Originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the ...
Paretodistribution
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Probabilitydistribution
ParetoTypeI
ProbabilitydensityfunctionParetoTypeIprobabilitydensityfunctionsforvarious
α
{\displaystyle\alpha}
with
x
m
=
1.
{\displaystylex_{\mathrm{m}}=1.}
As
α
→
∞
,
{\displaystyle\alpha\rightarrow\infty,}
thedistributionapproaches
δ
(
x
−
x
m
)
,
{\displaystyle\delta(x-x_{\mathrm{m}}),}
where
δ
{\displaystyle\delta}
istheDiracdeltafunction.
CumulativedistributionfunctionParetoTypeIcumulativedistributionfunctionsforvarious
α
{\displaystyle\alpha}
with
x
m
=
1.
{\displaystylex_{\mathrm{m}}=1.}
Parameters
x
m
>
0
{\displaystylex_{\mathrm{m}}>0}
scale(real)
α
>
0
{\displaystyle\alpha>0}
shape(real)Support
x
∈
[
x
m
,
∞
)
{\displaystylex\in[x_{\mathrm{m}},\infty)}
PDF
α
x
m
α
x
α
+
1
{\displaystyle{\frac{\alphax_{\mathrm{m}}^{\alpha}}{x^{\alpha+1}}}}
CDF
1
−
(
x
m
x
)
α
{\displaystyle1-\left({\frac{x_{\mathrm{m}}}{x}}\right)^{\alpha}}
Quantile
x
m
(
1
−
p
)
−
1
α
{\displaystylex_{\mathrm{m}}{(1-p)}^{-{\frac{1}{\alpha}}}}
Mean
{
∞
for
α
≤
1
α
x
m
α
−
1
for
α
>
1
{\displaystyle{\begin{cases}\infty&{\text{for}}\alpha\leq1\\{\dfrac{\alphax_{\mathrm{m}}}{\alpha-1}}&{\text{for}}\alpha>1\end{cases}}}
Median
x
m
2
α
{\displaystylex_{\mathrm{m}}{\sqrt[{\alpha}]{2}}}
Mode
x
m
{\displaystylex_{\mathrm{m}}}
Variance
{
∞
for
α
≤
2
x
m
2
α
(
α
−
1
)
2
(
α
−
2
)
for
α
>
2
{\displaystyle{\begin{cases}\infty&{\text{for}}\alpha\leq2\\{\dfrac{x_{\mathrm{m}}^{2}\alpha}{(\alpha-1)^{2}(\alpha-2)}}&{\text{for}}\alpha>2\end{cases}}}
Skewness
2
(
1
+
α
)
α
−
3
α
−
2
α
for
α
>
3
{\displaystyle{\frac{2(1+\alpha)}{\alpha-3}}{\sqrt{\frac{\alpha-2}{\alpha}}}{\text{for}}\alpha>3}
Ex.kurtosis
6
(
α
3
+
α
2
−
6
α
−
2
)
α
(
α
−
3
)
(
α
−
4
)
for
α
>
4
{\displaystyle{\frac{6(\alpha^{3}+\alpha^{2}-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}}{\text{for}}\alpha>4}
Entropy
log
(
(
x
m
α
)
e
1
+
1
α
)
{\displaystyle\log\left(\left({\frac{x_{\mathrm{m}}}{\alpha}}\right)\,e^{1+{\tfrac{1}{\alpha}}}\right)}
MGF
doesnotexistCF
α
(
−
i
x
m
t
)
α
Γ
(
−
α
,
−
i
x
m
t
)
{\displaystyle\alpha(-ix_{\mathrm{m}}t)^{\alpha}\Gamma(-\alpha,-ix_{\mathrm{m}}t)}
Fisherinformation
I
(
x
m
,
α
)
=
[
α
x
m
2
−
1
x
m
−
1
x
m
1
α
2
]
{\displaystyle{\mathcal{I}}(x_{\mathrm{m}},\alpha)={\begin{bmatrix}{\dfrac{\alpha}{x_{\mathrm{m}}^{2}}}&-{\dfrac{1}{x_{\mathrm{m}}}}\\-{\dfrac{1}{x_{\mathrm{m}}}}&{\dfrac{1}{\alpha^{2}}}\end{bmatrix}}}
Right:
I
(
x
m
,
α
