109年大學學測數學科詳解 - 朱式幸福
文章推薦指數: 80 %
109年大學學測數學科詳解. 109學年度學科能力測驗試題. 數學考科. 第壹部分:選擇題(占6 0 分) 一、單選題. 解. $$\begin{cases}\sin \alpha=3/5 ...
網頁
首頁
國中會考/基測/特招
大考學測及指考
四技統測
警專/運優/身障甄試
學力鑑定及轉學考
教甄
國考
2020年2月12日星期三
109年大學學測數學科詳解
109學年度學科能力測驗試題
數學考科
第壹部分:選擇題(占60分)
一、單選題
解
$$\begin{cases}\sin\alpha=3/5=39/65\\\sin\beta=5/13=25/65\\\sin30^\circ=1/2=32.5/65\end{cases} \Rightarrow\sin\alpha>\sin30^\circ>\sin\beta,故選\bbox[red,2pt]{(2)}$$
解
$$\overrightarrow{AB}\cdot\overrightarrow{AC}=\overrightarrow{AB}\cdot\overrightarrow{AD}\Rightarrow\overrightarrow{AB}\cdot(\overrightarrow{AC}-\overrightarrow{AD})=0\Rightarrow\overrightarrow{AB}\cdot(-(\overrightarrow{CA}+\overrightarrow{AD}))=0\\\Rightarrow\overrightarrow{AB}\cdot(-(\overrightarrow{CD}))=0\Rightarrow\overrightarrow{AB}\cdot\overrightarrow{CD}=0,故選\bbox[red,2pt]{(1)}$$
解
$$(1)\overrightarrow{OP}=\overrightarrow{OC}+\overrightarrow{OE}\RightarrowP=D\\
(2)\overrightarrow{OP}={1\over4}\overrightarrow{OC}+{1\over2}\overrightarrow{OE}\RightarrowP在\triangleODE內\\(3)\overrightarrow{OP}=-{1\over4}\overrightarrow{OC}+{1\over2}\overrightarrow{OE}\RightarrowP在\triangleOEF內\\(4)\overrightarrow{OP}={1\over4}\overrightarrow{OC}-{1\over2}\overrightarrow{OE}\RightarrowP在\triangleOBC內\\(5)\overrightarrow{OP}=-{1\over4}\overrightarrow{OC}-{1\over2}\overrightarrow{OE}\RightarrowP在\triangleOAB內\\,故選\bbox[red,2pt]{(2)}$$
解 $$A=\begin{bmatrix}1&1\\3&4\end{bmatrix} \RightarrowA^{-1}=\begin{bmatrix}4&-1\\-3&1\end{bmatrix} \RightarrowB=I+A+A^{-1}=\begin{bmatrix}1&0\\0&1\end{bmatrix}+\begin{bmatrix}1&1\\3&4\end{bmatrix}+\begin{bmatrix}4&-1\\-3&1\end{bmatrix}\\=\begin{bmatrix}6&0\\0&6\end{bmatrix}\RightarrowBA=\begin{bmatrix}6&0\\0&6\end{bmatrix}\begin{bmatrix}1&1\\3&4\end{bmatrix}=\begin{bmatrix}6&6\\18&24\end{bmatrix},故選\bbox[red,2pt]{(5)}$$
解 $$\begin{cases}|x-\sqrt{101}|<5 \\|x-\sqrt{38}|>3\end{cases} \Rightarrow\begin{cases}-5+\sqrt{101}
$$
解
$$\begin{cases}黑黑黑:機率為{1\over2}\times{1\over3}\times{1\over3}={1\over18}\\白白白:機率為{1\over2}\times{1\over3}\times{1\over3}={1\over18}\end{cases} \Rightarrow按三次均同色的機率為{1\over18}+{1\over18}=\bbox[red,2pt]{{1\over9}}$$
解
$$\begin{cases}2x+y=10與x-2y+15=0的交點為A=(1,8)\\2x+y=10與x-2y=0的交點為B=(4,2)\end{cases}\\令f(x,y)=3x-y\Rightarrow \begin{cases}f(A)=3-8=-5\\f(B)=12-2=10\end{cases} \Rightarrowc的最小值為\bbox[red,2pt]{-5}$$
解
