Linear Systems with Two Variables - Pauls Online Math Notes
文章推薦指數: 80 %
A linear system of two equations with two variables is any system that can be written in the form. ... where any of the constants can be zero with ... GoTo Notes PracticeProblems AssignmentProblems Show/Hide ShowallSolutions/Steps/etc. HideallSolutions/Steps/etc. Sections SystemsofEquationsIntroduction LinearSystemswithThreeVariables Chapters ExponentialandLogarithmFunctions Classes Algebra CalculusI CalculusII CalculusIII DifferentialEquations Extras Algebra&TrigReview CommonMathErrors ComplexNumberPrimer HowToStudyMath CheatSheets&Tables Misc ContactMe MathJaxHelpandConfiguration NotesDownloads CompleteBook PracticeProblemsDownloads CompleteBook-ProblemsOnly CompleteBook-Solutions AssignmentProblemsDownloads CompleteBook OtherItems GetURL'sforDownloadItems PrintPageinCurrentForm(Default) ShowallSolutions/StepsandPrintPage HideallSolutions/StepsandPrintPage Home Classes Algebra Preliminaries IntegerExponents RationalExponents Radicals Polynomials FactoringPolynomials RationalExpressions ComplexNumbers SolvingEquationsandInequalities SolutionsandSolutionSets LinearEquations ApplicationsofLinearEquations EquationsWithMoreThanOneVariable QuadraticEquations-PartI QuadraticEquations-PartII QuadraticEquations:ASummary ApplicationsofQuadraticEquations EquationsReducibletoQuadraticinForm EquationswithRadicals LinearInequalities PolynomialInequalities RationalInequalities AbsoluteValueEquations AbsoluteValueInequalities GraphingandFunctions Graphing Lines Circles TheDefinitionofaFunction GraphingFunctions CombiningFunctions InverseFunctions CommonGraphs Lines,CirclesandPiecewiseFunctions Parabolas Ellipses Hyperbolas MiscellaneousFunctions Transformations Symmetry RationalFunctions PolynomialFunctions DividingPolynomials Zeroes/RootsofPolynomials GraphingPolynomials FindingZeroesofPolynomials PartialFractions ExponentialandLogarithmFunctions ExponentialFunctions LogarithmFunctions SolvingExponentialEquations SolvingLogarithmEquations Applications SystemsofEquations LinearSystemswithTwoVariables LinearSystemswithThreeVariables AugmentedMatrices MoreontheAugmentedMatrix NonlinearSystems CalculusI Review Functions InverseFunctions TrigFunctions SolvingTrigEquations TrigEquationswithCalculators,PartI TrigEquationswithCalculators,PartII ExponentialFunctions LogarithmFunctions ExponentialandLogarithmEquations CommonGraphs Limits TangentLinesandRatesofChange TheLimit One-SidedLimits LimitProperties ComputingLimits InfiniteLimits LimitsAtInfinity,PartI LimitsAtInfinity,PartII Continuity TheDefinitionoftheLimit Derivatives TheDefinitionoftheDerivative InterpretationoftheDerivative DifferentiationFormulas ProductandQuotientRule DerivativesofTrigFunctions DerivativesofExponentialandLogarithmFunctions DerivativesofInverseTrigFunctions DerivativesofHyperbolicFunctions ChainRule ImplicitDifferentiation RelatedRates HigherOrderDerivatives LogarithmicDifferentiation ApplicationsofDerivatives RatesofChange CriticalPoints MinimumandMaximumValues FindingAbsoluteExtrema TheShapeofaGraph,PartI TheShapeofaGraph,PartII TheMeanValueTheorem Optimization MoreOptimizationProblems L'Hospital'sRuleandIndeterminateForms LinearApproximations Differentials Newton'sMethod BusinessApplications Integrals IndefiniteIntegrals ComputingIndefiniteIntegrals