)
=
[
α
2
x
m
2
0
0
1
α
2
]
{\displaystyle{\mathcal{I}}(x_{\mathrm{m}},\alpha)={\begin{bmatrix}{\dfrac{\alpha^{2}}{x_{\mathrm{m}}^{2}}}&0\\0&{\dfrac{1}{\alpha^{2}}}\end{bmatrix}}}
TheParetodistribution,namedaftertheItaliancivilengineer,economist,andsociologistVilfredoPareto,[1](Italian: [paˈreːto]US:/pəˈreɪtoʊ/pə-RAY-toh),[2]isapower-lawprobabilitydistributionthatisusedindescriptionofsocial,qualitycontrol,scientific,geophysical,actuarial,andmanyothertypesofobservablephenomena.Originallyappliedtodescribingthedistributionofwealthinasociety,fittingthetrendthatalargeportionofwealthisheldbyasmallfractionofthepopulation.[3][4]TheParetoprincipleor"80-20rule"statingthat80%ofoutcomesaredueto20%ofcauseswasnamedinhonourofPareto,buttheconceptsaredistinct,andonlyParetodistributionswithshapevalue(α)of log45 ≈ 1.16preciselyreflectit.Empiricalobservationhasshownthatthis80-20distributionfitsawiderangeofcases,includingnaturalphenomena[5]andhumanactivities.[6][7]
Contents
1Definitions
1.1Cumulativedistributionfunction
1.2Probabilitydensityfunction
2Properties
2.1Momentsandcharacteristicfunction
2.2Conditionaldistributions
2.3Acharacterizationtheorem
2.4Geometricmean
2.5Harmonicmean
2.6Graphicalrepresentation
3Relateddistributions
3.1GeneralizedParetodistributions
3.1.1ParetotypesI–IV
3.1.2Feller–Paretodistribution
3.2Relationtotheexponentialdistribution
3.3Relationtothelog-normaldistribution
3.4RelationtothegeneralizedParetodistribution
3.5BoundedParetodistribution
3.5.1GeneratingboundedParetorandomvariables
3.6SymmetricParetodistribution
3.7MultivariateParetodistribution
4Statisticalinference
4.1Estimationofparameters
5Occurrenceandapplications
5.1General
5.2RelationtoZipf'slaw
5.3Relationtothe"Paretoprinciple"
5.4RelationtoPrice'slaw
5.5LorenzcurveandGinicoefficient
6Computationalmethods
6.1Randomsamplegeneration
7Seealso
8References
9Notes
10Externallinks
Definitions[edit]
IfXisarandomvariablewithaPareto(TypeI)distribution,[8]thentheprobabilitythatXisgreaterthansomenumberx,i.e.thesurvivalfunction(alsocalledtailfunction),isgivenby
F
¯
(
x
)
=
Pr
(
X
>
x
)
=
{
(
x
m
x
)
α
x
≥
x
m
,
1
x
<
x
m
,
{\displaystyle{\overline{F}}(x)=\Pr(X>x)={\begin{cases}\left({\frac{x_{\mathrm{m}}}{x}}\right)^{\alpha}&x\geqx_{\mathrm{m}},\\1&x
1.
{\displaystyle\operatorname{E}(X)={\begin{cases}\infty&\alpha\leq1,\\{\frac{\alphax_{\mathrm{m}}}{\alpha-1}}&\alpha>1.\end{cases}}}
ThevarianceofarandomvariablefollowingaParetodistributionis
Var
(
X
)
=
{
∞
α
∈
(
1
,
2
]
,
(
x
m
α
−
1
)
2
α
α
−
2
α
>
2.
