圓柱型庫耶特流動系統之奈米流體熱流數值模擬研究
文章推薦指數: 80 %
奈米流體是指在基礎液體中含有100nm以下分散粒子的流體[1],此在熱傳、潤滑與醫療 ... 奈米流體在圓形雙套管間隙中的流力與熱傳行為;最後,使用田口品質工程之靜態望 ...
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(178.128.221.219)您好!臺灣時間:2022/10/1806:08
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:陳雅芳研究生(外文):Ya-FangChen論文名稱:圓柱型庫耶特流動系統之奈米流體熱流數值模擬研究論文名稱(外文):NumericalSimulationonThermalConvectionofNanofluidinCylindricalCouetteFlow指導教授:鄭文桐指導教授(外文):Wen-TungCheng口試委員:楊怡寬、張厚謙口試日期:2013-07-29學位類別:碩士校院名稱:國立中興大學系所名稱:化學工程學系所學門:工程學門學類:化學工程學類論文種類:學術論文論文出版年:2013畢業學年度:101語文別:中文論文頁數:99中文關鍵詞:計算流體力學、圓柱形庫耶特流體流動、奈米流體、剪切應力、熱通量外文關鍵詞:CFD、CircularCouetteflow、Nanofluid、Shearstress、Heatflux相關次數:
被引用:1點閱:134評分:下載:0書目收藏:0
奈米流體是指在基礎液體中含有100nm以下分散粒子的流體[1],此在熱傳、潤滑與醫療上都具有極大的應用價值,但當加入奈米流體可能面臨增加壁面剪切應力而磨損管線的問題。
故本文嘗試建立一個暫態三維同心圓管庫耶特流動之計算流體力學架構,其中流體為乙二醇(EG)/二氧化鈦(TiO2)的奈米流體,分析系統變因對於剪切應力與熱通量之影響。
本研究使用的變因為內管轉速、奈米流體粒子體積分率、奈米粒子聚集程度與壁面溫度。
據此,利用L9(34)直交表配置實驗組合,並利用Chen等人[17,18]所建立之黏度與熱傳導係數經驗式與Pak與Cho兩人[39]所提出之密度與比熱經驗式計算奈米流體性質;其次,運用有限體積法離散與隱式壓力速度耦合運算法求解體積分率和守恆方程式,以模擬奈米流體在圓形雙套管間隙中的流力與熱傳行為;最後,使用田口品質工程之靜態望小與靜態望大訊號/雜訊比分別獲得剪切應力與熱通量之因子效果。
藉由徑向之速度分布與剪切應力的比較得知,數值模擬與理論值極為吻合,此可驗證本研究之計算流體力學架構的信賴度。
另外,利用田口品質工程之靜態望小及望大訊號/雜訊比的變因分析結果顯示,影響剪切應力的程度由大至小次序為內管轉速、粒子體積分率、粒子聚集程度、壁面溫度,其百分比分別為32%,27%,23%,及17%;而影響熱通量的程度由大至小次序為壁面溫度、粒子體積分率、粒子聚集程度、內管轉速,其百分比分別是52%,32%,9%,及7%。
Nanofluidisthebaseliquidcontainingdispersedparticleswhichsizeisbelow100nm,whichhavelargeapplicationvalueofheattransfer,lubricants,andmedicaltreatment.Butwealsoneedtofacetheproblemthattheshearstresswouldincreaseleadingtowearpipelineinthesametimewhenweaddednanoparticlesintothebasefluid.Thereforewebuiltanunsteadystateand3-DconcentricCouetteflowcontainingTiO2nano-particlesdispersingintheethyleneglycolfluid(EG)toanalyzeeffectsofparametersontheshearstressandtheheatfluxrespectively.Inthisstudy,wetookangularspeedoftheinnertube,volumefractionofparticle,secondaryaverageparticlesize,andwalltemperatureasthevariables.WeexploitedL9(34)orthogonalarraytodesignexperiments,inwhich,theviscosityandthermalconductivityofnano-fluidwereproposedbyChenetal[17,18],andthedensityandspecificheatcapacityofnano-fluidwerededucedbyPakandCho[39].Thevolumeoffluid(VOF)andfinitevolumemethod(FVM)associatedwithpressureimplicitwithsplittingofoperators(PISO)werethenappliedtosolvethevolumefractionequationandconservationequationsforsimulatingthemomentumandheattransferofnano-fluidsinagapbetweencirculardoublepipes.Finally,weusedstaticsmaller-the-betterratioandstaticlarger-the-betterratioofsignaltonoise(S/Nratio)inTaguchimethodtoobtainthefactoreffectonshearstressandheatfluxrespectively.Incomparison,theresultingvelocityandshearstressprofileswereconsistentwiththetheoreticalvalueintheradialdirection,whichmaybeusedtoimprovethereliabilityofthecomputationalfluiddynamics(CFD)inthiswork.Furthermore,asknownfromtheanalysisofS/NratioinTaguchimethod,itwasfoundthatinfluencedegreesofangularspeedoftheinnertube,theparticlevolumefraction,theparticleaggregation,andthewalltemperature,are32%,27%,23%,and17%ontheshearstress,aswellas7%,32%,9%,and52%onthethermalflux,respectively.