$$\cos\angleBAD={\overline{AD}^2+\overline{AB}^2-\overline{BD}^2\over2\times\overline{AD}\times\overline{AB}}\Rightarrow\cos135^\circ={4+2-\overline{BD}^2\over2\times2\times\sqrt2}\Rightarrow-{1\over\sqrt2}={6-\overline{BD}^2\over4\sqrt2}\\\Rightarrow\overline{BD}=\sqrt{10}\Rightarrow \begin{cases}\overline{OB}=m\\\overline{OD}=\sqrt{10}-m\end{cases}\Rightarrow \overline{AO}^2=\begin{cases}\overline{AB}^2-\overline{OB}^2=2-m^2\\\overline{AD}^2-\overline{OD}^2=4-(\sqrt{10}-m)^2\end{cases} \\ \Rightarrow2-m^2=4-(\sqrt{10}-m)^2\Rightarrowm={4\over\sqrt{10}} \Rightarrow\overline{AO}^2=\overline{AB}^2-m^2=2-{16\over10}={4\over10}\\ \Rightarrow\overline{AO}={2\over\sqrt{10}}\Rightarrow \overline{AC}={4\over\sqrt{10}}=\bbox[red,2pt]{2\sqrt{10}\over5}$$
解
$$\begin{cases}A(1,7,2)\\B(2,-6,3)\\C(0,-4,1)\\交點P\end{cases}\Rightarrow\begin{cases}\overline{BC}直線方程式:{x-2\over-2}={y+6\over2}={z-3\over-2}\RightarrowP=(t+2,-t-6,t+3),t\inR\\\overrightarrow{BC}=(-2,2,-2)\\\overrightarrow{AP}=(t+1,-t-13,t+1)\end{cases}\\ \Rightarrow\overrightarrow{AP}\cdot\overrightarrow{BC}=0\Rightarrow(t+1,-t-13,t+1)\cdot(-2,2,-2)=0\Rightarrowt+1+t+13+t+1=0\\\Rightarrow3t+15=0\Rightarrowt=-5\RightarrowP=(-5+2,5-6,-5+3)=\bbox[red,2pt]{(-3,-1,-2)}$$
$$假設該等腰梯形ABCD(如上圖)在平面坐標上,其原點O為\overline{AB}之中點,\\則該梯形各頂點坐標為\begin{cases}A(2,0)\\B(-2,0)\\C(-3,-14)\\D(3,-14)\end{cases}\Rightarrow拋物線方程式為為y=a(x-2)(x+2),\\將D代入可得-14=a\times1\times5\Rightarrowa=-{14\over5}\Rightarrowy=-{14\over5}(x^2-4)\Rightarrowx^2=-{5\over14}y+4\\\Rightarrowx^2=4\times-{5\over56}(y-{56\over5})\Rightarrow焦距為\left|-{5\over56}\right|=\bbox[red,2pt]{5\over56}$$
解
$$\overline{QT}=2\sqrt3\Rightarrow\overline{OQ}=\sqrt3\\
\overline{PO}\bot\overline{OQ}\Rightarrow\overline{PO}=\sqrt{\overline{PQ}^2-\overline{QO}^2}=\sqrt{4-3}=1\Rightarrow\angleQPO=60^\circ \Rightarrow\angleQPT=120^\circ\\\Rightarrow\begin{cases}扇形PQST面積={120^\circ\over360^\circ}\times\overline{PQ}^2\times\pi={4\over3}\pi\\\trianglePQT面積=\overline{QT}\times\overline{PO}\div2=\sqrt3\\半圓QRT面積=\overline{QO}^2\times\pi\div2={3\over2}\pi\end{cases}\\ \Rightarrow灰色面積=半圓QRT面積-(扇形PQST面積-\trianglePQT面積)={3\over2}\pi-({4\over3}\pi-\sqrt3)\\={1\over6}\pi+\sqrt3\Rightarrow \bbox[red,2pt]{\begin{cases}a=1/6\\b=3\end{cases}}$$
--END--
張貼者:
C.-H.Chu
於
下午5:25
以電子郵件傳送這篇文章BlogThis!分享至Twitter分享至Facebook分享到Pinterest
標籤:
高中數學,
學測
沒有留言:
張貼留言
較新的文章
較舊的文章
首頁
訂閱:
張貼留言(Atom)
標籤
319鄉
(3)
工程數學
(70)
公費留考
(1)
心得
(3)
目次
(7)
身障升大學
(19)
身障升四技
(40)
指考
(43)
研討會
(45)
科學班
(6)
海外遊
(30)
特招
(26)
高中數學
(261)
高普考
(122)
高職數學
(186)
國小數學
(2)
國中數學
(103)
國內遊
(54)
基測
(24)
教甄
(92)
教檢
(2)
單車
(39)
統計
(50)
統測
(79)
微分方程
(9)
微積分
(35)
會考
(13)
路跑
(11)
運動績優
(16)
電腦管理
(22)
臺澎金馬
(6)
論文徵稿
(2)
學力鑑定