{\displaystyle\operatorname{Var}(X)={\begin{cases}\infty&\alpha\in(1,2],\\\left({\frac{x_{\mathrm{m}}}{\alpha-1}}\right)^{2}{\frac{\alpha}{\alpha-2}}&\alpha>2.\end{cases}}}
(Ifα≤1,thevariancedoesnotexist.)
Therawmomentsare
μ
n
′
=
{
∞
α
≤
n
,
α
x
m
n
α
−
n
α
>
n
.
{\displaystyle\mu_{n}'={\begin{cases}\infty&\alpha\leqn,\\{\frac{\alphax_{\mathrm{m}}^{n}}{\alpha-n}}&\alpha>n.\end{cases}}}
Themomentgeneratingfunctionisonlydefinedfornon-positivevaluest ≤ 0as
M
(
t
;
α
,
x
m
)
=
E
[
e
t
X
]
=
α
(
−
x
m
t
)
α
Γ
(
−
α
,
−
x
m
t
)
{\displaystyleM\left(t;\alpha,x_{\mathrm{m}}\right)=\operatorname{E}\left[e^{tX}\right]=\alpha(-x_{\mathrm{m}}t)^{\alpha}\Gamma(-\alpha,-x_{\mathrm{m}}t)}
M
(
0
,
α
,
x
m
)
=
1.
{\displaystyleM\left(0,\alpha,x_{\mathrm{m}}\right)=1.}
Thus,sincetheexpectationdoesnotconvergeonanopenintervalcontaining
t
=
0
{\displaystylet=0}
wesaythatthemomentgeneratingfunctiondoesnotexist.
Thecharacteristicfunctionisgivenby
φ
(
t
;
α
,
x
m
)
=
α
(
−
i
x
m
t
)
α
Γ
(
−
α
,
−
i
x
m
t
)
,
{\displaystyle\varphi(t;\alpha,x_{\mathrm{m}})=\alpha(-ix_{\mathrm{m}}t)^{\alpha}\Gamma(-\alpha,-ix_{\mathrm{m}}t),}
whereΓ(a, x)istheincompletegammafunction.
Theparametersmaybesolvedforusingthemethodofmoments.[9]
Conditionaldistributions[edit]
TheconditionalprobabilitydistributionofaPareto-distributedrandomvariable,giventheeventthatitisgreaterthanorequaltoaparticularnumber
x
1
{\displaystylex_{1}}
exceeding
x
m
{\displaystylex_{\text{m}}}
,isaParetodistributionwiththesameParetoindex
α
{\displaystyle\alpha}
butwithminimum
x
1
{\displaystylex_{1}}
insteadof
x
m
{\displaystylex_{\text{m}}}
.Thisimpliesthattheconditionalexpectedvalue(ifitisfinite,i.e.
α
>
1
{\displaystyle\alpha>1}
)isproportionalto
x
1
{\displaystylex_{1}}
.Incaseofrandomvariablesthatdescribethelifetimeofanobject,thismeansthatlifeexpectancyisproportionaltoage,andiscalledtheLindyeffectorLindy'sLaw.[10]
Acharacterizationtheorem[edit]
Suppose
X
1
,
X
2
,
X
3
,
…
{\displaystyleX_{1},X_{2},X_{3},\dotsc}
areindependentidenticallydistributedrandomvariableswhoseprobabilitydistributionissupportedontheinterval
[
x
m
,
∞
)
{\displaystyle[x_{\text{m}},\infty)}
forsome
x
m
>
0
{\displaystylex_{\text{m}}>0}
.Supposethatforall
n
{\displaystylen}
,thetworandomvariables
min
{
X
1
,
…
,
X
n
}
{\displaystyle\min\{X_{1},\dotsc,X_{n}\}}
and
(
X
1
+
⋯
+
X
n
)
/
min
{
X
1
,
…
,
X
n
}
{\displaystyle(X_{1}+\dotsb+X_{n})/\min\{X_{1},\dotsc,X_{n}\}}
areindependent.ThenthecommondistributionisaParetodistribution.[citationneeded]
Geometricmean[edit]
Thegeometricmean(G)is[11]
G
=
x
m
exp
(
1
α
)
.