摘要……………………………………………………………………IAbstract…………………………………………………………II符號說明……………………………………………………………IV目錄……………………………………………………………………X圖目錄…………………………………………………………………XII表目錄…………………………………………………………………XV第一章緒論…………………………………………………11.1奈米流體介紹…………………………………………11.2CFD模擬簡介……………………………………………21.3研究動機與方法………………………………………41.4全論文架構………………………………………………6第二章文獻回顧…………………………………………72.1奈米流體……………………………………………………72.2奈米流體的數值模擬………………………………142.2.1奈米流體的CFD研究…………………………142.2.2流體力學………………………………………………242.2.3熱量傳送………………………………………………342.2.4CFD求解方法………………………………………382.2.5CFD數值計算方法………………………………452.2.6VOF模型………………………………………………472.2.7田口品質工程………………………………………482.3奈米流體的應用………………………………………52第三章研究方法…………………………………………563.1物理模型…………………………………………563.2數學模型……………………………………………………573.2.1守恆方程式…………………………………………573.2.2奈米流體………………………………………………593.2.3初始條件與邊界條件…………………………633.3數值方法……………………………………………………643.4變因分析……………………………………………………68第四章結果與討論……………………………………694.1CFD計算架構確認…………………………………694.1.1網格測試……………………………………………694.1.2確認實驗數據穩定……………………………724.1.3速度分布之理論值比對……………………754.1.4剪切應力之理論值比對……………………784.2變因探討……………………………………………………804.2.1先期探討………………………………………………804.2.2變因對於剪切應力之影響………………824.2.3變因對於熱通量之影響……………………86第五章結論與未來方向……………………………925.1結論……………………………………………………………925.2未來方向……………………………………………………92參考文獻………………………………………………………………93
[1]http://en.wikipedia.org/wiki/Nanofluid[2]Maxwell,J.C.,“ATreatiseonElectricityandMagnetism,”ClarendonPress,UK,1881.[3]Choi,S.,“Enhancingthermalconductivityoffluidswithnanoparticles,”DevelopmentsandApplicationsofNon-NewtonianFlows,vol.231/MD-Vol.66,pp.99-105,1995.[4]Keblinski,P.,Phillpot,S.R.,andChoi,S.,“Mechanismsofheatflowinsuspensionsofnano-sizedparticles(nanofluids),”InternationalJournalofHeatandMassTransfer,45,pp.855–863,2002.[5]Xuan,Y.,andLi,Q.,“Heattransferenhancementofnanofluids,”InternationalJournalofHeatandFluidTransfer,21,pp.58–64,2000.[6]Lee,D.,Kim,J.W.,andKim,B.G.,“Anewparametertocontrolheattransportinnanofluids:Surfacechargestateoftheparticleinsuspension,”JournalofPhysicalChemistryB,110,no.9,pp.4323–4328,2006.[7]Putnam,S.A.,Cahill,D.G.,Braun,P.V.,Ge,Z.,andShimmin,R.G.,“Thermalconductivityofnanoparticlesuspensions,”JournalofAppliedPhysics,99,no.8,pp.084308-084308-6,2006.[8]Keblinski,P.,Eastman,J.A.,andCahill,D.G.,“Nanofluidsforthermaltransport,”MaterialsToday,8,no.6,pp.36–44,2005.[9]http://zh.wikipedia.org/zh-tw/%E8%A8%88%E7%AE%97%E6%B5%81%E9%AB%94%E5%8A%9B%E5%AD%B8[10]ANSYSFLUENT12.0,User’sGuide,2010.[11]GAMBIT,GuideModeling,2003.[12]Madan,M.,andMazumdar,D.,“Acomputationalassessmentofviscositymeasurementinrotatingviscometersthroughdetailednumericalsimulation,”MetallurgicalandMaterialsTransactionB,”vol.35B,PP.805-809,2004.[13]Wright,S.,Zhang,L.,Sun,S.,andJahanshahi,S.,“ViscosityofaCaO-MgO-Al2O3-SiO2meltcontainingspinelparticlesat1646K,”MetallurgicalandMaterialsTransactionB,vol.31B,pp.97-104,2000.