A chronology of global air quality - Journals
文章推薦指數: 80 %
Air pollution has been recognized as a threat to human health since the time of Hippocrates, ca 400 BC. Successive written accounts of air ... Logintoyouraccount Email Password Forgotpassword? Keepmeloggedin NewUser InstitutionalLogin ChangePassword OldPassword NewPassword TooShort Weak Medium Strong VeryStrong TooLong Congrats! Yourpasswordhasbeenchanged Createanewaccount Email Returninguser Can'tsignin?Forgotyourpassword? Enteryouremailaddressbelowandwewillsendyoutheresetinstructions Email Cancel Iftheaddressmatchesanexistingaccountyouwillreceiveanemailwithinstructionstoresetyourpassword. Close RequestUsername Can'tsignin?Forgotyourusername? Enteryouremailaddressbelowandwewillsendyouyourusername Email Close Iftheaddressmatchesanexistingaccountyouwillreceiveanemailwithinstructionstoretrieveyourusername OpenAccessMoreSectionsViewPDF ToolsAddtofavoritesDownloadCitationsTrackCitations ShareShareonFacebookTwitterLinkedInRedditEmail Citethisarticle FowlerDavid, BrimblecombePeter, BurrowsJohn, HealMathewR., GrennfeltPeringe, StevensonDavidS., JowettAlan, NemitzEiko, CoyleMhairi, LiuXuejun, ChangYunhua, FullerGaryW., SuttonMarkA., KlimontZbigniew, UnsworthMikeH.and VienoMassimo 2020AchronologyofglobalairqualityPhil.Trans.R.Soc.A.3782019031420190314http://doi.org/10.1098/rsta.2019.0314SectionOpenAccessReviewarticlesAchronologyofglobalairqualityDavidFowlerDavidFowlerhttp://orcid.org/0000-0002-2999-2627CentreforEcologyandHydrology,Penicuik,UK[email protected]GoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,PeterBrimblecombePeterBrimblecombeSchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKongGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,JohnBurrowsJohnBurrowsFacultyofPhysicsandElectricalEngineering,UniversityofBremen,Bremen,GermanyGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MathewR.HealMathewR.HealSchoolofChemistry,TheUniversityofEdinburgh,Edinburgh,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,PeringeGrennfeltPeringeGrennfeltIVLSwedishEnvironmentalResearchInstitute,Stockholm,SwedenGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,DavidS.StevensonDavidS.StevensonSchoolofGeoSciences,UniversityofEdinburgh,Edinburgh,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,AlanJowettAlanJowettTheBoundary,GoodleyStockRoadCrockhamHill,Kent,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,EikoNemitzEikoNemitzhttp://orcid.org/0000-0002-1765-6298CentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MhairiCoyleMhairiCoyleCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,XuejunLiuXuejunLiuhttp://orcid.org/0000-0002-8367-5833EnvironmentalScienceandEngineering,ChinaAgriculturalUniversity,Beijing,People'sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,YunhuaChangYunhuaChangNanjingUniversityofInformationScienceandTechnology,Nanjing,Jiangsu,People'sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,GaryW.FullerGaryW.FullerImperialCollegeLondon,London,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MarkA.SuttonMarkA.SuttonCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,ZbigniewKlimontZbigniewKlimontInternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,AustriaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MikeH.UnsworthMikeH.UnsworthOregonStateUniversity,Corvallis,OR,USAGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorandMassimoVienoMassimoVienoCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorDavidFowlerDavidFowlerhttp://orcid.org/0000-0002-2999-2627CentreforEcologyandHydrology,Penicuik,UK[email