Ratio - Wikipedia

文章推薦指數: 80 %
投票人數:10人

In mathematics, a ratio indicates how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, ... Ratio FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Relationshipbetweentwonumbersofthesamekind Fornon-dimensionlessratios,seeRates. Forotheruses,seeRatio(disambiguation). "isto"redirectshere.Forthegrammaticalconstruction,seeamto. Theratioofwidthtoheightofstandard-definitiontelevision Inmathematics,aratioindicateshowmanytimesonenumbercontainsanother.Forexample,ifthereareeightorangesandsixlemonsinabowloffruit,thentheratiooforangestolemonsiseighttosix(thatis,8∶6,whichisequivalenttotheratio4∶3).Similarly,theratiooflemonstoorangesis6∶8(or3∶4)andtheratiooforangestothetotalamountoffruitis8∶14(or4∶7). Thenumbersinaratiomaybequantitiesofanykind,suchascountsofpeopleorobjects,orsuchasmeasurementsoflengths,weights,time,etc.Inmostcontexts,bothnumbersarerestrictedtobepositive. Aratiomaybespecifiedeitherbygivingbothconstitutingnumbers,writtenas"atob"or"a∶b",orbygivingjustthevalueoftheirquotienta/b.[1][2][3]Equalquotientscorrespondtoequalratios. Consequently,aratiomaybeconsideredasanorderedpairofnumbers,afractionwiththefirstnumberinthenumeratorandthesecondinthedenominator,orasthevaluedenotedbythisfraction.Ratiosofcounts,givenby(non-zero)naturalnumbers,arerationalnumbers,andmaysometimesbenaturalnumbers.Whentwoquantitiesaremeasuredwiththesameunit,asisoftenthecase,theirratioisadimensionlessnumber.Aquotientoftwoquantitiesthataremeasuredwithdifferentunitsiscalledarate.[4] Contents 1Notationandterminology 2Historyandetymology 2.1Euclid'sdefinitions 3Numberoftermsanduseoffractions 4Proportionsandpercentageratios 5Reduction 6Irrationalratios 7Odds 8Units 9Triangularcoordinates 10Seealso 11References 12Furtherreading 13Externallinks Notationandterminology[edit] TheratioofnumbersAandBcanbeexpressedas:[5] theratioofAtoB A∶B AistoB(whenfollowedby"asCistoD ";seebelow) afractionwithAasnumeratorandBasdenominatorthatrepresentsthequotient(i.e.,AdividedbyB,or A B {\displaystyle{\tfrac{A}{B}}} ).Thiscanbeexpressedasasimpleoradecimalfraction,orasapercentage,etc.[6] Acolon(:)isoftenusedinplaceoftheratiosymbol,UnicodeU+2236(∶). ThenumbersAandBaresometimescalledtermsoftheratio,withAbeingtheantecedentandBbeingtheconsequent.[7] AstatementexpressingtheequalityoftworatiosA∶BandC∶Discalledaproportion,[8]writtenasA∶B=C∶DorA∶B∷C∶D.Thislatterform,whenspokenorwrittenintheEnglishlanguage,isoftenexpressedas (AistoB)as(CistoD). A,B,CandDarecalledthetermsoftheproportion.AandDarecalleditsextremes,andBandCarecalleditsmeans.Theequalityofthreeormoreratios,likeA∶B=C∶D=E∶F,iscalledacontinuedproportion.[9] Ratiosaresometimesusedwiththreeorevenmoreterms,e.g.,theproportionfortheedgelengthsofa"twobyfour"thatistenincheslongistherefore thickness:width:length  = 2 : 4 : 10 ; {\displaystyle{\text{thickness:width:length}}=2:4:10;} (unplanedmeasurements;thefirsttwonumbersarereducedslightlywhenthewoodisplanedsmooth) agoodconcretemix(involumeunits)issometimesquotedas cement:sand:gravel  = 1 : 2 : 4. {\displaystyle{\text{cement:sand:gravel}}=1:2:4.