[14]Bianco,V.,Chiacchio,F.,Manca,O.,andNardini,S.,“Numericalinvestigationofnanofluidsforcedconvectionincirculartubes,”Appl.Therm.Eng.29,pp.3632–3642,2009.[15]Lotfi,R.,Saboohi,Y.,andRashidi,A.M.,“Numericalstudyofforcedconvectiveheattransferofnanofluids:Comparisonofdifferentapproaches,”Int.Commun.HeatMassTransfer,37,pp.74–78,2010.[16]Ghaffari,O.,Behzadmehr,A.,andAjam,H.,“Turbulentmixedconvectionofananofluidinahorizontalcurvedtubeusingatwo-phaseapproach,”Int.Commun.HeatMassTransfer,37,pp.1551–1558,2010.[17]Chen,H.,Ding,Y.,He,Y.,andTan,C.,“Rheologicalbehaviorofnanofluid,”NewJournalofPhysics,9,pp.367-390,2007[18]Chen,H.,Ding,Y.,He,Y.,andTan,C.,“Rhelologicalbehaviorofethyleneglycolbasedtitaniananofluids,”ChemicalPhysicsLetters,444,pp.333-337,2007.[19]陳耀茂,黃廷彬,“品質工程Excel應用手冊,”聯經出版事業公司,台灣,2006.[20]劉漢容,“品質管制,”台灣,三民書局出版社,2003.[21]Akoh,H.,Tsukasaki,Y.,Yatsuya,S.,andTasaki,A.“Magneticpropertiesofferromagneticultrafineparticlespreparedbyvacuumevaporationonrunningoilsubstrate,”JournalofCrystalGrowth,vol.45,pp.495-500,1978.[22]Wagener,M.,Murty,B.S.,andGunther,B.,“PreparationofmetalnanosuspensionsbyhighpressureDC-sputteringonrunningliquids,”NanocrystallineandNanocompositeMaterialsII,457,pp.149–154,1997.[23]Eastman,J.A.,Choi,U.S.,Li,S.,Thompson,L.J.,andLee,S.,“Enhancedthermalconductivitythroughthedevelopmentofnanofluids,”MaterialsResearchSocietySymposiumProceedings,457,pp.3–11,1997.[24]Lee,S.,Choi,S.U.S.,Li,S.,andEastman,J.A.,“Measuringthermalconductivityoffluidscontainingoxidenanoparticles,”JournalofHeatTransfer,121,pp.280–289,1999.[25]Murshed,S.M.S.,Leong,K.C.,andYang,C.,“EnhancedthermalconductivityofTiO2-Waterbasednanofluids,”InternationalJournalofThermalSciences,44,pp.367–373,2005.[26]Kestin,J.andWakeham,W.A.,“Acontributiontothetheoryofthetransienthot-wiretechniqueforthermalconductivitymeasurements,”PhysicaA,92,pp.102–116,1978.[27]Wang,X.,Xu,X.,andChoi,S.U.S.,“Thermalconductivityofnanoparticle-fluidmixture,”JournalofThermophysicsandHeatTransfer,13,pp.474–480,1999.[28]Das,S.K.,Putta,N.,Thiesen,P.,andRoetzel,W.,“Temperaturedependenceofthermalconductivityenhancementfornanofluids,”ASMETrans.J.HeatTransfer,125,pp.567–574,2003.[29]Hong,T.K.,Yang,H.S.,andChoi,C.J.,“StudyoftheenhancedthermalconductivityofFenanofluids,”JournalofAppliedPhysics,97,no.6,pp.1–4,2005.[30]Li,C.H.andPeterson,G.P.,“Experimentalinvestigationoftemperatureandvolumefractionvariationsontheeffectivethermalconductivityofnanoparticlesuspensions(nanofluids),“JournalofAppliedPhysics,”99,no.8,pp.084314-084314-8,2006.[31]Das,S.K.,Putra,N.,andRoetzel,W.,“Poolboilingcharacteristicsofnano-fluids,”InternationalJournalofHeatandMassTransfer,46,no.5,pp.851–862,2003.