轉寄 - 博碩士論文行動網

文章推薦指數: 80 %
投票人數:10人

論文名稱: 高強度螺紋節鋼筋於鋼筋混凝土之握裹行為研究 ... 學位類別: 博士 ... 鋼筋直線握裹試驗,除探討螺紋節鋼筋表面幾何特性、材料強度及影響鋼筋直線握裹性能等 ... 資料載入處理中... 跳到主要內容 臺灣博碩士論文加值系統 ::: 網站導覽| 首頁| 關於本站| 聯絡我們| 國圖首頁| 常見問題| 操作說明 English |FB專頁 |Mobile 免費會員 登入| 註冊 功能切換導覽列 (178.128.221.219)您好!臺灣時間:2021/12/2905:53 字體大小:       ::: 詳目顯示 recordfocus 第1筆/ 共1筆  /1頁 論文基本資料 摘要 外文摘要 目次 參考文獻 電子全文 紙本論文 論文連結 QRCode 本論文永久網址: 複製永久網址Twitter研究生:紀凱甯研究生(外文):Kai-NingChi論文名稱:高強度螺紋節鋼筋於鋼筋混凝土之握裹行為研究論文名稱(外文):StudyonBondBehaviorsofHigh-StrengthThreadedBarsinReinforcedConcrete指導教授:邱建國、林克強指導教授(外文):Chien-KuoChiu、Ker-ChunLin口試委員:黃世建、歐昱辰、廖文正、邱建國、鄭敏元、王勇智、林克強口試委員(外文):Shyh-JiannHwang、Yu-ChenOu、Wen-ChengLiao、Chien-KuoChiu、Min-YuanCheng、Yung-ChihWang、Ker-ChunLin口試日期:2017-07-20學位類別:博士校院名稱:國立臺灣科技大學系所名稱:營建工程系學門:工程學門學類:土木工程學類論文種類:學術論文論文出版年:2017畢業學年度:105語文別:中文論文頁數:192中文關鍵詞:高強度鋼筋混凝土、螺紋節鋼筋、握裹強度、鋼筋表面幾何特性、鋼筋直線拉力伸展長度外文關鍵詞:high-strengthreinforcedconcrete、threadedbars、bondingperformance、surfacegeometrycharacteristicofthreadedbars、straightdevelopmentlengthsintensionforthreadedbars相關次數: 被引用:1點閱:247評分:下載:0書目收藏:0 「台灣新型高強度鋼筋混凝土結構研發」整合型計畫積極致力於研發本土化之高強度鋼筋混凝土材料在高層建築結構上之應用,在材料強度規劃上,混凝土抗壓強度採用70MPa至100MPa,縱向鋼筋與橫向鋼筋強度上限則分別為降伏強度690MPa與790MPa,兩者皆已超過現行規範之材料強度上限。

另外基於高強度鋼筋含碳量高之特性,不利採用彎曲或銲接加工,因此特別高強度鋼筋之表面宜採用螺紋節形式,以利搭配螺紋型續接套筒或擴頭端部套筒於高強度鋼筋混凝土構件中進行鋼筋續接與端部錨定。

本研究為了解高強度螺紋節鋼筋與高強度混凝土之握裹行為,共計進行66組鋼筋直線握裹試驗,除探討螺紋節鋼筋表面幾何特性、材料強度及影響鋼筋直線握裹性能等因素外,亦提出適當的螺紋節鋼筋直線拉力發展長度設計模型,並建議合理且符合握裹應力需求的節高與節距比值限制。

根據握裹試驗觀察發現,握裹破壞模式可分為拉拔與劈裂破壞兩種形式。

另外,亦根據實驗結果歸納出三項影響混凝土表面劈裂之可能因素:混凝土保護層與鋼筋直徑之比值大於4.0、混凝土兩側保護層比值之差值大於0.7,及混凝土之劈裂指數大於4.35。

試驗之分析結果顯示,本研究之螺紋節鋼筋均能達到符合ACI318-14規範預期之握裹性能;然而,當混凝土強度不受ACI318-14之70MPa上限約束時,唯有表面Rr值大於0.17之螺紋節鋼筋方可滿足計算需求,且混凝土有效計算強度可適當提升至100MPa。

