斜率- 表示一條直線相對於橫坐標軸的傾斜程度。一條直
文章推薦指數: 80 %
斜率,亦稱“角係數”,表示一條直線相對於橫坐標軸的傾斜程度。
一條直線與某平面直角坐標系橫坐標軸正半軸方向所成的角的正切值即該直線相對於該坐標系的斜率。
斜率 斜率,亦稱“角係數”,表示一條直線相對於橫坐標軸的傾斜程度。
一條直線與某平面直角坐標系橫坐標軸正半軸方向所成的角的正切值即該直線相對於該坐標系的斜率。
如果直線與x軸互相垂直,直角的正切值無窮大,故此直線,不存在斜率。
當直線L的斜率存在時,對於一次函式y=kx+b,(斜截式)k即該函式圖像的斜率。
基本信息中文名:斜率英文名:slope別名:角係數表達式:k=tanα套用學科:數學、幾何學公式斜率當直線L的斜率存在時,斜截式y=kx+b當x=0時y=b當直線L的斜率存在時,點斜式y2-y1=k(x2-x1),當直線L在兩坐標軸上存在非零截距時,有截距式x/a+y/b=1對於任意函式上任意一點,其斜率等於其切線與x軸正方向所成的角,即k=tanα斜率計算:ax+by+c=0中,k=-a/b直線斜率公式:k=(y2-y1)/(x2-x1)兩條垂直相交直線的斜率相乘積為-1:k1*k2=-1曲線y=f(x)在點(x1,f(x1))處的斜率就是函式f(x)在點x1處的導數重要性我們可以看到斜率,它是中學生學習的一個非常重要的概念。
為什麼說它重要,下面我們可以從以下幾個方面來看:第一個,從課標的這個角度,我們可以知道在義務教育階段,我們學習了一次函式,它的幾何意義表示為一條直線,一次項的係數就是直線的斜率,只不過當直線與X軸垂直的時候無法表示。
雖然沒有明確給出斜率這個名詞,但實際上思想已經滲透到其中。
在高中階段對必修一以及還有必修二當中都討論了有關直線問題,選修一還有選修二也都提到了與直線相關的一些問題。
上述列舉的內容,實際上都涉及到了斜率的概念,因此可以說斜率這個概念是學生逐漸積澱下來的一個重要的數學概念之一。
第二個,從數學的視角,我們可以從以下四個角度來理解如何刻劃一條直線相對於直角坐標系中X軸的傾斜程度。
首先就是從實際意義看,斜率就是我們所說的坡度,是高度的平均變化率,用坡度來刻劃道路的傾斜程度,也就是用坡面的切直高度和水平長度的比,相當於在水平方向移動一千米,在切直方向上升或下降的數值,這個比值實際上就表示了坡度的大小。
這樣的例子實際上很多,比如樓梯及屋頂的坡度等等。
其次,從傾斜角的正切值來看;還有就是從向量看,是直線向上方向的向量與X軸方向上的單位向量的夾角;最後是從導數這個視角來再次認識斜率的概念,這裡實際上就是直線的瞬時變化率。
認識斜率概念不僅僅是對今後的學習起著很重要的作用,而且對今後學習的一些數學的重要的解題的方法,也是非常有幫助的。
第三個,從教材這個視角看。
(1)從大綱來看,教材在處理直線的斜率這一部分知識的時候,首先講直線的傾斜角,然後再講直線的斜率,之後再來引入經過直線上的兩點的斜率公式的推導;從新課程標準來看,可以看到人教版A版的教材是先講直線的傾斜角,然後再講直線的斜率,只不過在處理上,是以問題的提出的形式來說。
首先是過點P可以做無數條直線,那么它都經過點P,於是組成了一個直線束,這些直線的區別在哪兒呢,容易看出它們的傾斜程度都不同,那么如何刻畫這些直線的傾斜程度呢,以直線l與x軸相交時,以x軸作為一個基準,x軸的走向與直線l向上的方向之間所成的角α定義為直線l的傾斜角。
之後討論了傾斜角的取值範圍,然後提出日常生活中與傾斜程度有關的量,讓學生們來自己舉例子,比如身高與前進量的比;再比如說進二升三與進二升二去比較,那前者就會更陡一些。
如果用傾斜角這個概念,那么我們會看到坡度實際上就是傾斜角α的正切值,它就刻畫了直線的一個傾斜程度,這裡要特彆強調的是傾斜角不是90度的直線都有斜率。
由於傾斜角不同,直線的斜率不同,因此可以用傾斜角表示直線的傾斜程度,然後引導同學們去探索如何用過直線上的兩個點來推導有關直線的斜率公式,同樣在這裡牽扯到有關的傾斜角是0度到90度、以及傾斜角是90度、還有90度到180度不同取值範圍的斜率的表達形式。
