What is Bayesian Analysis?
文章推薦指數: 80 %
Many people advocate the Bayesian approach because of its philosophical consistency. Various fundamental theorems show that if a person wants to make consistent ... Facebook Twitter WhatisBayesianAnalysis? by KateCowles,RobKass,andTonyO’Hagan WhatwenowknowasBayesianstatisticshasnothadaclearrunsince1763.AlthoughBayes’smethodwasenthusiasticallytakenupbyLaplaceandotherleadingprobabilistsoftheday,itfellintodisreputeinthe19thcenturybecausetheydidnotyetknowhowtohandlepriorprobabilitiesproperly.Thefirsthalfofthe20thcenturysawthedevelopmentofacompletelydifferenttheory,nowcalledfrequentiststatistics.ButtheflameofBayesianthinkingwaskeptalivebyafewthinkerssuchasBrunodeFinettiinItalyandHaroldJeffreysinEngland.ThemodernBayesianmovementbeganinthesecondhalfofthe20thcentury,spearheadedbyJimmySavageintheUSAandDennisLindleyinBritain,butBayesianinferenceremainedextremelydifficulttoimplementuntilthelate1980sandearly1990swhenpowerfulcomputersbecamewidelyaccessibleandnewcomputationalmethodsweredeveloped.ThesubsequentexplosionofinterestinBayesianstatisticshaslednotonlytoextensiveresearchinBayesianmethodologybutalsototheuseofBayesianmethodstoaddresspressingquestionsindiverseapplicationareassuchasastrophysics,weatherforecasting,healthcarepolicy,andcriminaljustice. Scientifichypothesestypicallyareexpressedthroughprobabilitydistributionsforobservablescientificdata.Theseprobabilitydistributionsdependonunknownquantitiescalledparameters.IntheBayesianparadigm,currentknowledgeaboutthemodelparametersisexpressedbyplacingaprobabilitydistributionontheparameters,calledthe“priordistribution”,oftenwrittenas Whennewdata becomeavailable,theinformationtheycontainregardingthemodelparametersisexpressedinthe“likelihood,”whichisproportionaltothedistributionoftheobserveddatagiventhemodelparameters,writtenas Thisinformationisthencombinedwiththepriortoproduceanupdatedprobabilitydistributioncalledthe“posteriordistribution,”onwhichallBayesianinferenceisbased.Bayes’Theorem,anelementaryidentityinprobabilitytheory,stateshowtheupdateisdonemathematically:theposteriorisproportionaltothepriortimesthelikelihood,ormoreprecisely, Intheory,theposteriordistributionisalwaysavailable,butinrealisticallycomplexmodels,therequiredanalyticcomputationsoftenareintractable.Overseveralyears,inthelate1980sandearly1990s,itwasrealizedthatmethodsfordrawing samplesfromtheposteriordistributioncouldbeverywidelyapplicable. TherearemanyreasonsforadoptingBayesianmethods,andtheirapplicationsappearindiversefields.ManypeopleadvocatetheBayesianapproachbecauseofitsphilosophicalconsistency.Variousfundamentaltheoremsshowthatifapersonwantstomakeconsistentandsounddecisionsinthefaceofuncertainty,thentheonlywaytodosoistouseBayesianmethods.OtherspointtologicalproblemswithfrequentistmethodsthatdonotariseintheBayesianframework.Ontheotherhand,priorprobabilitiesareintrinsicallysubjective–yourpriorinformationisdifferentfrommine–andmanystatisticiansseethisasafundamentaldrawbacktoBayesianstatistics.AdvocatesoftheBayesianapproacharguethatthisisinescapable,andthatfrequentistmethodsalsoentailsubjectivechoices,butthishasbeenabasicsourceofcontentionbetweenthe`fundamentalist’supportersofthetwostatisticalparadigmsforatleastthelast50years.Incontrast,itismorethepragmaticadvantagesoftheBayesianapproachthathavefuelleditsstronggrowthoverthelast20years,andarethereasonforitsadoptioninarapidlygrowingvarietyoffields.PowerfulcomputationaltoolsallowBayesianmethodstotacklelargeandcomplexstatisticalproblemswithrelativeease,wherefrequentistmethodscanonlyapproximateorfailaltogether.Bayesianmodellingmethodsprovidenaturalwaysforpeopleinmanydisciplinestostructuretheirdataandknowledge,andtheyyielddirectandintuitiveanswerstothepractitioner’squestions. TherearemanyvarietiesofBayesiananalysis.ThefullestversionoftheBayesianparadigmcastsstatisticalproblemsintheframeworkofdecisionmaking.Itentailsformulatingsubjectivepriorprobabilitiestoexpresspre-existinginformation,carefulmodellingofthedatastructure,checkingandallowingforuncertaintyinmodelassumptions,formulatingasetofpossibledecisionsandautilityfunctiontoexpresshowthevalueofeachalternativedecisionisaffectedbytheunknownmodelparameters.Buteachofthesecomponentscanbeomitted.ManyusersofBayesianmethodsdonotemploygenuinepriorinformation,eitherbecauseitisinsubstantialorbecausetheyareuncomfortablewithsubjectivity.Thedecision-theoreticframeworkisalsowidelyomitted,withmanyfeelingthatstatisticalinferenceshouldnotreallybeformulatedasadecision.SotherearevarietiesofBayesiananalysisandvarietiesofBayesiananalysts.ButthecommonstrandthatunderliesthisvariationisthebasicprincipleofusingBayes’theoremandexpressinguncertaintyaboutunknownparametersprobabilistically.
延伸文章資訊
- 1Bayesian Methods for Data Analysis - PMC - NCBI
- 2Bayes or not Bayes, is this the question? - PMC - NCBI
- 3Bayesian Statistics: From Concept to Data Analysis | Coursera
由加州大学圣克鲁兹分校提供。 This course introduces the Bayesian approach to statistics, starting with the conc...
- 4What is Bayesian analysis? - Stata
Bayesian analysis is a statistical paradigm that answers research questions about unknown paramet...
- 5International Society for Bayesian Analysis | The International ...
By sponsoring and organizing meetings, publishing the electronic journal Bayesian Analysis, and o...