鋼筋表面幾何尺寸方面,螺紋節鋼筋表面節高與節距之比值是影響鋼筋握裹性能之重要因素,且鋼筋握裹性能伴隨表面節高與節距比值之增加而提升。

最終,本文亦分別提出適用於螺紋節鋼筋直線拉力伸展長度計算之詳細式與精簡式,其鋼筋與混凝土之有效計算強度上限可放寬至690MPa與100MPa。

TheIntegratedProjectof“TaiwanNewRCProject”waslaunchedtodevelopthehigh-strengthreinforcementsandconcrete,690~790MPaand70~100MPa,respectivelybytheNCREE(NationalCenterforResearchonEarthquakeEngineering).Thesehigh-strengthmaterialsexceedtheupperlimitationsofstrengthsinexistingcodes.However,thehigh-strengthcharacteristicofreinforcementsareadversetobebentandweldedduetotheirhighequivalent-carbon-content.Therefore,asurfacetypeofthreadofreinforcedbarareadopted.Thethreaded-typereinforcementisabletoeasilyinstallmortar-injectedthreadedsplicesleeveandmortar-injectedthreadedend-anchordeviceforspliceandend-anchorofreinforcement,respectively,andtoreplacethetraditionallapspliceandhookedorweldedanchorage,respectively.Thisworkfocusesthebondbehaviorbetweenhigh-strengththreadedbarsandconcretebyusing66groupsofstraightbondingteststoinvestigatethesurfacegeometrycharacteristicofthreadedbars,materialstrengthsandbondingfactors.Additionally,thisstudyproposestheappropriatesurfacegeometrypropertiesanddesignmodelsforstraightdevelopmentlengthsofthreadedbarsintension.Accordingtotheexperimentalobservations,thefailuremodescanbedividedintotwoforms,pulloutandsplitting.Furthermore,therearethreepossibleparametersinfluencingthesurfaceofconcretenon-splitting:theratiooftheconcretecovertothediameterofbondedbarsover4.0,theratioofthedifferencebetweentwosidecoversover0.7,andthesplittingindexesofconcreteover4.35.Thetestresultsshowthatwhentheconcretestrengthislimitedto70MPabyACI318-14recommendations,allsetsofthreadedbarscanprovidetheexpectedbondstrengths.However,whentheconcretestrengthisnotlimitedto70MPa,onlythethreadedbarswithrelativeribareaexceeding0.17canprovidetheexpectedbondstrengths.Inaddition,thecorrelationbetweenrelativeribareaRrandtheeffectivenessofthebondingperformanceisapproximatelyperfect.Finally,thisstudyalsoprovidesthedetailedandsimplifiedequationsforcalculatingthestraightdevelopmentlengthsintensionforthreadedbars,andtheupperlimitationsofreinforcementsandconcretestrengthscanbeadjustedto690MPaand100MPa,respectively. 中文摘要…………………………………………………………………………i英文摘要………………………………………………………………………...ii致謝………………………………………………………………………..........iv目錄……………………………………………………………………………...v表目錄.