SubstitutionRuleforIndefiniteIntegrals MoreSubstitutionRule AreaProblem DefinitionoftheDefiniteIntegral ComputingDefiniteIntegrals SubstitutionRuleforDefiniteIntegrals ApplicationsofIntegrals AverageFunctionValue AreaBetweenCurves VolumesofSolidsofRevolution/MethodofRings VolumesofSolidsofRevolution/MethodofCylinders MoreVolumeProblems Work Extras ProofofVariousLimitProperties ProofofVariousDerivativeProperties ProofofTrigLimits ProofsofDerivativeApplicationsFacts ProofofVariousIntegralProperties AreaandVolumeFormulas TypesofInfinity SummationNotation ConstantofIntegration CalculusII IntegrationTechniques IntegrationbyParts IntegralsInvolvingTrigFunctions TrigSubstitutions PartialFractions IntegralsInvolvingRoots IntegralsInvolvingQuadratics IntegrationStrategy ImproperIntegrals ComparisonTestforImproperIntegrals ApproximatingDefiniteIntegrals ApplicationsofIntegrals ArcLength SurfaceArea CenterofMass HydrostaticPressure Probability ParametricEquationsandPolarCoordinates ParametricEquationsandCurves TangentswithParametricEquations AreawithParametricEquations ArcLengthwithParametricEquations SurfaceAreawithParametricEquations PolarCoordinates TangentswithPolarCoordinates AreawithPolarCoordinates ArcLengthwithPolarCoordinates SurfaceAreawithPolarCoordinates ArcLengthandSurfaceAreaRevisited Series&Sequences Sequences MoreonSequences Series-TheBasics Convergence/DivergenceofSeries SpecialSeries IntegralTest ComparisonTest/LimitComparisonTest AlternatingSeriesTest AbsoluteConvergence RatioTest RootTest StrategyforSeries EstimatingtheValueofaSeries PowerSeries PowerSeriesandFunctions TaylorSeries ApplicationsofSeries BinomialSeries Vectors Vectors-TheBasics VectorArithmetic DotProduct CrossProduct 3-DimensionalSpace The3-DCoordinateSystem EquationsofLines EquationsofPlanes QuadricSurfaces FunctionsofSeveralVariables VectorFunctions CalculuswithVectorFunctions Tangent,NormalandBinormalVectors ArcLengthwithVectorFunctions Curvature VelocityandAcceleration CylindricalCoordinates SphericalCoordinates CalculusIII 3-DimensionalSpace The3-DCoordinateSystem EquationsofLines EquationsofPlanes QuadricSurfaces FunctionsofSeveralVariables VectorFunctions CalculuswithVectorFunctions Tangent,NormalandBinormalVectors ArcLengthwithVectorFunctions Curvature VelocityandAcceleration CylindricalCoordinates SphericalCoordinates PartialDerivatives Limits PartialDerivatives InterpretationsofPartialDerivatives HigherOrderPartialDerivatives Differentials ChainRule DirectionalDerivatives ApplicationsofPartialDerivatives TangentPlanesandLinearApproximations GradientVector,TangentPlanesandNormalLines RelativeMinimumsandMaximums AbsoluteMinimumsandMaximums LagrangeMultipliers MultipleIntegrals DoubleIntegrals IteratedIntegrals DoubleIntegralsoverGeneralRegions DoubleIntegralsinPolarCoordinates TripleIntegrals TripleIntegralsinCylindricalCoordinates TripleIntegralsinSphericalCoordinates ChangeofVariables SurfaceArea AreaandVolumeRevisited LineIntegrals VectorFields LineIntegrals-PartI LineIntegrals-PartII LineIntegralsofVectorFields FundamentalTheoremforLineIntegrals ConservativeVectorFields Green'sTheorem SurfaceIntegrals CurlandDivergence ParametricSurfaces SurfaceIntegrals SurfaceIntegralsofVectorFields Stokes'Theorem DivergenceTheorem DifferentialEquations BasicConcepts Definitions DirectionFields