DNV research targets wide adoption of automated wind ...

文章推薦指數: 80 %
投票人數:10人

Automating the inspection of wind turbines using drones is one area that has emerged but still needs wider acceptance by the industry. Sectors Allnews Policy&Regulation SmartMeters SmartGrid SmartCities Storage ElectricVehicles Energy&GridManagement EnergyEfficiency CustomerServices&Management IOT Cybersecurity Data&Analytics Digitalisation Distributedgeneration RenewableEnergy Newtechnology SmartWater Regions NorthAmerica Europe&UK Indiansubcontinent Asia Africa&MiddleEast Central&LatinAmerica Oceania Global Resources Webinars Magazine Articles MagazineIssues Elites Subscribe Events Engage Joinourcommunity Advertisewithus SubmitContent ContactUs Partners Becomeapartner SUBSCRIBE Search Search Search Search Sectors Allnews Policy&Regulation SmartMeters SmartGrid SmartCities Storage ElectricVehicles Energy&GridManagement EnergyEfficiency CustomerServices&Management IOT Cybersecurity Data&Analytics Digitalisation Distributedgeneration RenewableEnergy Newtechnology SmartWater Regions NorthAmerica Europe&UK Indiansubcontinent Asia Africa&MiddleEast Central&LatinAmerica Oceania Global Resources Webinars Magazine Articles MagazineIssues Elites Subscribe Events Engage Joinourcommunity Advertisewithus SubmitContent ContactUs Partners Becomeapartner SUBSCRIBE HomeIndustrySectorsData&AnalyticsDNV-ledresearchtargetswideadoptionofautomatedwindturbinesinspection IndustrySectorsData&AnalyticsDigitalisationEnergy&GridManagementRegionalNewsEurope&UKNews Facebook Twitter Linkedin Imagecredit:Stock Automatingtheinspectionofwindturbinesusingunmannedvehiclesisoneareathathasemergedoverthepastyearsbutstillneedswideracceptancebytheindustryandregulators. Withdigitalisationexpectedtoincreasethevalueofrenewableenergyprojectsforoperatorsanddevelopersthroughreal-timeoperationandmonitoringofassets,thereisaneedforthedevelopmentofindustry-acceptedpracticesandstandards. ThispushedengineeringandcertificationfirmDNV,theUniversityofBristolandtechnologycompanyPerceptualRoboticstolauncharesearchprogrammeaimedatgeneratingbroaderacceptanceofautomatedinspectionofwindturbinesusingdronesintheUKmarket. Overaperiodof12months,thethreepartieswilldevelopanautomateddataprocessingprocedureforverificationofdetectedwindturbinebladedefects.Todoso,theywillinvestigatetheautomatedverification,validation,andprocessingofinspectiondata,collectedbyautonomousdrones,toimproveinspectionqualityandperformance. Lessonslearnedfromtheresearchprojectwillbeusedtoinformtheindustryandgovernmentindevelopingandenactingregulationsthatwillenablewideracceptanceofautomatedinspectionofrenewablesassets. Haveyouread?HowdigitalisationwillboostthevalueofenergyfromsolarplantsNewpartnershiptodelivercostanddatabenefitsforwindfarmoperatorsDNVGLandNationalGriddevelopingGreatBritain’soffshorewindstrategy TheUniversityofBristolwillprovideitsVisualInformationLabandexpertsin3Dcomputervisionandimageprocessingtocreateautomatedlocalisationofinspectionimagesanddefects.PerceptualRoboticswillperformdroneinspectionsandcreateAI-basedmodelsfordefectdetection.DNVwillprovideinspectionexpertise,verifydatacollected,validatethemethodologyandperformanceoftheAIalgorithms.DatacollectedwillbeusedtoimproveanexistingDNVandIECrecommendedbestpracticesforautomatedwindturbineinspection. Theprojectwillbefundedusingagrantsecuredfromthe UKResearchandInnovation. Usingunmannedautonomousvehiclestogethigh-definitionvideosandimagesandtogeo-positionassetsthatarelocatedinextremeenvironmentshelpsimprovetheinspectionprocessesforassetownersandoperators,inturn,resultinginenhancedmanagement,operationandmaintenanceoftheseassets.Theprocessesenablequickdetectionoffaultybladesandotherequipment,promptingoperatorstoquicklyrespondtoavoidassetfailureandcontinuedgenerationofwindresultinginasecureenergysupplytomeetdemand.Inaddition,thelifespanoftheserenewablesassetsisincreasedthroughimprovedmaintenanceandthesafetyofworkersensuredwithoutthemhavingtovisittheharshanddangerousenvironmentsinperson. Dr.ElizabethTraiger,aDNVseniorresearcherindigitalassurancesaid:“Withmanyinspectionsstillbeingcarriedoutmanually,visualinspectionofoffshorewindturbines,isexpensive,labour-intensive,andhazardous.Automaticvisualinspectionscanaddresstheseissues.  “Thiscollaborationwilldevelopanddemonstrateanautomatedprocessingpipelinealongsideageneralframeworkwiththeaimofgeneratingbroaderacceptanceacrosstheindustryandinformingfutureregulation.Thisprojectshouldprovideastepping-stonetothegrowthoftheautomatedinspectionindustry.”  PierreCSames,groupresearchanddevelopmentdirectoratDNV,adds:“Withthenumberofinstalledwindturbinesworldwideincreasing,includingthoseinremoteandharshenvironments,thevolumeofinspectiondatacollectedisquicklyoutpacing thecapacityofskilledinspectors whocancompetentlyreviewit.Thisresearchprojectwilldevelopmeanstotacklethischallengethroughmachinelearningalgorithmsandprocessautomation.”  RELATEDARTICLESMOREFROMAUTHOR Everydropcounts:MaddalenaS.P.Aembracessustainability ConnectivitymodulesselectedforTaipower’sAMIproject Invenergytosupportrenewablesgrowthwith$3bnBlackstoneinvestment Trendingthisweek LATESTFEATURE Ed’snote:ThebirthofEUenergydiplomacy Jan11,2022 Emergingclimate-friendlytechnologiesfortheenergysector Jan7,2022 Ayearinblockchain–what’scomingfortheenergysector... Dec30,2021 Decarbonisingwater,ensuringsustainability Dec28,2021 The2022technologytrendssuperchargingelectricvehicles Dec27,2021 FacebookLinkedinTwitterYoutube Style About Advertise Join Contact OurNetwork PrivacyPolicy ©SynergyBV|Companynumber:30198411|RegisteredintheNetherlandsatBisonspoor3002,C601,3605LTMaarssen



請為這篇文章評分?