} [10] Fora(ratherdry)mixtureof4/1partsinvolumeofcementtowater,itcouldbesaidthattheratioofcementtowateris4∶1,thatthereis4timesasmuchcementaswater,orthatthereisaquarter(1/4)asmuchwaterascement. Themeaningofsuchaproportionofratioswithmorethantwotermsisthattheratioofanytwotermsontheleft-handsideisequaltotheratioofthecorrespondingtwotermsontheright-handside. Historyandetymology[edit] Itispossibletotracetheoriginoftheword"ratio"totheAncientGreekλόγος(logos).EarlytranslatorsrenderedthisintoLatinasratio("reason";asintheword"rational").Amoremoderninterpretation[comparedto?]ofEuclid'smeaningismoreakintocomputationorreckoning.[11]Medievalwritersusedthewordproportio("proportion")toindicateratioandproportionalitas("proportionality")fortheequalityofratios.[12] EuclidcollectedtheresultsappearingintheElementsfromearliersources.ThePythagoreansdevelopedatheoryofratioandproportionasappliedtonumbers.[13]ThePythagoreans'conceptionofnumberincludedonlywhatwouldtodaybecalledrationalnumbers,castingdoubtonthevalidityofthetheoryingeometrywhere,asthePythagoreansalsodiscovered,incommensurableratios(correspondingtoirrationalnumbers)exist.ThediscoveryofatheoryofratiosthatdoesnotassumecommensurabilityisprobablyduetoEudoxusofCnidus.TheexpositionofthetheoryofproportionsthatappearsinBookVIIofTheElementsreflectstheearliertheoryofratiosofcommensurables.[14] Theexistenceofmultipletheoriesseemsunnecessarilycomplexsinceratiosare,toalargeextent,identifiedwithquotientsandtheirprospectivevalues.However,thisisacomparativelyrecentdevelopment,ascanbeseenfromthefactthatmoderngeometrytextbooksstillusedistinctterminologyandnotationforratiosandquotients.Thereasonsforthisaretwofold:first,therewasthepreviouslymentionedreluctancetoacceptirrationalnumbersastruenumbers,andsecond,thelackofawidelyusedsymbolismtoreplacethealreadyestablishedterminologyofratiosdelayedthefullacceptanceoffractionsasalternativeuntilthe16thcentury.[15] Euclid'sdefinitions[edit] BookVofEuclid'sElementshas18definitions,allofwhichrelatetoratios.[16]Inaddition,Euclidusesideasthatwereinsuchcommonusagethathedidnotincludedefinitionsforthem.Thefirsttwodefinitionssaythatapartofaquantityisanotherquantitythat"measures"itandconversely,amultipleofaquantityisanotherquantitythatitmeasures.Inmodernterminology,thismeansthatamultipleofaquantityisthatquantitymultipliedbyanintegergreaterthanone—andapartofaquantity(meaningaliquotpart)isapartthat,whenmultipliedbyanintegergreaterthanone,givesthequantity. Eucliddoesnotdefinetheterm"measure"asusedhere,However,onemayinferthatifaquantityistakenasaunitofmeasurement,andasecondquantityisgivenasanintegralnumberoftheseunits,thenthefirstquantitymeasuresthesecond.Thesedefinitionsarerepeated,nearlywordforword,asdefinitions3and5inbookVII. Definition3describeswhataratioisinageneralway.ItisnotrigorousinamathematicalsenseandsomehaveascribedittoEuclid'seditorsratherthanEuclidhimself.