{\displaystyleG=x_{\text{m}}\exp\left({\frac{1}{\alpha}}\right).}
Harmonicmean[edit]
Theharmonicmean(H)is[11]
H
=
x
m
(
1
+
1
α
)
.
{\displaystyleH=x_{\text{m}}\left(1+{\frac{1}{\alpha}}\right).}
Graphicalrepresentation[edit]
Thecharacteristiccurved'longtail'distributionwhenplottedonalinearscale,maskstheunderlyingsimplicityofthefunctionwhenplottedonalog-loggraph,whichthentakestheformofastraightlinewithnegativegradient:Itfollowsfromtheformulafortheprobabilitydensityfunctionthatforx≥xm,
log
f
X
(
x
)
=
log
(
α
x
m
α
x
α
+
1
)
=
log
(
α
x
m
α
)
−
(
α
+
1
)
log
x
.
{\displaystyle\logf_{X}(x)=\log\left(\alpha{\frac{x_{\mathrm{m}}^{\alpha}}{x^{\alpha+1}}}\right)=\log(\alphax_{\mathrm{m}}^{\alpha})-(\alpha+1)\logx.}
Sinceαispositive,thegradient−(α + 1)isnegative.
Relateddistributions[edit]
GeneralizedParetodistributions[edit]
Seealso:GeneralizedParetodistribution
Thereisahierarchy[8][12]ofParetodistributionsknownasParetoTypeI,II,III,IV,andFeller–Paretodistributions.[8][12][13]ParetoTypeIVcontainsParetoTypeI–IIIasspecialcases.TheFeller–Pareto[12][14]distributiongeneralizesParetoTypeIV.
ParetotypesI–IV[edit]
TheParetodistributionhierarchyissummarizedinthenexttablecomparingthesurvivalfunctions(complementaryCDF).
Whenμ=0,theParetodistributionTypeIIisalsoknownastheLomaxdistribution.[15]
Inthissection,thesymbolxm,usedbeforetoindicatetheminimumvalueofx,isreplacedby σ.
Paretodistributions
F
¯
(
x
)
=
1
−
F
(
x
)
{\displaystyle{\overline{F}}(x)=1-F(x)}
Support
Parameters
TypeI
[
x
σ
]
−
α
{\displaystyle\left[{\frac{x}{\sigma}}\right]^{-\alpha}}
x
≥
σ
{\displaystylex\geq\sigma}
σ
>
0
,
α
{\displaystyle\sigma>0,\alpha}
TypeII
[
1
+
x
−
μ
σ
]
−
α
{\displaystyle\left[1+{\frac{x-\mu}{\sigma}}\right]^{-\alpha}}
x
≥
μ
{\displaystylex\geq\mu}
μ
∈
R
,
σ
>
0
,
α
{\displaystyle\mu\in\mathbb{R},\sigma>0,\alpha}
Lomax
[
1
+
x
σ
]
−
α
{\displaystyle\left[1+{\frac{x}{\sigma}}\right]^{-\alpha}}
x
≥
0
{\displaystylex\geq0}
σ
>
0
,
α
{\displaystyle\sigma>0,\alpha}
TypeIII
[
1
+
(
x
−
μ
σ
)
1
/
γ
]
−
1
{\displaystyle\left[1+\left({\frac{x-\mu}{\sigma}}\right)^{1/\gamma}\right]^{-1}}
x
≥
μ
{\displaystylex\geq\mu}
μ
∈
R
,
σ
,
γ
>
0
{\displaystyle\mu\in\mathbb{R},\sigma,\gamma>0}
TypeIV
[
1
+
(
x
−
μ
σ
)
1
/
γ
]
−
α
{\displaystyle\left[1+\left({\frac{x-\mu}{\sigma}}\right)^{1/\gamma}\right]^{-\alpha}}
x
≥
μ
{\displaystylex\geq\mu}
μ
∈
R
,
σ
,
γ
>
0
,
α
{\displaystyle\mu\in\mathbb{R},\sigma,\gamma>0,\alpha}
Theshapeparameterαisthetailindex,μislocation,σisscale,γisaninequalityparameter.SomespecialcasesofParetoType(IV)are
P
(
I
V
)
(
σ
,
σ
,
1
,
α
)
=
P
(
I
)
(
σ
,
α
)
,
{\displaystyleP(IV)(\sigma,\sigma,1,\alpha)=P(I)(\sigma,\alpha),}
P
(
I
V
)
(
μ
,
σ
,
1
,
α
)
=
P
(
I
I
)
(
μ
,
σ
,
α
)
,
{\displaystyleP(IV)(\mu,\sigma,1,\alpha)=P(II)(\mu,\sigma,\alpha),}
P
(
I
V
)
(
μ
,
σ
,
γ
,
1
)
=
P
(
I
I
I
)
(
μ
,
σ
,
γ
)
.