[32]Krieger,I.M.,andDougherty,T.J.,“Amechanismfornon-newtonianflowinsuspensionsofrigidspheres,”Trans.Soc.Rheology,3,pp.137-52,1959.[33]Bruggeman,D.A.G.,“BerechnungverschiedenerphysikalischerKonstantenvonheterogenenSubstanzen.I.DielektrizitatskonstantenundLeitfahigkeitenderMischkorperausisotropenSubstanzen,”AnnalenderPhysik,vol.416,pp.665–679,1935.[34]Chang,H.,Jwo,C.S.,Lo,C.H.,Tsung,T.T.,Kao,M.J.,andLin,H.M.,“RheologyofCuOnanoparticlesuspensionpreparedbyASNSS,”ReviewsonAdvancedMaterialsScience,”10,pp.128-132,2005.[35]Brinkman,H.,“Theviscosityofconcentratedsuspensionsandsolutions,”TheJournalofChemicalPhysics,vol.20,pp.571,1952.[36]Abu-Nada,E.,Chamkha,A.J.,“EffectofnanofluidvariablepropertiesonnaturalconvectioninenclosuresfilledwithaCuO–EG–Waternanofluid,”InternationalJournalofThermalSciences,49,pp.2339-2352,2010.[37]Vajjha,R.S.,Das,D.K.,Namburu,P.K.,“NumericalstudyoffluiddynamicandheattransferperformanceofAl2O3andCuOnanofluidsintheflattubesofaradiator,”InternationalJournalofHeatandFluidFlow,31,pp.613–621,2010.[38]Sharjeel,T.,andManu,M.,“Numericalinvestigationoflaminarnanofluiddevelopingflowandtransferinacircularchannel,”AppliedThermalEngineering,38,pp.8-14,2012.[39]Pak,B.,Cho,I.,“Hydrodynamicandheattransferstudyofdispersedfluidswithsub-micronmetallicoxideparticles,”ExperimentalHeatTransfer,11,pp.151–170,1998.[40]Xuan,Y.,andRoetzel,E.,“Conceptionsforheattransfercorrelationofnanofluids,”InternationalJournalofHeatandMassTransfer,43,pp.3701-3707,2000.[41]Fard,M.H.,Esfahany,M.N.,andTalaie,M.R.,“Numericalstudyofconvectiveheattransferofnanofluidsinacirculartubetwo-phasemodelversussinger-phasemodel,”InternationalCommunicationsinHeatandMassTransfer,37,pp.91-97,2010.[42]http://en.wikipedia.org/wiki/Nusselt_number#Sieder-Tate_correlation[43]http://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation[44]Bird,R.B.,Steeart,W.E.,andLightfoot,E.N.,“TransportPhenomena,”JohnWiley&Sons,NewYork,2001.[45]Nielsen,L.E.,林健樑編譯,“流變學,”復文圖書出版社,台灣,1987.[46]Mott,R.L.,徐貴新編譯,“流體力學,”高立出版社,台灣,2005.[47]張祝新,於雷,齊中華,“對工程流體力學中臨界雷諾數使用的討論,”潤滑與密封,1期,pp.65,pp71,2001.[48]朱紅鈞,林元華,謝龍漢,“FLUENT12流體分析及工程仿真,”北京,清華大學出版社,2011.[49]http://en.wikipedia.org/wiki/Couette_flow[50]江帆,黃鵬,“Fluent高級應用與實例分析,”北京,清華大學出版社,2008.[51]Fourier,J.B.J.,“Theorieanalytiquedelachaleur,”ChezFirminDidot,French,1822.[52]Welty,J.R.,Wicks,C.E.,Wilson,R.E.,andRorrer,G.L.,“FundamentalsofMomentum,Heat,andMassTransfer,”JohnWiley&Sons,NewYork,2007.[53]Patankar,S.V.,andSpalding,D.B.,“Acalaclationprocedureforheat,”InternationalJournalofHeatandMassTransfer,vol.15,pp.1787-1806,1972.[54]VanDoormal,J.P.,andRaithby,G.D.,“EnhancementsoftheSIMPLEmethodforpredictingincompressiblefluidflows,”Numer.HeatTransfer,vol.7,pp.147-163,1984.