[17]Eucliddefinesaratioasbetweentwoquantitiesofthesametype,sobythisdefinitiontheratiosoftwolengthsoroftwoareasaredefined,butnottheratioofalengthandanarea.Definition4makesthismorerigorous.Itstatesthataratiooftwoquantitiesexists,whenthereisamultipleofeachthatexceedstheother.Inmodernnotation,aratioexistsbetweenquantitiespandq,ifthereexistintegersmandnsuchthatmp>qandnq>p.ThisconditionisknownastheArchimedesproperty. Definition5isthemostcomplexanddifficult.Itdefineswhatitmeansfortworatiostobeequal.Today,thiscanbedonebysimplystatingthatratiosareequalwhenthequotientsofthetermsareequal,butsuchadefinitionwouldhavebeenmeaninglesstoEuclid.Inmodernnotation,Euclid'sdefinitionofequalityisthatgivenquantitiesp,q,rands,p∶q∷r ∶sifandonlyif,foranypositiveintegersmandn,npmqaccordingasnrms,respectively.[18]ThisdefinitionhasaffinitieswithDedekindcutsas,withnandqbothpositive,npstandstomqasp/qstandstotherationalnumberm/n(dividingbothtermsbynq).[19] Definition6saysthatquantitiesthathavethesameratioareproportionalorinproportion.EuclidusestheGreekἀναλόγον(analogon),thishasthesamerootasλόγοςandisrelatedtotheEnglishword"analog". Definition7defineswhatitmeansforoneratiotobelessthanorgreaterthananotherandisbasedontheideaspresentindefinition5.Inmodernnotationitsaysthatgivenquantitiesp,q,rands,p∶q>r∶siftherearepositiveintegersmandnsothatnp>mqandnr≤ms. Aswithdefinition3,definition8isregardedbysomeasbeingalaterinsertionbyEuclid'seditors.Itdefinesthreetermsp,qandrtobeinproportionwhenp∶q∷q∶r.Thisisextendedto4termsp,q,randsasp∶q∷q∶r∷r∶s,andsoon.Sequencesthathavethepropertythattheratiosofconsecutivetermsareequalarecalledgeometricprogressions.Definitions9and10applythis,sayingthatifp,qandrareinproportionthenp∶ristheduplicateratioofp∶qandifp,q,randsareinproportionthenp∶sisthetriplicateratioofp∶q. Numberoftermsanduseoffractions[edit] Ingeneral,acomparisonofthequantitiesofatwo-entityratiocanbeexpressedasafractionderivedfromtheratio.Forexample,inaratioof2∶3,theamount,size,volume,orquantityofthefirstentityis 2 3 {\displaystyle{\tfrac{2}{3}}} thatofthesecondentity. Ifthereare2orangesand3apples,theratiooforangestoapplesis2∶3,andtheratiooforangestothetotalnumberofpiecesoffruitis2∶5.Theseratioscanalsobeexpressedinfractionform:thereare2/3asmanyorangesasapples,and2/5ofthepiecesoffruitareoranges.Iforangejuiceconcentrateistobedilutedwithwaterintheratio1∶4,thenonepartofconcentrateismixedwithfourpartsofwater,givingfivepartstotal;theamountoforangejuiceconcentrateis1/4theamountofwater,whiletheamountoforangejuiceconcentrateis1/5ofthetotalliquid.Inbothratiosandfractions,itisimportanttobeclearwhatisbeingcomparedtowhat,andbeginnersoftenmakemistakesforthisreason. Fractionscanalsobeinferredfromratioswithmorethantwoentities;however,aratiowithmorethantwoentitiescannotbecompletelyconvertedintoasinglefraction,becauseafractioncanonlycomparetwoquantities.Aseparatefractioncanbeusedtocomparethequantitiesofanytwooftheentitiescoveredbytheratio:forexample,fromaratioof2∶3∶7wecaninferthatthequantityofthesecondentityis 3 7 {\displaystyle{\tfrac{3}{7}}} thatofthethirdentity. Proportionsandpercentageratios[edit] Ifwemultiplyallquantitiesinvolvedinaratiobythesamenumber,theratioremainsvalid.Forexample,aratioof3∶2isthesameas12∶8.Itisusualeithertoreducetermstothelowestcommondenominator,ortoexpresstheminpartsperhundred(percent). IfamixturecontainssubstancesA,B,CandDintheratio5∶9∶4∶2thenthereare5partsofAforevery9partsofB,4partsofCand2partsofD.As5+9+4+2=20,thetotalmixturecontains5/20ofA(5partsoutof20),9/20ofB,4/20ofC,and2/20ofD.Ifwedivideallnumbersbythetotalandmultiplyby100,wehaveconvertedtopercentages:25%A,45%B,20%C,and10%D(equivalenttowritingtheratioas25∶45∶20∶10). Ifthetwoormoreratioquantitiesencompassallofthequantitiesinaparticularsituation,itissaidthat"thewhole"containsthesumoftheparts:forexample,afruitbasketcontainingtwoapplesandthreeorangesandnootherfruitismadeupoftwopartsapplesandthreepartsoranges.Inthiscase, 