………………………………………………………………………….ix圖目錄.…………………………………………………………………………..x符號表.………………………………………………………………………...xix第一章緒論…………………………………………………………………….11.1研究背景………………………………………………………………..11.2動機與目的…..………………………………………………………....31.3研究方法與架構..………………………………………………………4第二章鋼筋混凝土之握裹行為介紹………………………………………….62.1鋼筋混凝土之握裹機制..………………………………………………62.2影響握裹性能之因子…………………………………………………122.2.1混凝土性質…………………………………………………...122.2.2鋼筋性質……………………………………………………...132.2.3鋼筋配置………………………………………………...........212.2.4握裹試驗受力機制之類型…………………………………...24第三章鋼筋直線拉力伸展長度之模型介紹………………………………...263.1ACI318-63,71,89規範(1963,1971,1989)…………………...........263.2Orangun,Jirsa,andBreen模型(1977)……………………………….273.3CEB-FIP1990規範(1990)………………..………………………….293.4Darwin等人(1992,1996)………………………………………….....313.5ACI318-95,99,02,05規範(1995,1999,2002,2005)……………...333.6ZuoandDarwin模型(1998,2000)…………………..………………353.7ACI408.3-01報告(2001)……………………………………………363.8ACI408-03,ACIITG-10報告(2003,2010)…………………………383.9NZS3101-06規範(2006)………………….…………………………393.10ACI318-08,11,14規範(2008,2011,2014)…………………….......403.11AIJ-2010規範(2010)….……………………………………..............413.12鋼筋直線握裹模型之參數探討……………………………………...42第四章試驗計畫……………………………………………………………...524.1試體設計………………………………………………………………524.2試驗程序………………………………………………………………544.2.1試驗系統……………………………………………...............544.2.2量測系統………………………………………………...........574.3量測儀器計畫…………………………………………………………604.3.1應變計之黏貼作業與規畫…………………………...............604.3.2位移計之量測規劃…………………………………...............61第五章試驗過程……………………………………………………………...63第六章試驗結果討論……………………………………………………….1186.1破壞模式…………………………………………………………......1186.2鋼筋應力之分析……………………………………………………..1266.3鋼筋直線拉力伸展長度模型之探討………………………………..1296.4鋼筋握裹性能之影響因子探討……………………………………..1386.4.1混凝土強度…..……………………………………………...1386.4.2鋼筋表面幾何尺寸………………………………………….1396.4.3混凝土保護層….……………………………………............1446.4.4橫向鋼筋圍束指數………………………………….............1476.4.5混凝土劈裂指數……………………………………….........1486.5鋼筋直線拉力伸展長度之建議模型………………………………..150第七章結論與建議………………………………………………………….1567.1結論…………..………………………………………………………1567.1.1破壞模式………………………………………….................1567.1.2握裹模型應用……………………………………….............1577.1.3鋼筋握裹性能之影響參數………………………………….1577.1.4本研究建議之鋼筋直線伸展長度模型………………….....1587.2未來展望…….………………………………………………………159參考文獻…………………………………………………………...................160 [1]建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化˙超高層化技術の開發(NewRC),平成四年度構造性能分科会報告書,(財)国土開發技術研究センター,1993。