[55]Issa,R.I.,“Solutionoftheimplicitlydiscretizedfluidflowequationsbyoperatorsplitting,”J.Comput.Phys.,vol.40,pp.40-65,1986.[56]Wang,X.Q.,andMujumdar,A.S.,“Areviewonnanofluids–partI:theoreticalandnumericalinvestigations,”BrazilianJournalofChemical,vol.25,pp.613-630,2008.[57]Wang,X.Q,andMujumdar,A.S.,“Areviewonnanofluids–partII:experimentsandapplications,”BrazilianJournalofChemical,vol.25,pp.631-648,2008.[58]Tseng,S.C.,Lin,C.W.,andHuang,K.“Heattransferenhancementofnanofluidsinrotarybladecouplingoffour-wheel-drivevehicles,”ActaMechanica,179,pp.11–23,2005.[59]Tsai,C.Y.,Chien,H.T.,Ding,P.P.,Chan,B.,Luh,T.Y.,andChen,P.H.,“Effectofstructuralcharacterofgoldnanoparticlesinnanofluidonheatpipethermalperformance,”MaterialLetters,58,pp.1461–1465,2004.[60]Nguyen,C.T.,Roy,G.,Gauthier,C.,andGalanis,N.,“HeattransferenhancementusingAl2O3-waternanofluidforanelectronicliquidcoolingsystem,”AppliedThermalEngineering,27,no.8-9,pp.1501–1506,2007.[61]Vassallo,P.,Kumar,R.,andAmico,S.D.,“Poolboilingheattransferexperimentsinsilica-waternanofluids,”InternationalJournalofHeatandMassTransfer,47,pp.407–411,2004.[62]Jordan,A.,Scholz,R.,Wust,P.,Fahling,H.,andFelix,R.,“Magneticfluidhyperthermia(MFH):cancertreatmentwithACmagneticfieldinducedexcitationofbiocompatiblesuperparamagneticnanoparticles,”JournalofMagnetismandMagneticMaterials,201,pp.413–419,1999.[63]Zhang,Z.andQue,Q.,“Synthesis,structureandlubricatingpropertiesofdialkyldithiophosphate-modifiedMo-Scompoundnanoclusters,”Wear,209,pp.8–12,1997.
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
二氧化鈦奈米流體強制對流熱量傳遞之數值模擬研究
2.
奈米流體通過多孔性介質方柱之熱流場分析
3.
冷凍真空乾燥機之熱傳研究
4.
開放式氣體保護燒結爐溫度分佈之規劃
5.
拉伸流所產生之局部消散能量與溶血相關研究
6.
奈米流體於波形渠道熱傳增強之數值最佳化
無相關期刊
1.
二氧化鈦奈米流體強制對流熱量傳遞之數值模擬研究
2.
評估小鼠IL-18同型異構物做為疫苗佐劑之能力及選殖小鼠CCL21
3.
氮化鎵/氧化鋁酸鋰與氮化鎵/氧化鎵酸鋰異質界面結構之第一原理研究
4.
品牌公司與代工公司盈餘持續性之探討-兼論企業生命週期之影響
5.
撓性關節平面雙機械臂之階層式適應位置與力量控制
6.
第二型分泌機制次要類纖毛蛋白XpsHIJK在ATPase聚散中的重要性
7.
臺中市印刷業空氣污染物排放特性與管制策略
8.
利用固相萃取技術快速萃取微生物發酵培養液中的表面素並進行表面素安定性之研究
9.
磷系多官能benzoxazine型之合成及其固化物之探討
10.
三維高爐冷卻壁複合奈米流體強制對流熱傳之數值模擬
11.
清中葉後圖書出版之環境因素研究
12.
磁場對磁性奈米流體震盪式熱管性能之探討
13.
超音波輔助合成銀/二氧化鈦複合奈米流體與其特性研究
14.
新北市國中教師知覺對教師權利與義務認同與實現程度之研究
15.
國中學生facebook使用與網路安全意識之研究
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1流體靜力平衡- 维基百科,自由的百科全书
流體靜力平衡(法文: Équilibre hydrostatique; 德文: Hydrostatisches Gleichgewicht; 英文:Hydrostatic equilibrium...
- 2流體靜力學
從2.7 及2.8 式可以證明,在均勻而且不可壓鍵的靜態流體之中,壓力只與. 某參考平面之深度有關,至於盛裝液體貯存桶或容器尺寸或形狀,則不會影鍵. 壓力大小。 鍵2.6鍵.
- 3圓柱型庫耶特流動系統之奈米流體熱流數值模擬研究
奈米流體是指在基礎液體中含有100nm以下分散粒子的流體[1],此在熱傳、潤滑與醫療 ... 奈米流體在圓形雙套管間隙中的流力與熱傳行為;最後,使用田口品質工程之靜態望 ...
- 41031-21 流體的力學概論第2章流體靜力學
2.1.1 巴斯喀定理(Pascal's principle). 靜態流體中,作用於一點上的任意方向壓力皆相等。 其中包含三項要點: 1. 靜態流體中之某一點,其各方向之壓力強度均相同.
- 5流體靜力學- 維基百科,自由的百科全書
流體靜力學研究流體(諸如氣體和液體)靜止時的現象以及相關力學行為的科學。這樣的現象和行為可以用數學表達式來表述,稱為流體靜力學基本方程式。