{\displaystyleP(IV)(\mu,\sigma,\gamma,1)=P(III)(\mu,\sigma,\gamma).}
Thefinitenessofthemean,andtheexistenceandthefinitenessofthevariancedependonthetailindexα(inequalityindexγ).Inparticular,fractionalδ-momentsarefiniteforsomeδ>0,asshowninthetablebelow,whereδisnotnecessarilyaninteger.
MomentsofParetoI–IVdistributions(caseμ=0)
E
[
X
]
{\displaystyle\operatorname{E}[X]}
Condition
E
[
X
δ
]
{\displaystyle\operatorname{E}[X^{\delta}]}
Condition
TypeI
σ
α
α
−
1
{\displaystyle{\frac{\sigma\alpha}{\alpha-1}}}
α
>
1
{\displaystyle\alpha>1}
σ
δ
α
α
−
δ
{\displaystyle{\frac{\sigma^{\delta}\alpha}{\alpha-\delta}}}
δ
<
α
{\displaystyle\delta
1
{\displaystyle\alpha>1}
σ
δ
Γ
(
α
−
δ
)
Γ
(
1
+
δ
)
Γ
(
α
)
{\displaystyle{\frac{\sigma^{\delta}\Gamma(\alpha-\delta)\Gamma(1+\delta)}{\Gamma(\alpha)}}}
0
<
δ
<
α
{\displaystyle0
0
,
{\displaystylef(y)={\frac{y^{\gamma_{1}-1}(1-y)^{\gamma_{2}-1}}{B(\gamma_{1},\gamma_{2})}},\qquad00,}
whereB( )isthebetafunction.If
W
=
μ
+
σ
(
Y
−
1
−
1
)
γ
,
σ
>
0
,
γ
>
0
,
{\displaystyleW=\mu+\sigma(Y^{-1}-1)^{\gamma},\qquad\sigma>0,\gamma>0,}
thenWhasaFeller–ParetodistributionFP(μ,σ,γ,γ1,γ2).[8]
If
U
1
∼
Γ
(
δ
1
,
1
)
{\displaystyleU_{1}\sim\Gamma(\delta_{1},1)}
and
U
2
∼
Γ
(
δ
2
,
1
)
{\displaystyleU_{2}\sim\Gamma(\delta_{2},1)}
areindependentGammavariables,anotherconstructionofaFeller–Pareto(FP)variableis[16]
W
=
μ
+
σ
(
U
1
U
2
)
γ
{\displaystyleW=\mu+\sigma\left({\frac{U_{1}}{U_{2}}}\right)^{\gamma}}
andwewriteW~FP(μ,σ,γ,δ1,δ2).SpecialcasesoftheFeller–Paretodistributionare
F
P
(
σ
,
σ
,
1
,
1
,
α
)
=
P
(
I
)
(
σ
,
α
)
{\displaystyleFP(\sigma,\sigma,1,1,\alpha)=P(I)(\sigma,\alpha)}
F
P
(
μ
,
σ
,
1
,
1
,
α
)
=
P
(
I
I
)
(
μ
,
σ
,
α
)
{\displaystyleFP(\mu,\sigma,1,1,\alpha)=P(II)(\mu,\sigma,\alpha)}
F
P
(
μ
,
σ
,
γ
,
1
,
1
)
=
P
(
I
I
I
)
(
μ
,
σ
,
γ
)
{\displaystyleFP(\mu,\sigma,\gamma,1,1)=P(III)(\mu,\sigma,\gamma)}
F
P
(
μ
,
σ
,
γ
,
1
,
α
)
=
P
(
I
V
)
(
μ
,
σ
,
γ
,
α
)
.
