肯定前件
文章推薦指數: 80 %
在逻辑中,肯定前件(拉丁语:Modus ponens)是有效的、简单的论证形式(常缩写为MP): 肯定前件-Wikiwand Forfasternavigation,thisIframeispreloadingtheWikiwandpagefor肯定前件. 肯定前件 Connectedto: {{::readMoreArticle.title}} 维基百科,自由的百科全书 {{bottomLinkPreText}} {{bottomLinkText}} ThispageisbasedonaWikipediaarticlewrittenby contributors(read/edit). Textisavailableunderthe CCBY-SA4.0license;additionaltermsmayapply. Images,videosandaudioareavailableundertheirrespectivelicenses. Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license. Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license. Credit: (seeoriginalfile). 肯定前件 Introduction 形式符號 解說 参见 外部链接 {{current.index+1}}of{{items.length}} Date:{{current.info.dateOriginal||'Unknown'}} Date:{{(current.info.date|date:'mediumDate')||'Unknown'}} Credit: Uploadedby:{{current.info.uploadUser}}on{{current.info.uploadDate|date:'mediumDate'}} License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}} License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}} ViewfileonWikipedia Suggestascoverphoto Wouldyouliketosuggestthisphotoasthecoverphotoforthisarticle? Yes,thiswouldmakeagoodchoice No,nevermind Thankyouforhelping! Yourinputwillaffectcoverphotoselection,alongwithinputfromotherusers. Listentothisarticle Thanksforreportingthisvideo! {{result.lang}} {{result.T}} Nomatchingarticlesfound Searchforarticlescontaining:{{search.query}} Ohno,there'sbeenanerror [email protected] Letusknowwhatyou'vedonethatcausedthiserror,whatbrowseryou'reusing,andwhetheryouhaveanyspecialextensions/add-onsinstalled. Thankyou!
延伸文章資訊
- 1逻辑笔记.docx - A A'/ AEIO SS PMS 256 - Course Hero
View Notes - 逻辑笔记.docx from UGED 1810 at The Chinese University of Hong Kong. A A'/ AEIO S S PMS ...
- 2MPA/MP Acc聯考邏輯往年真題歸類精解 - 博客來
書名:MPA/MP Acc聯考邏輯往年真題歸類精解,語言:簡體中文,ISBN:9787300161327,頁數:226,出版社:中國人民大學出版社,作者:周建武,出版日期:2012/07/01,...
- 3MPM數學官網- MPM數學官方網站
... 掌握數學優勢,成就大未來幼兒2~6歲課程國小1~6歲年級專業數學國中7~9歲年級高中10~12歲年級數理邏輯課程奠基數理邏輯思維的墊腳石Jelic腦力開發3~6歲適合KMI腦力 ...
- 4肯定前件
在逻辑中,肯定前件(拉丁语:Modus ponens)是有效的、简单的论证形式(常缩写为MP):
- 5古典命題邏輯規則
P∧Q︰P and Q P→Q︰if P then Q P≡Q︰(P→Q)∧(Q→P), P∨Q︰P or Q ¬P︰not P. Rules for Sentential Logic︰. MP...