(40)
學測
(15)
應用數學
(2)
轉學考
(41)
警專
(26)
DIY
(59)
GeoGebra
(5)
GIMP
(1)
LaTex
(5)
matlab
(18)
octave
(25)
python
(8)
R
(1)
Scratch程式設計
(7)
熱門文章
110年國中教育會考-數學詳解
109年國中教育會考數學詳解
108年國中教育會考數學詳解
105年國中教育會考數學詳解
106年國中教育會考數學詳解
網誌存檔
►
2022
(50)
►
四月
(1)
►
三月
(13)
►
二月
(26)
►
一月
(10)
►
2021
(137)
►
十二月
(20)
►
十一月
(13)
►
十月
(4)
►
九月
(7)
►
八月
(15)
►
七月
(11)
►
六月
(14)
►
五月
(16)
►
四月
(4)
►
三月
(17)
►
二月
(7)
►
一月
(9)
▼
2020
(130)
►
十二月
(11)
►
十一月
(11)
►
十月
(8)
►
九月
(5)
►
八月
(10)
►
七月
(16)
►
六月
(20)
►
五月
(11)
►
四月
(5)
►
三月
(11)
▼
二月
(14)
汰渙面盆水龍頭-DIY
104學年度高雄區公立高職聯合轉學考-升高二數學科詳解
升學/甄試/檢定數學考科詳解目錄
100學年度臺北市聯合轉學考-高中升高二-數學科詳解
100學年度臺北市聯合轉學考-高中升高三-數學科詳解
101學年度臺北市聯合轉學考-高中升高二-數學科詳解
101學年度臺北市聯合轉學考-高中升高三-數學科詳解
109年大學學測數學科詳解
102學年度臺北市聯合轉學考-高中升高二-數學科詳解
102學年度臺北市聯合轉學考-高中升高三-數學科詳解
103學年度臺北市聯合轉學考-高中升高二-數學科詳解
103學年度臺北市聯合轉學考-高中升高三-數學科詳解
104學年度臺北市聯合轉學考-高中升高二-數學科詳解
104學年度臺北市聯合轉學考-高中升高三-數學科詳解
►
一月
(8)
►
2019
(120)
►
十二月
(17)
►
十一月
(7)
►
十月
(4)
►
九月
(26)
►
八月
(14)
►
七月
(12)
►
六月
(7)
►
五月
(7)
►
四月
(5)
►
三月
(6)
►
二月
(9)
►
一月
(6)
►
2018
(123)
►
十二月
(16)
►
十一月
(12)
►
十月
(9)
►
九月
(10)
►
八月
(14)
►
七月
(9)
►
六月
(10)
►
五月
(11)
►
四月
(5)
►
三月
(11)
►
二月
(10)
►
一月
(6)
►
2017
(49)
►
十二月
(7)
►
十一月
(10)
►
十月
(5)
►
九月
(7)
►
八月
(2)
►
七月
(4)
►
六月
(2)
►
五月
(6)
►
四月
(1)
►
三月
(2)
►
二月
(1)
►
一月
(2)
►
2016
(89)
►
十二月
(1)
►
十一月
(1)
►
十月
(1)
►
九月
(4)
►
七月
(4)
►
六月
(31)
►
五月
(26)
►
四月
(5)
►
三月
(4)
►
二月
(9)
►
一月
(3)
►
2015
(29)
►
十二月
(2)
►
十一月
(3)
►
九月
(3)
►
八月
(4)
►
七月
(4)
►
五月
(1)
►
四月
(1)
►
三月
(4)
►
二月
(5)
►
一月
(2)
►
2014
(65)
►
十二月
(6)
►
十一月
(5)
►
十月
(4)
►
九月
(1)
►
八月
(4)
►
七月
(6)
►
六月
(9)
►
五月
(7)
►
四月
(1)
►
三月
(9)
►
二月
(8)
►
一月
(5)
►
2013
(83)
►
十二月
(4)
►
十一月
(7)
►
十月
(8)
►
九月
(5)
►
八月
(8)
►
七月
(8)
►
六月
(6)
►
五月
(6)
►
四月
(9)
►
三月
(5)
►
二月
(9)
►
一月
(8)
►
2012
(60)
►
十二月
(10)
►
十一月
(10)
►
十月
(18)
►
九月
(15)
►
八月
(1)
►
七月
(1)
►
六月
(3)
►
五月
(1)
►
一月
(1)
►
2011
(2)
►
七月
(1)
►
一月
(1)
總網頁瀏覽量
關於我自己
C.-H.Chu
不用補習也可以把數學學好.....
檢視我的完整簡介
pline
延伸文章資訊
- 1【109學測】題目 解答下載(大考中心版) - 大學問
大考中心公布了109學年度學測各科選擇(填)題的正確答案,快來看看國文、英文、數學、社會、自然各科的答案吧。
- 2109學年度大學考試入學分發各系組最低錄取分數及錄取人數 ...
公民教育與活動領導學系. 國x1.25 英x1.25 數乙x1.00 公x2.00. 42. 402.09. -----. 405.07. -----. -----. -----. -----....
- 3109學年度學科能力測驗國文科選擇題詳解 - 被鐘聲敲碎的歲月
109學年度學科能力測驗‧國文科選擇題詳解一.單選題 下列「」內的字,讀音前後相同的 ... 說明:張養浩〈山坡羊〉屬於元曲,學測出題不可以用「上下片」的形式呈現。
- 4一般試題 - 大考中心
全部, 111, 110, 109 ... 111-02-23, 111學年度學科能力測驗-數學A ... 110-03-10, 110學年度學科能力測驗-國文(選擇題). 試題內容 · 試題內...
- 5109年大學交叉查榜-www.com.tw
111年(2022)學測、統測、指考,落點分析-交叉查榜www.com.tw ... 109年 大學個人申請依校系查榜第二階段: 99% ( 2154 / 2172 ) 校系已放榜 ...