FinalThoughts FirstOrderDE's LinearEquations SeparableEquations ExactEquations BernoulliDifferentialEquations Substitutions IntervalsofValidity ModelingwithFirstOrderDE's EquilibriumSolutions Euler'sMethod SecondOrderDE's BasicConcepts Real&DistinctRoots ComplexRoots RepeatedRoots ReductionofOrder FundamentalSetsofSolutions MoreontheWronskian NonhomogeneousDifferentialEquations UndeterminedCoefficients VariationofParameters MechanicalVibrations LaplaceTransforms TheDefinition LaplaceTransforms InverseLaplaceTransforms StepFunctions SolvingIVP'swithLaplaceTransforms NonconstantCoefficientIVP's IVP'sWithStepFunctions DiracDeltaFunction ConvolutionIntegrals TableOfLaplaceTransforms SystemsofDE's Review:SystemsofEquations Review:Matrices&Vectors Review:Eigenvalues&Eigenvectors SystemsofDifferentialEquations SolutionstoSystems PhasePlane RealEigenvalues ComplexEigenvalues RepeatedEigenvalues NonhomogeneousSystems LaplaceTransforms Modeling SeriesSolutionstoDE's Review:PowerSeries Review:TaylorSeries SeriesSolutions EulerEquations HigherOrderDifferentialEquations BasicConceptsfornthOrderLinearEquations LinearHomogeneousDifferentialEquations UndeterminedCoefficients VariationofParameters LaplaceTransforms SystemsofDifferentialEquations SeriesSolutions BoundaryValueProblems&FourierSeries BoundaryValueProblems EigenvaluesandEigenfunctions PeriodicFunctions&OrthogonalFunctions FourierSineSeries FourierCosineSeries FourierSeries ConvergenceofFourierSeries PartialDifferentialEquations TheHeatEquation TheWaveEquation Terminology SeparationofVariables SolvingtheHeatEquation HeatEquationwithNon-ZeroTemperatureBoundaries Laplace'sEquation VibratingString SummaryofSeparationofVariables Extras Algebra&TrigReview Algebra Exponents AbsoluteValue Radicals Rationalizing Functions MultiplyingPolynomials Factoring SimplifyingRationalExpressions GraphingandCommonGraphs SolvingEquations,PartI SolvingEquations,PartII SolvingSystemsofEquations SolvingInequalities AbsoluteValueEquationsandInequalities Trigonometry TrigFunctionEvaluation GraphsofTrigFunctions TrigFormulas SolvingTrigEquations InverseTrigFunctions Exponentials&Logarithms BasicExponentialFunctions BasicLogarithmFunctions LogarithmProperties SimplifyingLogarithms SolvingExponentialEquations SolvingLogarithmEquations CommonMathErrors GeneralErrors AlgebraErrors TrigErrors CommonErrors CalculusErrors ComplexNumberPrimer TheDefinition Arithmetic ConjugateandModulus PolarandExponentialForms PowersandRoots HowToStudyMath GeneralTips TakingNotes GettingHelp DoingHomework ProblemSolving StudyingForanExam TakinganExam LearnFromYourErrors MiscLinks ContactMe Links MathJaxHelpandConfiguration PrivacyStatement SiteHelp&FAQ TermsofUse Paul'sOnlineNotes Home / Algebra / SystemsofEquations /LinearSystemswithTwoVariables Prev.Section Notes PracticeProblems AssignmentProblems NextSection ShowMobileNotice ShowAllNotes HideAllNotes MobileNotice Youappeartobeonadevicewitha"narrow"screenwidth(i.e.youareprobablyonamobilephone).Duetothenatureofthemathematicsonthissiteitisbestviewsinlandscapemode.Ifyourdeviceisnotinlandscapemodemanyoftheequationswillrunoffthesideofyourdevice(shouldbeabletoscrolltoseethem)andsomeofthemenuitemswillbecutoffduetothenarrowscreenwidth. Section7-1:LinearSystemswithTwoVariables