2 5 {\displaystyle{\tfrac{2}{5}}} ,or40%ofthewholeisapplesand 3 5 {\displaystyle{\tfrac{3}{5}}} ,or60%ofthewholeisoranges.Thiscomparisonofaspecificquantityto"thewhole"iscalledaproportion. Iftheratioconsistsofonlytwovalues,itcanberepresentedasafraction,inparticularasadecimalfraction.Forexample,oldertelevisionshavea4∶3aspectratio,whichmeansthatthewidthis4/3oftheheight(thiscanalsobeexpressedas1.33∶1orjust1.33roundedtotwodecimalplaces).MorerecentwidescreenTVshavea16∶9aspectratio,or1.78roundedtotwodecimalplaces.Oneofthepopularwidescreenmovieformatsis2.35∶1orsimply2.35.Representingratiosasdecimalfractionssimplifiestheircomparison.Whencomparing1.33,1.78and2.35,itisobviouswhichformatofferswiderimage.Suchacomparisonworksonlywhenvaluesbeingcomparedareconsistent,likealwaysexpressingwidthinrelationtoheight. Reduction[edit] Ratioscanbereduced(asfractionsare)bydividingeachquantitybythecommonfactorsofallthequantities.Asforfractions,thesimplestformisconsideredthatinwhichthenumbersintheratioarethesmallestpossibleintegers. Thus,theratio40∶60isequivalentinmeaningtotheratio2∶3,thelatterbeingobtainedfromtheformerbydividingbothquantitiesby20.Mathematically,wewrite40∶60=2∶3,orequivalently40∶60∷2∶3.Theverbalequivalentis"40isto60as2isto3." Aratiothathasintegersforbothquantitiesandthatcannotbereducedanyfurther(usingintegers)issaidtobeinsimplestformorlowestterms. Sometimesitisusefultowritearatiointheform1∶xorx∶1,wherexisnotnecessarilyaninteger,toenablecomparisonsofdifferentratios.Forexample,theratio4∶5canbewrittenas1∶1.25(dividingbothsidesby4)Alternatively,itcanbewrittenas0.8∶1(dividingbothsidesby5). Wherethecontextmakesthemeaningclear,aratiointhisformissometimeswrittenwithoutthe1andtheratiosymbol(∶),though,mathematically,thismakesitafactorormultiplier. Irrationalratios[edit] Ratiosmayalsobeestablishedbetweenincommensurablequantities(quantitieswhoseratio,asvalueofafraction,amountstoanirrationalnumber).Theearliestdiscoveredexample,foundbythePythagoreans,istheratioofthelengthofthediagonaldtothelengthofasidesofasquare,whichisthesquarerootof2,formally a : d = 1 : 2 . {\displaystylea:d=1:{\sqrt{2}}.} Anotherexampleistheratioofacircle'scircumferencetoitsdiameter,whichiscalledπ,andisnotjustanalgebraicallyirrationalnumber,butatranscendentalirrational. Alsowellknownisthegoldenratiooftwo(mostly)lengthsaandb,whichisdefinedbytheproportion a : b = ( a + b ) : a {\displaystylea:b=(a+b):a\quad} or,equivalently a : b = ( 1 + b / a ) : 1. {\displaystyle\quada:b=(1+b/a):1.} Takingtheratiosasfractionsand a : b {\displaystylea:b} ashavingthevaluex,yieldstheequation x = 1 + 1 x {\displaystylex=1+{\tfrac{1}{x}}\quad} or x 2 − x − 1 = 0 , {\displaystyle\quadx^{2}-x-1=0,} whichhasthepositive,irrationalsolution x = a b = 1 + 5 2 . {\displaystylex={\tfrac{a}{b}}={\tfrac{1+{\sqrt{5}}}{2}}.