{\displaystyleFP(\mu,\sigma,\gamma,1,\alpha)=P(IV)(\mu,\sigma,\gamma,\alpha).}
Relationtotheexponentialdistribution[edit]
TheParetodistributionisrelatedtotheexponentialdistributionasfollows.IfXisPareto-distributedwithminimumxmandindex α,then
Y
=
log
(
X
x
m
)
{\displaystyleY=\log\left({\frac{X}{x_{\mathrm{m}}}}\right)}
isexponentiallydistributedwithrateparameter α.Equivalently,ifYisexponentiallydistributedwithrate α,then
x
m
e
Y
{\displaystylex_{\mathrm{m}}e^{Y}}
isPareto-distributedwithminimumxmandindex α.
Thiscanbeshownusingthestandardchange-of-variabletechniques:
Pr
(
Y
<
y
)
=
Pr
(
log
(
X
x
m
)
<
y
)
=
Pr
(
X
<
x
m
e
y
)
=
1
−
(
x
m
x
m
e
y
)
α
=
1
−
e
−
α
y
.
{\displaystyle{\begin{aligned}\Pr(Y
0
{\displaystyleL>0}
location(real)
H
>
L
{\displaystyleH>L}
location(real)
α
>
0
{\displaystyle\alpha>0}
shape(real)Support
L
⩽
x
⩽
H
{\displaystyleL\leqslantx\leqslantH}
PDF
α
L
α
x
−
α
−
1
1
−
(
L
H
)
α
{\displaystyle{\frac{\alphaL^{\alpha}x^{-\alpha-1}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}}
CDF
1
−
L
α
x
−
α
1
−
(
L
H
)
α
{\displaystyle{\frac{1-L^{\alpha}x^{-\alpha}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}}
Mean
L
α
1
−
(
L
H
)
α
⋅
(
α
α
−
1
)
⋅
(
1
L
α
−
1
−
1
H
α
−
1
)
,
α
≠
1
{\displaystyle{\frac{L^{\alpha}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}\cdot\left({\frac{\alpha}{\alpha-1}}\right)\cdot\left({\frac{1}{L^{\alpha-1}}}-{\frac{1}{H^{\alpha-1}}}\right),\alpha\neq1}
H
L
H
−
L
ln
H
L
,
α
=
1
{\displaystyle{\frac{{H}{L}}{{H}-{L}}}\ln{\frac{H}{L}},\alpha=1}
Median
L
(
1
−
1
2
(
1
−
(
L
H
)
α
)
)
−
1
α
{\displaystyleL\left(1-{\frac{1}{2}}\left(1-\left({\frac{L}{H}}\right)^{\alpha}\right)\right)^{-{\frac{1}{\alpha}}}}
Variance
L
α
1
−
(
L
H
)
α
⋅
(
α
α
−
2
)
⋅
(
1
L
α
−
2
−
1
H
α
−
2
)
,
α
≠
2
{\displaystyle{\frac{L^{\alpha}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}\cdot\left({\frac{\alpha}{\alpha-2}}\right)\cdot\left({\frac{1}{L^{\alpha-2}}}-{\frac{1}{H^{\alpha-2}}}\right),\alpha\neq2}
2
H
2
L
2
H
2
−
L
2
ln
H
L
,
α
=
2
{\displaystyle{\frac{2{H}^{2}{L}^{2}}{{H}^{2}-{L}^{2}}}\ln{\frac{H}{L}},\alpha=2}
(thisisthesecondrawmoment,notthevariance)Skewness
L
α
1
−
(
L
H
)
α
⋅
α
∗
(
L
k
−
α
−
H
k
−
α
)
(
α
−
k
)
,
α
≠
j
{\displaystyle{\frac{L^{\alpha}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}\cdot{\frac{\alpha*(L^{k-\alpha}-H^{k-\alpha})}{(\alpha-k)}},\alpha\neqj}
(thisisthekthrawmoment,nottheskewness)
Thebounded(ortruncated)Paretodistributionhasthreeparameters:α,LandH.AsinthestandardParetodistributionαdeterminestheshape.Ldenotestheminimalvalue,andHdenotesthemaximalvalue.