[2]ASTMA615,“StandardSpecificationforDeformedandPlainCarbon-SteelBarsforConcreteReinforcement,”ASTMInternational,WestConshohocken,Pa.,2015.[3]Aoyama,H.,“DesignofModernHigh-riseReinforcedConcreteStructures,”ImperialCollegePress,London,2002.[4]ACICommittee318,“BuildingCodeRequirementsforStructuralConcrete(ACI318-14)andCommentary(ACI318R-14),”AmericanConcreteInstitute(ACI),FarmingtonHills,Mich.,2014.[5]內政部營建署,「混凝土結構設計規範」,台北市,2011。

[6]ACICommittee408,“BondandDevelopmentofStraightReinforcingBarsinTension,”AmericanConcreteInstitute(ACI),FarmingtonHills,Mich.,2003.[7]ACICommittee318,“BuildingCodeRequirementsforReinforcedConcrete(ACI318-71),”AmericanConcreteInstitute,FarmingtonHills,Mich.,1971,78pp.[8]Goto,Y.,“CracksFormedinConcreteAroundDeformedTensionBars,”ACIJournal,ProceedingsV.68,No.4,Apr.,1971,pp.244-251.[9]Orangun,C.O.,Jirsa,J.O.,andBreen,J.E.,“ReevaluationofTestDataonDevelopmentLengthandSplices,”ACIJournal,ProceedingsV.74,No.3,Mar.,1977,pp.114-122.[10]Darwin,D.McCabe,S.L.,Idun,E.K.,andSchoenekase,S.P.,“DevelopmentLengthCriteria:BarsNotConfinedbyTransverseReinforcement,”ACIStructuralJournal,V.89,No.6,Nov.-Dec.,1992,pp.709-720.[11]Zuo,J.,andDarwin,D.,“BondStrengthofHighRelativeRibAreaReinforcingBars,”SMReportNo.46,UniversityofKansasCenterforResearch,Lawrence,Kans.,1998,350pp.[12]Zuo,J.,andDarwin,D.,“SpliceStrengthofConventionalandHighRelativeRibAreaBarsinNormalandHigh-StrengthConcrete,”ACIStructuralJournal,V.97,No.4,July-Aug.,2000,pp.630-641.[13]Thompson,M.A.,Jirsa,J.O.,Breen,J.E.,andMeinheit,D.F.,“TheBehaviorofMultipleLapSplicesinWideSections,”ResearchReportNo.154-1,CenterforHighwayResearch,UniversityofTexasatAustin,Tex.,Feb.,1975,75pp.[14]Abrams,D.A.,“TestsofBondbetweenConcreteandSteel,”BulletinNo.71,EngineeringExperimentStation,UniversityofIllinois,Urbana,Ill.,1913,105pp.[15]Clark,A.P.,“ComparativeBondEfficiencyofDeformedConcreteReinforcingBars,”ACIJournal,ProceedingsV.43,No.4,Dec.,1946,pp.381-400.[16]Clark,A.P.,“BondofConcreteReinforcingBars,”ACIJournal,ProceedingsV.46,No.3,Nov.,1950,pp.161-184.[17]ASTMA305T,“TentativeSpecificationsforMinimumRequirementsforDeformationsofDeformedSteelBarsforConcreteReinforcement,A305-47T,”ASTMInternational,WestConshohocken,Pa.,1947.[18]ASTMA305,1949,“SpecificationsforMinimumRequirementsforDeformationsofDeformedSteelBarsforConcreteReinforcement,A305-49,”ASTMInternational,WestConshohocken,Pa.,1949.[19]Rehm,G.,“UberdieGrunlagendesVerbundesZwischenStahlundBeton,”DeutscherAusschussfurStahlbeton,No.1381,1961,59pp.[20]Lutz,L.A.,andGergely,P.,“MechanicsofBondandSlipofDeformedBarsinConcrete,”ACIJournal,ProceedingsV.64,No.11,Nov.,1967,pp.711-721.[21]Lutz,L.A.,Gergely,P.,andWinter,G.,“TheMechanicsofBondandSlipofDeformedReinforcingBarsinConcrete,”ReportNo.324,DepartmentofStructuralEngineering,CornellUniversity,Ithaca,N.Y.,Nov.,1966,pp.711-721.[22]Skorobogatov,S.M.,andEdwards,A.D.,“TheInfluenceoftheGeometryofDeformedSteelBarsonTheirBondStrengthinConcrete,”Proceedings,TheInstitutionofCivilEngineers,V.67,Part2,June,pp.1979,327-339.[23]Losberg,A.,andOlsson,P.-A.,“BondFailureofDeformedReinforcingBarsBasedontheLongitudinalSplittingEffectoftheBars,”ACIJournal,ProceedingsV.76,No.1,Jan.,1979,pp.5-18.[24]Soretz,S.,andHolzenbein,H.,“InfluenceofRibDimensionsofReinforcingBarsonBondandBendability,”ACIJournal,ProceedingsV.76,No.1,Jan.,1979,pp.111-127.