".Wired.ISSN 1059-1028.Retrieved2021-11-26. ^R.Daneshpour,M.MehrpooyaDesignandoptimizationofacombinedsolarthermophotovoltaicpowergenerationandsolidoxideelectrolyserforhydrogenproductionEnergyConversManage,176(2018),pp.274-286 Externallinks[edit] 2007DOEHydrogenProgramReview RELHY vteFuelcellsByelectrolyte Alkalinefuelcell Moltencarbonatefuelcell Phosphoricacidfuelcell Proton-exchangemembranefuelcell Solidoxidefuelcell Byfuel Direct-ethanolfuelcell Directmethanolfuelcell Formicacidfuelcell Reformedmethanolfuelcell Directcarbonfuelcell Zinc-airbattery Metalhydridefuelcell Directborohydridefuelcell Biofuelcells Enzymaticbiofuelcell Microbialfuelcell Others Blueenergy Electro-galvanicfuelcell Flowbattery Photoelectrochemicalcell Regenerativefuelcell Solidoxideelectrolysercell Unitizedregenerativefuelcell Proton-exchangemembrane Membraneelectrodeassembly MembranelessFuelCells Protonicceramicfuelcell Hydrogen Economy Storage Station Vehicle Glossary vteArticlesrelatedtoelectrolysis/StandardelectrodepotentialElectrolyticprocesses Bettselectrolyticprocess Castnerprocess Castner–Kellnerprocess Chloralkaliprocess Downscell Electrolysisofcarbondioxide Electrolysisofwater Electrowinning Hall–Héroultprocess Hofmannvoltameter Kolbeelectrolysis FFCCambridgeprocess Hoopesprocess Dowprocess Electrochemicalfluorination Wohlwillprocess Materialsproducedbyelectrolysis Aluminium(extraction) Calciummetal Chlorine Copper Electrolysedwater Fluorine Hydrogen Lithiummetal Magnesiummetal Potassiummetal Sodiummetal Sodiumhydroxide Zinc Seealso Electrochemistry Gascracker Standardelectrodepotential(datapage) Electrology Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Solid_oxide_electrolyzer_cell&oldid=1093861649" Categories:FuelcellsHiddencategories:WebarchivetemplatewaybacklinksArticleswithshortdescriptionShortdescriptionmatchesWikidata Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Languages DeutschEspañolFrançaisNederlands日本語 Editlinks
延伸文章資訊
- 1SOEC high-temperature electrolysis | Equipment | Products
How does SOEC work? The TOPSOE™ SOEC electrolyzer is a compact stack built primarily from abundan...
- 2Solid oxide electrolysis cell test and hydrogen generating device
在多種儲能系統中,固態氧化物電解電池(Solid Oxide Electrolysis cell, SOEC)為最有希望之能量轉移的電轉氣系統,透過此新型產氫技術,以電能將水或二氧化碳電解成 ...
- 3Solid Oxide Electrolysis Cells (SOEC) - OxEon Energy
OxEon Energy's Solid Oxide Electrolysis Cell (SOEC) technology can be used to either electrolyze ...
- 4Technological development of hydrogen production by solid ...
High-temperature solid oxide electrolyzer cell (SOEC) has great potential for efficient and econo...
- 5可大量產氫之SOEC新電極材料
可大量產氫之SOEC新電極材料 ... 以噴霧熱分解法進行複合而成,可應用做為固態氧化物電解電池(Solid Oxide Electrolysis Cell;SOEC)的陽極材料。