再來看人教版的數學四,在這裡再次提到了直線的斜率的概念,但只不過是在總複習題B組當中涉及到有關斜率的提法,此時用向量的方式來再次提到斜率公式的引進。
第四個,物理學習平均速度,瞬時速度,加速度等時需要運用其求解,推算第五個,斜率可以幫助我們更好的理解,推導,理解公式以及其他各個方面學習時的注意點平面直角坐標系(1)顧名思義,“斜率”就是“傾斜的程度”。
過去我們在學習解直角三角形時,都科書上就說過:斜坡坡面的鉛直高度h與水平寬度l的比值i叫做坡度;如果把坡面與水平面的夾角α叫做坡度,那么;坡度越大α角越大坡面越陡,所以i=tgα可以反映坡面傾斜的程度。
現在我們學習的斜率k,等於所對應的直線(有無數條,它們彼此平行)的傾斜角(只有一個)α的正切,可以反映這樣的直線對於x軸傾斜的程度。
實際上,“斜率”的概念與工程問題中的“坡度”是一致的。
(2)解析幾何中,要通過點的坐標和直線方程來研究直線通過坐標計算求得,使方程形式上較為簡單。
如果只用傾斜角一個概念,那么它在實際上相當於反正切函式值arctgk,難於直接通過坐標計算求得,並使方程形式變得複雜。
(3)坐標平面內,每一條直線都有唯一的傾斜角,但不是每一條直線都有斜率,傾斜角是90°的直線(即x軸的垂線)沒有斜率。
在今後的學習中,經常要對直線是否有斜率分情況進行討論。
曲線斜率曲線的上某點的斜率則反映了此曲線的變數在此點處的變化的快慢程度。
曲線的變化趨勢仍可以用過曲線上一點的切線的斜率即導數來描述。
導數的幾何意義是該函式曲線在這一點上的切線斜率。
f'(x)>0時,函式在該區間內單調遞增,曲線呈向上的趨勢;f'(x)<0時,函式在該區間內單調減,曲線呈向下的趨勢。
在(a,b)f''(x)<0時,函式在該區間內的圖形是凸(從上向下看)的;f''(x)>0時,函式在該區間內的圖形是凹的套用一、求直線的傾斜角二、證明三點共線三、求參數的範圍四、求函式的值域(或最值)五、證明不等式相關詞條 平均斜率 平均斜率(average平均斜率=y(縱軸方向變數)的變化量/x(橫軸方向變數)的變化量平均斜率=Δy/Δx 分頻網路的斜率 分頻網路的斜率(crossoverslop),分頻濾波器衰減特性的陡峭度,用xdB/倍頻程表示。
概述 例證 曲線斜率 曲線斜率,是亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。
又稱變化率。
導數 曲線斜率 直線的斜率 斜率,亦稱“角係數”,表示一條直線相對於橫軸的傾斜程度。
一條直線與某平面直角坐標系橫軸正半軸方向的夾角的正切值即該直線相對於該坐標系的斜率。
如果直線與... 定義 重要性 標準曲線斜率 斜率,亦稱“角係數”,表示一條直線相對於橫坐標軸的傾斜程度。
直角坐標系橫坐標軸正半軸方向的夾角的正切值即該直線相對於該坐標系的斜率。
對於一次函式y=... 斜率過載失真 Overload斜率過載失真(SlopOverload 桿塔傾斜率 桿塔傾斜率就是桿塔傾斜值S與桿塔地面上部高度H之比的百分數... 纖維斜率 如果λ_f=12,就稱f為小平邦彥纖維化。
例子 資料 相關搜尋非歐幾何公式斜率求加速度圓形歐幾里德角度幾何學直線幾何投影斜率射影幾何幾何圖形斜率過載失真直線斜率象限歐式幾何平面幾何熱門詞條standbyTheoryTOMBOY企業內控四季星空天然酵素小熊花束崑崙挺立數字油畫明洞星城Online槍械少女測試網速玄奘大學福島莉拉航空公司程式碼花束蘇軾豔紫荊起亞K3非法入侵黃金百香果龍震天兄妹情深吳雨霏崔真英工作服康熙王朝康逸琨星辰變月之戀人朱德庸武俠世界大冒險玫瑰花園白色巨塔盧安達超級黃金左手邱澤裡約鐵路節閃亮三姐妹關鍵字排名靈異教師神眉ServiceUnavailableVii反丁烯二酸圖片壓縮拉斯維加斯娛樂城江語晨泰·辛普金斯腎盂腎炎斜率@百科知識中文網