[25]Darwin,D.,andGraham,E.K.,“EffectofDeformationHeightandSpacingonBondStrengthofReinforcingBars,”ACIStructuralJournal,V.90,No.6,Nov.-Dec.,1993,pp.646-657.[26]Darwin,D.,andGraham,E.K.,“EffectofDeformationHeightandSpacingonBondStrengthofReinforcingBars,”SLReport93-1,UniversityofKansasCenterforResearch,Lawrence,Kans.,Jan.,1993,68pp.[27]Darwin,D.,Tholen,M.L.,Idun,E.K.,andZuo,J.,“SpliceStrengthofHighRelativeRibAreaReinforcingBars,”ACIStructuralJournal,V.93,No.1,Jan.-Feb.,1996a,pp.95-107.[28]Darwin,D.,Zuo,J.,Tholen,M.L.,andIdun,E.K.,“DevelopmentLengthCriteriaforConventionalandHighRelativeRibAreaReinforcingBars,”ACIStructuralJournal,V.93,No.3,May-June,1996b,pp.347-359.[29]ACICommittee408,“SpliceandDevelopmentLengthofHighRelativeRibAreaReinforcingBarsinTension(ACI408.3-01)andCommentary(408.3R-01),”AmericanConcreteInstitute,FarmingtonHills,Mich.,2001,6pp.[30]ACICommittee318,“BuildingCodeRequirementsforStructuralConcrete(ACI318-95)andCommentary(ACI318R-95),”AmericanConcreteInstitute(ACI),FarmingtonHills,Mich.,1995.[31]ACICommittee318,“BuildingCodeRequirementsforStructuralConcrete(ACI318-08)andCommentary(ACI318R-08),”AmericanConcreteInstitute(ACI),FarmingtonHills,Mich.,2008.[32]ACICommittee318,“BuildingCodeRequirementsforReinforcedConcrete(ACI318-63),”AmericanConcreteInstitute,FarmingtonHills,Mich.,1963,144pp.[33]ACICommittee318,“BuildingCodeRequirementsforReinforcedConcrete(ACI318-89),”AmericanConcreteInstitute,FarmingtonHills,Mich.,1989,144pp.[34]CEB-FIP,“ModelCodeforConcreteStructures,”ComitéEuro-InternationalduBéton,c/oThomasTelford,London,1990.[35]Shyh-JiannHwang,Yih-RenLeu,andHan-LinHwang,“TensionBondStrengthsofDeformedBarsofHigh-StrengthConcrete,”ACIStructuralJournal,V.93,No.1,Jan-Feb.,1996,pp.11-20.[36]ACICommittee318,“BuildingCodeRequirementsforStructuralConcrete(ACI318-05)andCommentary(ACI318R-05),”AmericanConcreteInstitute(ACI),FarmingtonHills,Mich.,2005.[37]ACIInnovationTaskGroup6-10,“DesignGuidefortheUseofASTMA1035/A1035MGrade100(690)SteelBarsforStructuralConcrete(ACIITG-6R-10),”AmericanConcreteInstitute,FarmingtonHills,2010.[38]StandardsAssociationofNewZealand,“NZS3101:NewZealandConcreteStructuresStandard,Part1-theDesignofConcreteStructures,Part2-CommentaryontheDesignofConcreteStructures,”NewZealand,2006.[39]AIJ2010,“StandardforStructuralCalculationofReinforcedConcreteStructures,”ArchitecturalInstituteofJapan,Tokyo,2010.  電子全文(網際網路公開日期:20220829)  國圖紙本論文 連結至畢業學校之論文網頁點我開啟連結註:此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝! 推文 網路書籤 推薦 評分 引用網址 轉寄                                                                                                                                                                                                                    top 相關論文 相關期刊 熱門點閱論文 無相關論文   無相關期刊   1. 鋼筋與混凝土在反覆載重下之直線拉力握裹行為研究 2. 智能骨材於RC梁柱結構之損傷評估應用 3. 高強度混凝土之T頭鋼筋錨定行為研究 4. SM570鋼材之電熱熔渣銲道力學性質研究 5. 鹽害環境下之混凝土保護層厚度研究 6. 典型鋼筋混凝土柱構件震後性能研究 7. 鋼筋混凝土建築物鋼筋腐蝕檢測及鋼筋防蝕處理之案例探討 8. 鋼筋混凝土梁之最大剪力鋼筋量研究 9. 鋼材表面被覆材之耐用年限評估研究 10. 飛灰應用於高分子斷面修補材的力學性質之研究 11. 使用擴頭鋼筋錨定之高強度鋼筋混凝土梁柱接頭在P-δ效應下耐震行為研究 12. 鋼筋混凝土橋梁安全監檢測與評估之比較-以台灣橋梁作為實例探討 13. 外商設計公司與台灣產業聚集之互動探討 14. 製造業轉型自主品牌的個案研究 15. 虛實整合服務設計對旅遊體驗和遊客滿意度之影響-以貓空纜車旅遊服務為例     簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室



請為這篇文章評分?