Alinearsystemoftwoequationswithtwovariablesisanysystemthatcanbewrittenintheform. \[\begin{align*}ax+by&=p\\cx+dy&=q\end{align*}\] whereanyoftheconstantscanbezerowiththeexceptionthateachequationmusthaveatleastonevariableinit. Also,thesystemiscalledlinearifthevariablesareonlytothefirstpower,areonlyinthenumeratorandtherearenoproductsofvariablesinanyoftheequations. Hereisanexampleofasystemwithnumbers. \[\begin{align*}3x-y&=7\\2x+3y&=1\end{align*}\] Beforewediscusshowtosolvesystemsweshouldfirsttalkaboutjustwhatasolutiontoasystemofequationsis.Asolutiontoasystemofequationsisavalueof\(x\)andavalueof\(y\)that,whensubstitutedintotheequations,satisfiesbothequationsatthesametime. Fortheexampleabove\(x=2\)and\(y=-1\)isasolutiontothesystem.Thisiseasyenoughtocheck. \[\begin{align*}3\left(2\right)-\left({-1}\right)&=7\\2\left(2\right)+3\left({-1}\right)&=1\end{align*}\] So,sureenoughthatpairofnumbersisasolutiontothesystem.Donotworryabouthowwegotthesevalues.Thiswillbetheveryfirstsystemthatwesolvewhenwegetintoexamples. Notethatitisimportantthatthepairofnumberssatisfybothequations.Forinstance,\(x=1\)and\(y=-4\)willsatisfythefirstequation,butnotthesecondandsoisn’tasolutiontothesystem.Likewise,\(x=-1\)and\(y=1\)willsatisfythesecondequationbutnotthefirstandsocan’tbeasolutiontothesystem. Now,justwhatdoesasolutiontoasystemoftwoequationsrepresent?Wellifyouthinkaboutitbothoftheequationsinthesystemarelines.So,let’sgraphthemandseewhatweget. Asyoucanseethesolutiontothesystemisthecoordinatesofthepointwherethetwolinesintersect.So,whensolvinglinearsystemswithtwovariableswearereallyaskingwherethetwolineswillintersect. Wewillbelookingattwomethodsforsolvingsystemsinthissection. Thefirstmethodiscalledthemethodofsubstitution.Inthismethodwewillsolveoneoftheequationsforoneofthevariablesandsubstitutethisintotheotherequation.Thiswillyieldoneequationwithonevariablethatwecansolve.Oncethisissolvedwesubstitutethisvaluebackintooneoftheequationstofindthevalueoftheremainingvariable. Inwordsthismethodisnotalwaysveryclear.Let’sworkacoupleofexamplestoseehowthismethodworks. Example1Solveeachofthefollowingsystems. \(\begin{align*}3x-y&=7\\2x+3y&=1\end{align*}\) \(\begin{align*}5x+4y&=1\\3x-6y&=2\end{align*}\) ShowAllSolutions HideAllSolutions a\(\begin{align*}3x-y&=7\\2x+3y&=1\end{align*}\)ShowSolution So,thiswasthefirstsystemthatwelookedatabove.Wealreadyknowthesolution,butthiswillgiveusachancetoverifythevaluesthatwewrotedownforthesolution. Now,themethodsaysthatweneedtosolveoneoftheequationsforoneofthevariables.Whichequationwechooseandwhichvariablethatwechooseisuptoyou,butit’susuallybesttopickanequationandvariablethatwillbeeasytodealwith.Thismeansweshouldtrytoavoidfractionsifatallpossible. Inthiscaseitlookslikeitwillbereallyeasytosolvethefirstequationfor\(y\)solet’sdothat. \[3x-7=y\] Now,substitutethisintothesecondequation. \[2x+3\left({3x-7}\right)=1\] Thisisanequationin\(x\)thatwecansolvesolet’sdothat. \[\begin{align*}2x+9x-21&=1\\11x&=22\\x&=2\end{align*}\] So,thereisthe\(x\)portionofthesolution. Finally,doNOTforgettogobackandfindthe\(y\)portionofthesolution.Thisisoneofthemorecommonmistakesstudentsmakeinsolvingsystems.Tosothiswecaneitherplugthe\(x\)valueintooneoftheoriginalequationsandsolvefor\(y\)orwecanjustplugitintooursubstitutionthatwefoundinthefirststep.Thatwillbeeasiersolet’sdothat. \[y=3x-7=3\left(2\right)-7=-1\] So,thesolutionis\(x=2\)and\(y=-1\)aswenotedabove. b\(\begin{align*}5x+4y&=1\\3x-6y&=2\end{align*}\)ShowSolution