Theprobabilitydensityfunctionis
α
L
α
x
−
α
−
1
1
−
(
L
H
)
α
{\displaystyle{\frac{\alphaL^{\alpha}x^{-\alpha-1}}{1-\left({\frac{L}{H}}\right)^{\alpha}}}}
,
whereL ≤ x ≤ H,andα > 0.
GeneratingboundedParetorandomvariables[edit]
IfUisuniformlydistributedon(0, 1),thenapplyinginverse-transformmethod[18]
U
=
1
−
L
α
x
−
α
1
−
(
L
H
)
α
{\displaystyleU={\frac{1-L^{\alpha}x^{-\alpha}}{1-({\frac{L}{H}})^{\alpha}}}}
x
=
(
−
U
H
α
−
U
L
α
−
H
α
H
α
L
α
)
−
1
α
{\displaystylex=\left(-{\frac{UH^{\alpha}-UL^{\alpha}-H^{\alpha}}{H^{\alpha}L^{\alpha}}}\right)^{-{\frac{1}{\alpha}}}}
isaboundedPareto-distributed.
SymmetricParetodistribution[edit]
ThepurposeofSymmetricParetodistributionandZeroSymmetricParetodistributionistocapturesomespecialstatisticaldistributionwithasharpprobabilitypeakandsymmetriclongprobabilitytails.ThesetwodistributionsarederivedfromParetodistribution.Longprobabilitytailnormallymeansthatprobabilitydecaysslowly.Paretodistributionperformsfittingjobinmanycases.Butifthedistributionhassymmetricstructurewithtwoslowdecayingtails,Paretocouldnotdoit.ThenSymmetricParetoorZeroSymmetricParetodistributionisappliedinstead.[19]
TheCumulativedistributionfunction(CDF)ofSymmetricParetodistributionisdefinedasfollowing:[19]
F
(
X
)
=
P
(
x
<
X
)
=
{
1
2
(
b
2
b
−
X
)
a
X
<
b
1
−
1
2
(
b
X
)
a
X
≥
b
{\displaystyleF(X)=P(x 1.
Thereissomenumber0 ≤ p ≤ 1/2suchthat100p %ofallpeoplereceive100(1 − p)%ofallincome,andsimilarlyforeveryreal(notnecessarilyinteger)n > 0,100pn %ofallpeoplereceive100(1 − p)npercentageofallincome.αandparerelatedby
1
−
1
α
=
ln
(
1
−
p
)
ln
(
p
)
=
ln
(
(
1
−
p
)
n
)
ln
(
p
n
)
{\displaystyle1-{\frac{1}{\alpha}}={\frac{\ln(1-p)}{\ln(p)}}={\frac{\ln((1-p)^{n})}{\ln(p^{n})}}}
Thisdoesnotapplyonlytoincome,butalsotowealth,ortoanythingelsethatcanbemodeledbythisdistribution.
ThisexcludesParetodistributionsinwhich 0