} Thusatleastoneofaandbhastobeirrationalforthemtobeinthegoldenratio.AnexampleofanoccurrenceofthegoldenratioinmathisasthelimitingvalueoftheratiooftwoconsecutiveFibonaccinumbers:eventhoughalltheseratiosareratiosoftwointegersandhencearerational,thelimitofthesequenceoftheserationalratiosistheirrationalgoldenratio. Similarly,thesilverratioofaandbisdefinedbytheproportion a : b = ( 2 a + b ) : a ( = ( 2 + b / a ) : 1 ) , {\displaystylea:b=(2a+b):a\quad(=(2+b/a):1),} correspondingto x 2 − 2 x − 1 = 0. {\displaystylex^{2}-2x-1=0.} Thisequationhasthepositive,irrationalsolution x = a b = 1 + 2 , {\displaystylex={\tfrac{a}{b}}=1+{\sqrt{2}},} soagainatleastoneofthetwoquantitiesaandbinthesilverratiomustbeirrational. Odds[edit] Mainarticle:Odds Odds(asingambling)areexpressedasaratio.Forexample,oddsof"7to3against"(7∶3)meanthattherearesevenchancesthattheeventwillnothappentoeverythreechancesthatitwillhappen.Theprobabilityofsuccessis30%.Ineverytentrials,thereareexpectedtobethreewinsandsevenlosses. Units[edit] Ratiosmaybeunitless,asinthecasetheyrelatequantitiesinunitsofthesamedimension,eveniftheirunitsofmeasurementareinitiallydifferent. Forexample,theratio1minute∶40secondscanbereducedbychangingthefirstvalueto60seconds,sotheratiobecomes60seconds∶40seconds.Oncetheunitsarethesame,theycanbeomitted,andtheratiocanbereducedto3∶2. Ontheotherhand,therearenon-dimensionlessratios,alsoknownasrates.[20][21] Inchemistry,massconcentrationratiosareusuallyexpressedasweight/volumefractions. Forexample,aconcentrationof3%w/vusuallymeans3 gofsubstanceinevery100 mLofsolution.Thiscannotbeconvertedtoadimensionlessratio,asinweight/weightorvolume/volumefractions. Triangularcoordinates[edit] ThelocationsofpointsrelativetoatrianglewithverticesA,B,andCandsidesAB,BC,andCAareoftenexpressedinextendedratioformastriangularcoordinates. Inbarycentriccoordinates,apointwithcoordinatesα,β,γisthepointuponwhichaweightlesssheetofmetalintheshapeandsizeofthetrianglewouldexactlybalanceifweightswereputonthevertices,withtheratiooftheweightsatAandBbeingα∶β,theratiooftheweightsatBandCbeingβ∶γ,andthereforetheratioofweightsatAandCbeingα∶γ. Intrilinearcoordinates,apointwithcoordinatesx :y :zhasperpendiculardistancestosideBC(acrossfromvertexA)andsideCA(acrossfromvertexB)intheratiox ∶y,distancestosideCAandsideAB(acrossfromC)intheratioy ∶z,andthereforedistancestosidesBCandABintheratiox ∶z. Sinceallinformationisexpressedintermsofratios(theindividualnumbersdenotedbyα,β,γ,x,y,andzhavenomeaningbythemselves),atriangleanalysisusingbarycentricortrilinearcoordinatesappliesregardlessofthesizeofthetriangle. Seealso[edit] Dilutionratio Displacement–lengthratio Dimensionlessquantity Financialratio Foldchange Interval(music) Oddsratio Parts-pernotation Price–performanceratio Proportionality(mathematics) Ratiodistribution Ratioestimator Rate(mathematics) Rateratio Relativerisk Ruleofthree(mathematics) Scale(map) Scale(ratio) Sexratio Superparticularratio Slope References[edit] ^NewInternationalEncyclopedia ^"Ratios".www.mathsisfun.com.Retrieved2020-08-22. ^Stapel,Elizabeth."Ratios".Purplemath.Retrieved2020-08-22. ^"Thequotientoftwonumbers(orquantities);therelativesizesoftwonumbers(orquantities)","TheMathematicsDictionary"[1] ^NewInternationalEncyclopedia ^Decimalfractionsarefrequentlyusedintechnologicalareaswhereratiocomparisonsareimportant,suchasaspectratios(imaging),compressionratios(enginesordatastorage),etc. ^fromtheEncyclopædiaBritannica ^Heath,p.126 ^NewInternationalEncyclopedia ^BelleGroupconcretemixinghints ^PennyCyclopædia,p.307 ^Smith,p.478 ^Heath,p.112 ^Heath,p.113 ^Smith,p.480 ^Heath,referenceforsection ^"Geometry,Euclidean"EncyclopædiaBritannicaEleventhEditionp682. ^Heathp.114 ^Heathp.125 ^"'Velocity'canbedefinedastheratio...'Populationdensity'istheratio...'Gasolineconsumption'ismeasureastheratio...","RatioandProportion:ResearchandTeachinginMathematicsTeachers"[2] ^"RatioasaRate.Thefirsttype[ofratio]definedbyFreudenthal,above,isknownasrate,andillustratesacomparisonbetweentwovariableswithdifferenceunits.(...)Aratioofthissortproducesaunique,newconceptwithitsownentity,andthisnewconceptisusuallynotconsideredaratio,perse,butarateordensity.","RatioandProportion:ResearchandTeachinginMathematicsTeachers"[3] Furtherreading[edit] "Ratio"ThePennyCyclopædiavol.19,TheSocietyfortheDiffusionofUsefulKnowledge(1841)CharlesKnightandCo.,Londonpp. 307ff "Proportion"NewInternationalEncyclopedia,Vol.192nded.(1916)DoddMead&Co.pp270-271 "RatioandProportion"Fundamentalsofpracticalmathematics,GeorgeWentworth,DavidEugeneSmith,HerbertDrueryHarper(1922)GinnandCo.pp.55ff ThethirteenbooksofEuclid'sElements,vol2.trans.SirThomasLittleHeath(1908).CambridgeUniv.Press.1908.pp. 112ff.CS1maint:others(link) D.E.Smith,HistoryofMathematics,vol2GinnandCompany(1925)pp. 477ff.Reprinted1958byDoverPublications. Externallinks[edit] LookupratioinWiktionary,thefreedictionary. vteFractionsandratiosDivisionandratio Dividend÷Divisor=Quotient Fraction Numerator/Denominator=Quotient Algebraic Aspect Binary Continued Decimal Dyadic Egyptian Golden Silver Integer Irreducible Reduction Justintonation LCD Musicalinterval Papersize Percentage Unit Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Ratio&oldid=1063756663" Categories:ElementarymathematicsAlgebraRatiosHiddencategories:ArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataArticlescontainingAncientGreek(to1453)-languagetextArticlescontainingLatin-languagetextAllarticleswithspecificallymarkedweasel-wordedphrasesArticleswithspecificallymarkedweasel-wordedphrasesfromOctober2019CS1maint:others Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk Variants expanded collapsed Views ReadEditViewhistory More expanded collapsed Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikibooks Languages Afrikaansአማርኛالعربيةঅসমীয়াAzərbaycancaBikolCentralБългарскиCatalàЧӑвашлаChiShonaCymraegDanskالدارجةDeutschΕλληνικάEspañolEsperantoEuskaraفارسیFrançaisFrysk한국어Հայերենहिन्दीHrvatskiItalianoעבריתКыргызчаLietuviųMagyarമലയാളംमराठीBahasaMelayuNederlandsनेपालभाषा日本語NorskbokmålNorsknynorskPolskiPortuguêsRomânăРусскийSimpleEnglishSoomaaligaکوردیСрпски/srpskiSuomiTagalogதமிழ்తెలుగుไทยTürkçeУкраїнськаTiếngViệtWinaray中文 Editlinks



請為這篇文章評分?