Withthissystemwearen’tgoingtobeabletocompletelyavoidfractions.However,itlookslikeifwesolvethesecondequationfor\(x\)wecanminimizethem.Hereisthatwork. \[\begin{align*}3x&=6y+2\\x&=2y+\frac{2}{3}\end{align*}\] Now,substitutethisintothefirstequationandsolvetheresultingequationfor\(y\). \[\begin{align*}5\left({2y+\frac{2}{3}}\right)+4y&=1\\10y+\frac{{10}}{3}+4y&=1\\14y&=1-\frac{{10}}{3}=-\frac{7}{3}\\y&=-\left({\frac{7}{3}}\right)\left({\frac{1}{{14}}}\right)\\y&=-\frac{1}{6}\end{align*}\] Finally,substitutethisintotheoriginalsubstitutiontofind\(x\). \[x=2\left({-\frac{1}{6}}\right)+\frac{2}{3}=-\frac{1}{3}+\frac{2}{3}=\frac{1}{3}\] So,thesolutiontothissystemis\(x=\frac{1}{3}\)and\(y=-\frac{1}{6}\). Aswithsingleequationswecouldalwaysgobackandcheckthissolutionbypluggingitintobothequationsandmakingsurethatitdoessatisfybothequations.Noteaswellthatwereallywouldneedtoplugintobothequations.Itisquitepossiblethatamistakecouldresultinapairofnumbersthatwouldsatisfyoneoftheequationsbutnottheotherone. Let’snowmoveintothenextmethodforsolvingsystemsofequations.Aswesawinthelastpartofthepreviousexamplethemethodofsubstitutionwilloftenforceustodealwithfractions,whichaddstothelikelihoodofmistakes.Thissecondmethodwillnothavethisproblem.Well,that’snotcompletelytrue.Iffractionsaregoingtoshowuptheywillonlyshowupinthefinalstepandtheywillonlyshowupifthesolutioncontainsfractions. Thissecondmethodiscalledthemethodofelimination.Inthismethodwemultiplyoneorbothoftheequationsbyappropriatenumbers(i.e.multiplyeverytermintheequationbythenumber)sothatoneofthevariableswillhavethesamecoefficientwithoppositesigns.Thennextstepistoaddthetwoequationstogether.Becauseoneofthevariableshadthesamecoefficientwithoppositesignsitwillbeeliminatedwhenweaddthetwoequations.Theresultwillbeasingleequationthatwecansolveforoneofthevariables.Oncethisisdonesubstitutethisanswerbackintooneoftheoriginalequations. Aswiththefirstmethodit’smucheasiertoseewhat’sgoingonherewithacoupleofexamples. Example2ProblemStatement. \(\begin{align*}5x+4y&=1\\3x-6y&=2\end{align*}\) \(\begin{align*}2x+4y&=-10\\6x+3y&=6\end{align*}\) ShowAllSolutions HideAllSolutions a\(\begin{align*}5x+4y&=1\\3x-6y&=2\end{align*}\)ShowSolution Thisisthesystemintheprevioussetofexamplesthatmadeusworkwithfractions.Workingitherewillshowthedifferencesbetweenthetwomethodsanditwillalsoshowthateithermethodcanbeusedtogetthesolutiontoasystem. So,weneedtomultiplyoneorbothequationsbyconstantssothatoneofthevariableshasthesamecoefficientwithoppositesigns.So,sincethe\(y\)termsalreadyhaveoppositesignslet’sworkwiththeseterms.Itlookslikeifwemultiplythefirstequationby3andthesecondequationby2the\(y\)termswillhavecoefficientsof12and-12whichiswhatweneedforthismethod. Hereistheworkforthisstep. \[\begin{align*} 5x+4y&=1&\underrightarrow{\times\,\,3}\hspace{0.5in}&15x+12y=3\\ 3x-6y&=2&\underrightarrow{\times\,\,2}\hspace{0.5in}&\underline{\,\,6x-12y=4}\\ &&&21x\hspace{0.5in}=7\\ \end{align*}\] So,asthedescriptionofthemethodpromisedwehaveanequationthatcanbesolvedfor\(x\).Doingthisgives,\(x=\frac{1}{3}\)whichisexactlywhatwefoundinthepreviousexample.Noticehowever,thattheonlyfractionthatwehadtodealwithtothispointistheansweritselfwhichisdifferentfromthemethodofsubstitution. Now,againdon’tforgettofind\(y\).Inthiscaseitwillbealittlemoreworkthanthemethodofsubstitution.Tofind\(y\)weneedtosubstitutethevalueof\(x\)intoeitheroftheoriginalequationsandsolvefor\(y\).Since\(x\)isafractionlet’snoticethat,inthiscase,ifweplugthisvalueintothesecondequationwewilllosethefractionsatleasttemporarily.Notethatoftenthiswon’thappenandwe’llbeforcedtodealwithfractionswhetherwewanttoornot. \[\begin{align*}3\left({\frac{1}{3}}\right)-6y&=2\\1-6y&=2\\-6y&=1\\y&=-\frac{1}{6}\end{align*}\] Again,thisisthesamevaluewefoundinthepreviousexample. b\(\begin{align*}2x+4y&=-10\\6x+3y&=6\end{align*}\)ShowSolution Inthispartallthevariablesarepositivesowe’regoingtohavetoforceanoppositesignbymultiplyingbyanegativenumbersomewhere.Let’salsonoticethatinthiscaseifwejustmultiplythefirstequationby-3thenthecoefficientsofthe\(x\)willbe-6and6. Sometimesweonlyneedtomultiplyoneoftheequationsandcanleavetheotheronealone.Hereisthisworkforthispart. \[\begin{align*} 2x+4y&=-10&\underrightarrow{\times\,\,-3}\hspace{0.5in}&-6x-12y=30\\ 6x+3y&=6&\underrightarrow{\text{same}}\hspace{0.5in}&\underline{\hspace{0.35in}6x+3y=6}\\ &&&\hspace{0.5in}-9y=36\\ &&&\hspace{0.85in}y=-4\\ \end{align*}\] Finally,plugthisintoeitheroftheequationsandsolvefor\(x\).Wewillusethefirstequationthistime. \[\begin{align*}2x+4\left({-4}\right)&=-10\\2x-16&=-10\\2x&=6\\x&=3\end{align*}\] So,thesolutiontothissystemis\(x=3\)and\(y=-4\). Thereisathirdmethodthatwe’llbelookingattosolvesystemsoftwoequations,butit’salittlemorecomplicatedandisprobablymoreusefulforsystemswithatleastthreeequationssowe’lllookatitinalatersection. Beforeleavingthissectionweshouldaddressacoupleofspecialcaseinsolvingsystems. Example3Solvethefollowingsystemsofequations. \[\begin{align*}x-y&=6\\-2x+2y&=1\end{align*}\] ShowSolution Wecanuseeithermethodhere,butitlookslikesubstitutionwouldprobablybeslightlyeasier.We’llsolvethefirstequationfor\(x\)andsubstitutethatintothesecondequation. \[\begin{align*}x&=6+y\\&\\-2\left({6+y}\right)+2y&=1\\-12-2y+2y&=1\\-12&=1\,\,\,??\end{align*}\] So,thisisclearlynottrueandtheredoesn’tappeartobeamistakeanywhereinourwork.So,what’stheproblem?Toseelet’sgraphthesetwolinesandseewhatweget. Itappearsthatthesetwolinesareparallel(canyouverifythatwiththeslopes?)andweknowthattwoparallellineswithdifferent\(y\)-intercepts(that’simportant)willnevercross. Aswesawintheopeningdiscussionofthissectionsolutionsrepresentthepointwheretwolinesintersect.Iftwolinesdon’tintersectwecan’thaveasolution. So,whenwegetthiskindofnonsensicalanswerfromourworkwehavetwoparallellinesandthereisnosolutiontothissystemofequations. Thesysteminthepreviousexampleiscalledinconsistent.Noteaswellthatifwe’dusedeliminationonthissystemwewouldhaveendedupwithasimilarnonsensicalanswer. Example4Solvethefollowingsystemofequations. \[\begin{align*}2x+5y&=-1\\-10x-25y&=5\end{align*}\] ShowSolution Inthisexampleitlookslikeeliminationwouldbetheeasiestmethod. \[\begin{align*} 2x+5y&=-1&\underrightarrow{\times\,\,5}\hspace{0.5in}&\,\,\,\,10x+25y=-5\\ -10x-25y&=5&\underrightarrow{\text{same}}\hspace{0.5in}&\underline{-10x-25y=5}\\ &&&\hspace{0.9in}0=0\\ \end{align*}\] Onfirstglancethismightappeartobethesameproblemasthepreviousexample.However,inthatcaseweendedupwithanequalitythatsimplywasn’ttrue.Inthiscasewehave0=0andthatisatrueequalityandsointhatsensethereisnothingwrongwiththis. However,thisisclearlynotwhatwewereexpectingforananswerhereandsoweneedtodeterminejustwhatisgoingon. We’llleaveittoyoutoverifythis,butifyoufindtheslopeand\(y\)-interceptsforthesetwolinesyouwillfindthatbothlineshaveexactlythesameslopeandbothlineshaveexactlythesame\(y\)-intercept.So,whatdoesthismeanforus?Welliftwolineshavethesameslopeandthesame\(y\)-interceptthenthegraphsofthetwolinesarethesamegraph.Inotherwords,thegraphsofthesetwolinesarethesamegraph.Inthesecasesanysetofpointsthatsatisfiesoneoftheequationswillalsosatisfytheotherequation. Also,recallthatthegraphofanequationisnothingmorethanthesetofallpointsthatsatisfiestheequation.Inotherwords,thereisaninfinitesetofpointsthatwillsatisfythissetofequations. Inthesecaseswedowanttowritedownsomethingforasolution.So,whatwe’lldoissolveoneoftheequationsforoneofthevariables(itdoesn’tmatterwhichyouchoose).We’llsolvethefirstfor\(y\). \[\begin{align*}2x+5y&=-1\\5y&=-2x-1\\y&=-\frac{2}{5}x-\frac{1}{5}\end{align*}\] Then,givenany\(x\)wecanfinda\(y\)andthesetwonumberswillformasolutiontothesystemofequations.Weusuallydenotethisbywritingthesolutionasfollows, \[\begin{array}{*{20}{c}}\begin{aligned}x&=t\\y&=-\frac{2}{5}t-\frac{1}{5}\end{aligned}&{\hspace{0.25in}{\mbox{where}}\,t{\mbox{isanyrealnumber}}}\end{array}\] Toshowthatthesegivesolutionslet’sworkthroughacoupleofvaluesof\(t\). \(t=0\) \[x=0\hspace{0.25in}y=-\frac{1}{5}\] Toshowthatthisisasolutionweneedtoplugitintobothequationsinthesystem. \[\begin{align*}2\left(0\right)+5\left({-\frac{1}{5}}\right)&\mathop=\limits^?-1&\hspace{0.25in}-10\left(0\right)-25\left({-\frac{1}{5}}\right)&\mathop=\limits^?5\\-1&=-1&\hspace{0.25in}5&=5\end{align*}\] So,\(x=0\)and\(y=-\frac{1}{5}\)isasolutiontothesystem.Let’sdoanotheronerealquick. \(t=-3\) \[x=-3\hspace{0.25in}y=-\frac{2}{5}\left({-3}\right)-\frac{1}{5}=\frac{6}{5}-\frac{1}{5}=1\] Againweneedtoplugitintobothequationsinthesystemtoshowthatit’sasolution. \[\begin{align*}2\left({-3}\right)+5\left(1\right)&\mathop=\limits^?-1&\hspace{0.25in}-10\left({-3}\right)-25\left(1\right)&\mathop=\limits^?5\\-1&=-1&\hspace{0.25in}5&=5\end{align*}\] Sureenough\(x=-3\)and\(y=1\)isasolution. So,sincethereareaninfinitenumberofpossible\(t\)’stheremustbeaninfinitenumberofsolutionstothissystemandtheyaregivenby, \[\begin{array}{*{20}{c}}\begin{aligned}x&=t\\y&=-\frac{2}{5}t-\frac{1}{5}\end{aligned}&{\hspace{0.25in}{\mbox{where}}\,t{\mbox{isanyrealnumber}}}\end{array}\] Systemssuchasthoseinthepreviousexamplesarecalleddependent. We’venowseenallthreepossibilitiesforthesolutiontoasystemofequations.Asystemofequationwillhaveeithernosolution,exactlyonesolutionorinfinitelymanysolutions.
延伸文章資訊
- 1Solving systems of equations in two variables - Math Planet
A system of a linear equation comprises two or more equations and one seeks a common solution to ...
- 2Solving Systems of Linear Equations in Two Variables
If the system in two variables has one solution, it is an ordered pair that is a solution to BOTH...
- 3Linear Systems with Two Variables - Pauls Online Math Notes
A linear system of two equations with two variables is any system that can be written in the form...
- 4Linear Equations in Two Variables (Definition and Solutions)
An equation is said to be linear equation in two variables if it is written in the form of ax + b...
- 5Systems of Two Equations and Two Unknowns | CK-12 ...
Solving Systems of Equations with Two Unknowns · Step 1: Write both equations with two variables ...