protected]GoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,PeterBrimblecombePeterBrimblecombeSchoolofEnergyandEnvironment,CityUniversityofHongKong,Kowloon,HongKongGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,JohnBurrowsJohnBurrowsFacultyofPhysicsandElectricalEngineering,UniversityofBremen,Bremen,GermanyGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MathewR.HealMathewR.HealSchoolofChemistry,TheUniversityofEdinburgh,Edinburgh,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,PeringeGrennfeltPeringeGrennfeltIVLSwedishEnvironmentalResearchInstitute,Stockholm,SwedenGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,DavidS.StevensonDavidS.StevensonSchoolofGeoSciences,UniversityofEdinburgh,Edinburgh,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,AlanJowettAlanJowettTheBoundary,GoodleyStockRoadCrockhamHill,Kent,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,EikoNemitzEikoNemitzhttp://orcid.org/0000-0002-1765-6298CentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MhairiCoyleMhairiCoyleCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,XuejunLiuXuejunLiuhttp://orcid.org/0000-0002-8367-5833EnvironmentalScienceandEngineering,ChinaAgriculturalUniversity,Beijing,People'sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,YunhuaChangYunhuaChangNanjingUniversityofInformationScienceandTechnology,Nanjing,Jiangsu,People'sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,GaryW.FullerGaryW.FullerImperialCollegeLondon,London,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MarkA.SuttonMarkA.SuttonCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,ZbigniewKlimontZbigniewKlimontInternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,AustriaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MikeH.UnsworthMikeH.UnsworthOregonStateUniversity,Corvallis,OR,USAGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorandMassimoVienoMassimoVienoCentreforEcologyandHydrology,Penicuik,UKGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorPublished:28September2020https://doi.org/10.1098/rsta.2019.0314ThisarticlehasaCorrectionCorrectionto‘Achronologyofglobalairquality’AbstractAirpollutionhasbeenrecognizedasathreattohumanhealthsincethetimeofHippocrates,ca400BC.Successivewrittenaccountsofairpollutionoccurindifferentcountriesthroughthefollowingtwomillenniauntilmeasurements,fromtheeighteenthcenturyonwards,showthegrowingscaleofpoorairqualityinurbancentresandclosetoindustry,andthechemicalcharacteristicsofthegasesandparticulatematter.Theindustrialrevolutionacceleratedboththemagnitudeofemissionsoftheprimarypollutantsandthegeographicalspreadofcontributingcountriesashighlypollutedcitiesbecamethedefiningissue,culminatingwiththegreatsmogofLondonin1952.EuropeandNorthAmericadominatedemissionsandsufferedthemajorityofadverseeffectsuntilthelatterdecadesofthetwentiethcentury,bywhichtimethetransboundaryissuesofacidrain,forestdeclineandground-levelozonebecamethemainenvironmentalandpoliticalairqualityissues.Ascontrolsonemissionsofsulfurandnitrogenoxides(SO2andNOx)begantotakeeffectinEuropeandNorthAmerica,emissionsinEastandSouthAsiagrewstronglyanddominatedglobalemissionsbytheearlyyearsofthetwenty-firstcentury.Theeffectsofairqualityonhumanhealthhadalsoreturnedtothetopoftheprioritiesby2000asnewepidemiologicalevidenceemerged.Bythistime,extensivenetworksofsurfacemeasurementsandsatelliteremotesensingprovidedglobalmeasurementsofbothprimaryandsecondarypollutants.GlobalemissionsofSO2andNOxpeaked,respectively,inca1990and2018andhavesincedeclinedto2020asaresultofwidespreademissioncontrols.Bycontrast,withalackofactionstoabateammonia,globalemissionshavecontinuedtogrow.Thisarticleispartofadiscussionmeetingissue‘Airquality,pastpresentandfuture’.1.IntroductionThepotentialsubjectareaislargeandthefocushereisonthechronologyofairpollutionbyhumanactivity,identifyingthemainissues,theircausesandtheregionalandglobaltrends.Otherpapersinthisvolume,towhichlinksaremade,providethewidercontext,thepoliciesdevelopedtoaddresstheproblemsandthepossiblefutures.Therearefourratherdifferentsourcesofevidencetoprovidethenarrativeforthisaccount.Theseincludewrittendocumentsincludingearlylegislation,directmeasurementsofatmosphericcomposition,chemistrytransportmodels,whichsimulateatmosphericcompositionchangesfromaknowledgeofemissions,meteorologyandchemicalprocessingofpollutantgases,and,finally,remotesensingoftheatmospherefromaircraftandspace.Theearlydocumentsarefascinatingandprovidehintsattheunderlyingchemistry,butareentirelylackinginquantitativedetail.Legaldocumentsindicatetheintent,but,forreasonselaboratedlater,didnotsignificantlyconstrainthedevelopingglobalissuesuntilthelaterdecadesofthetwentiethcentury.High-qualitymeasurementsofairpollutantsarerestrictedtothelast150yearsandnumericalmodellingtothelast40years,leavingconsiderablescopeforspeculationontheearlytrends.Thereisnecessarilysomesubjectivityintheselectionofinformationsourcesusedtodescribetheairpollutionchronologyoutlinedhere,assummarizedintable 1.Forthispurpose,wehavefocusedonwhatweconsidertorepresentmajormilestonesbasedon:(i)therecognitionofkeyaspectsofairpollution,(ii)ofquantitativeevidenceand(iii)ofmajorpointsofchangesinairpollutionlevels.OtherperspectivesonthetopichavebeenprovidedbyColbeck[5]andMosley[6].Themainairpollutantsofinterestexaminedherearesulfurdioxide(SO2),nitrogenoxides(NOx),ammonia(NH3),volatileorganiccompounds(VOCs),primaryparticulatematter(PM),andtheirreactionproducts,includingfineparticulatematter(PM2.5)andtroposphericozone(O3). Table 1.Componentsoftheselectedchronologyofairpollutionpresentedinthispaper. Collapse dateairpollutionevent400BCETherelationshipbetweenairandhealthdevelopedasanimportantpartofthebookAirs,watersandplacesattributedtoHippocratesfirstcenturyADWritersfromimperialRome,e.g.SenecaandFrontinus,refertotheprobablehealthimpactsofsmoke947–1279SmokeandgaseouspollutantsfromcoalburningidentifiedasaprobleminCentralAsiabyAl-Mas'ūdī(947)andinChinaduringtheSongDynasty(960–1279)1273TheSmokeAbatementAct,theearliestlegislationinEngland,prohibitsuseofcoalasitis‘prejudicialtohealth’1610TheLawofNuisance(UK):WilliamAldred'spigfarmcase1661JohnEvelynpublishedFumifugiumorTheInconvenienceoftheAerandSmoakofLondonseventeenthcenturyHarmfuleffectsofairascribedtovariouscomponents,e.g.KenelmeDigby(acids),NehemiahGrew(lead),JohnEvelyn(sulfur)andJohnHall(antimonyormercury)eighteenthcenturyGuillaumeFrançoisRouelledetectsSO2byabsorbingthegasinstrongalkalis;CarlWilhelmScheeledetectsNH3viaabsorptionwithacids1872RobertAngusSmithpublishesAirandRain:TheBeginningsofaChemicalClimatology,havingundertakenthefirstmultisite,multipollutantmeasurements1878TheUKRoyalCommissiononNoxiousVapours1894The‘greathorsemanurecrises’ofLondonandNewYork1905SmokeNuisanceActsinBengal19051952TheGreatLondonSmog;12 000dieintwoweeks[1]LosAngelessmog,chemistryandeffectsdescribed[2]1956TheUKCleanAirAct1960Extensivelocalecologicaldamagebysmelters(e.g.[3])From1967,airpollutionproblemsarerecognizedasinternationalissues1960sAcidrainextensivelydescribedbySvanteOden1972UnitedNationsStockholmConferenceconfirmsacidrainasanimportantinternationalissueinEurope1970sGround-levelozonethreattoecosystemsidentifiedinNorthAmericaandEuropefollowingearlierconcernsofeffectsoftheozoneonhumanhealth1977USAestablishesitsNationalAcidDepositionProgram(NADP)1979UNECEConventiononLongRangeTransportofAirPollution(LRTAP)established1980sForestdeclinerecognizedinEuropeandNorthAmerica1985HelsinkiProtocol:CommitmenttoreducedSO2emissionsby30%(The30%club)1980s–1990sEutrophicationofecosystemsbynitrogendepositionrecognized1991Canada-USAAirQualityAgreement1993The‘SixCities’studyinNorthAmericare-focusesattentiononthehumanhealtheffectsofairpollutionPM101995Launchofthefirstsatelliteforpassiveremotesensingatmosphericcomposition(GOME)forglobalozonemonitoring[4]1999TheUNECEGothenburgProtocoladoptedtotacklemultipollutantmultieffects(acidity,ozoneandeutrophication)2000sEmissionsofSO2andNOxinAsiaincreasinglydominateglobalemissionsandadverseeffects2010WidespreadevidenceofrecoveryfromeffectsofaciddepositioninEuropeandNorthAmericawiththedeclineinemissionsofSO2andNOx2012Beijingsmog,13thJanuary,withconcentrationsofPMandSO2similartoLondon19522015GlobalSO2emissionsreducedby15%fromthe1990peak,whileallotherairpollutantsstillincreasing2018EmissionsofSO2andNO2decliningrapidlyinChina2018PeakglobalNOxemission?GlobalemissionsofNH3andVOCcontinuetorise2020COVID-19:Theglobalpandemicdramaticallyreducesemissionsofindustrial-andtransport-relatedemissionsofSO2,NOx,VOCandprimaryPMClearwrittenevidenceshowsthatearlysocietyrecognizedathreattohumanhealthandthewiderenvironmentfromairpollution.However,theidentityofthegasesandparticlesremainedlargelyunknown,andtherewerenomeasurementstoquantifytheproblem.Earlyattemptstoregulateemissionsshowthatthelawyersintheirdayclearlyhadthemeanstoarticulatesocietaldesireforacleanerenvironment,butthelawsdevelopedwerenotsupportedbytheinfrastructurenecessarytomakethemeffective.Thelackofconsistentlanguagedescribingtheunderlyingsciencealsomakestheearlyliteraturedifficulttointerpretfromatwenty-firstcenturyperspective.Theearlyhistorytakesustotheperiodofelucidationofthecompoundspresentintheatmosphereandtoearlymeasurements,mainlyintheseventeenthtonineteenthcenturies,followingwhichdirectmeasurementsbeganinearnest.Sporadicmeasurementsofairqualitybeganinthelatenineteenthcentury,especiallybyRobertAngusSmithintheUK[7],thefirstscientisttoattemptmultisite,multipollutantinvestigationsofthechemicalclimatologyofthepollutedatmosphere.Theearlydevelopmentsinunderstandingofairpollutionweremainlybychemists,whocontinuedtheirleadershipofthemechanisticunderpinningofthesciencethroughthetwentiethcentury(e.g.[8,9]).Distributedsitestomeasureatmosphericcompositiongraduallydevelopedthroughthemid-twentiethcenturyandbythetimeacidrainbecameafocusofscientificandpoliticalinterestinthelate1960stherewerenetworksinEuropeandNorthAmericatostudythecompositionofairandprecipitationatregionalscales(e.g.[10,11]).Inaddition,localpollutionproblemsinindustrialcities,mainlyinEuropeandNorthAmerica,andaroundnotablepointsources,providedearlymeasurementsoflargelocaleffectsbysomeofthemainpollutants.Theground-basedmonitoringnetworksinplacebytheyear2000(table 1)includedregionalandglobalairchemistrymeasurements.Thethirdmainsourceoftime-seriesdatatoassessthechronologyofairpollutionistheapplicationofchemistrytransportmodels(CTMs)withglobalmeteorologicalmodelsandspatiallydisaggregatedinventoriesofpollutantemissions.Thefinalsourceofdataisthatprovidedbysatelliteremotesensing,whichhasdevelopedoverthelastthreedecades,providingglobalconcentrationfieldsforthemajorairpollutantgases(SO2,NO2,NH3,CO,andO3).ThesecomplementarysourcesareusedheretoprovideasummaryofthedevelopmentofspecificairpollutionissuesthroughthelatenineteenthandearlytwentiethcenturiesandinthelasttwodecadesrevealingsomeimportantsignsofrecoveryfromeffectsofairpollutioninEurope,NorthAmericaandEastAsia.2.Pre-1750earlyevidenceairpollutionposedarisktohumanhealthandecosystemsEarlyhumanswouldhavebeenawareofatleastsomeofthepotentialhazardsintheairtheybreathedfromtheirgeneraldiscomfortinthepresenceofsmokeandcombustiongasesclosetoopenfires.Theneedforshelterandwarmthledtofiresinsideshelters,andinconfinedstructures,theexposuretopotentiallytoxicgasesandparticlesisconsiderablyenhanced.Giventhedirectlynoxiouspropertiesofmanycombustionproducts(smell,andlachrymoseandrespiratoryeffects),itissurprisingthatsomanysocietieshaddwellingswithopenfiresandnochimneys.Thedevelopmentofthechimneyitselfcanbeseenasakeymilestoneforindoorairquality,adoptedatfirstinthelargesthousesfromthetwelfthcentury[12].Today,indoorairpollutionisanimportantcontributortoeffectsonhumanhealth.Allsubsequentanalysishere,however,isdevotedtotheoutdoorenvironment.EvidencefromGreeceshowsthattheproblemsofpollutedairoutdoorswerebeingdocumentedatleast2400yearsago.ThebookAirs,watersandplacesattributedtoHippocrates(ca400BC)suggestedallsortsofillnessasbeingrelatedtothequalityofair.Theworstitseemswasincitiesfacingdampwesterlywinds,wheretheinhabitants‘arelikelytohavedeep,hoarsevoices,becauseoftheatmosphere,sinceitisusuallyimpureandunhealthyinsuchplaces'([13],p.83).WritersalittlelaterfromImperialRomeunderstoodtheprobablehealthimpactsofsmokewithSeneca(caAD63–65)referringtotheproblemandFrontinus(caAD96)proudlydeclaringhowhiscontributiontoaqueductsandfountainshashelpedmaketheairpurer:‘thecausesoftheunwholesomeatmosphere,whichgavetheairoftheCitysobadanamewiththeancients,arenowremoved’([14],p.417).AsSenecarecordedofahealthbreakfromRome: AssoonasIescapedfromtheoppressiveatmosphereofthecity,andfromthatawfulodourofreekingkitchenswhich,wheninuse,pourfortharuinousmessofsteamandsoot,Iperceivedatoncethatmyhealthwasmending…SoIammyoldselfagain,feelingnownowaveringlanguorinmysystem,andnosluggishnessinmybrain([15],p.193).Itisnotablethatthereferencetothebrainmatchesaneffectofammonium-containingairpollutionfromnaturallyburningcoalcavesalongtheSilkRoadinCentralAsiaaslaterrecordedbytheArabgeographerAl-Mas'ūdī[16].AbookbyShenKuo(1031–1095)writtenduringtheSongDynasty(AD961–1279)providesfurtherevidenceofconcerninChinaaboutairpollutionfromcoalburning[17].Otherpost-classicalwriters,especiallyintheArabworld,contributedobservationsaboutairpollutionduringthe‘DarkAges’whenconsiderablelearningwasbeinglostinEurope[18].Ultimately,however,littlechangedthroughouttheMiddleAgesintheunderstandingofthecausesofdiseaseandpossibleroleofairpollutantsreflectingthepersistenceoftheclassicalmiasmaticconceptthatodoursandothermatterinairwerethecontrollinginfluencesforhumanhealth[19],anideagoingbacktothetimeofHippocrates.Intheseventeenthcentury,JohnEvelynpublishedFumifugiumorTheInconvenienceoftheAerandSmoakofLondon[20](figure 1).ThisiconicdocumentdescribedairpollutioninLondonandsuggestedwaysofreducingthescaleoftheproblem.Heproposedmovingindustriesincludingbrewingandlime-burningtothecountryside,welloutsidethecity.JohnGraunt,acontemporaryofEvelyn,suggestedacorrelationbetweenratesofmortalityandpollution,especiallyinfogepisodes[21].Intheabsenceofanychemicaldata,orindeedanynumericalvaluestoquantifythepollutantspresent,wehaveonlythenarrative,butitclearlyidentifiesaseriousproblemforhumanhealth.EvelynwroteofLondonin1661:‘thatthisgloriousandancientcityshouldwrapherstatelyheadincloudsofsmokeandsulphur,sofullofstinkanddarkness’. Figure1.JohnEvelynandthetitlepageofFumifugium(1661).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointTherewassomerecognitionofthestrong-smellingsulfurpollutantsderivedfromcoalorindustrialprocessessuchasdiscussedinFumifugiumandalsoinShakespeare'sobservationaboutthereekoflime-kilns(TheMerryWivesofWindsor,ActIII,Scene3).Lime-kilnswereusedextensivelyinEuropesinceRomantimesandwereanotedsourceofairpollution.Therewaslittleunderstandingofatmosphericchemistry,however,althoughscientificinterestbecamemoreimportantbythemid-1600s[19],withtheharmfuleffectsofairpollutantsascribedtovariouscomponentsoftheairbyKenelmeDigby(acids),NehemiahGrew(lead),JohnEvelyn(sulfur)andJohnHall(antimonyormercury).3.Thedevelopmentoflawstocontrolairpollution1273–1900TheearliestlegislationinEnglandwasthe1273SmokeAbatementAct,prohibitingtheuseofcoalasitwas‘prejudicialtohealth’[22].Somemediaevalsocietiesapproachedairpollutioncontrolbykeepingthesourcesoutsidethecitywalls,aconceptfoundinAristotle'sAthenianPoliticsandinancientRomanregulation[23].ThispracticecontinuedinmediaevalEurope,butalsoAsia,notablyinrelationtotheextensivefifteenth-centuryThuriangpotterykilns,whichwerelocatedinthenorthernleeofSiSatchanali,Thailand.Theseearlyexamplesofwhatwemaynowliketocall‘environmentallaw’includecontrolsontheburningofseacoalandthe‘forestrylaws’(protectingthevariousspeciesofgamelivingintheforests).Mostoftheseexamplesderivefromtheparticularwhimsandprejudicesofindividualrulers,oftenheavilyinfluencedbythosewithintheuppersocialechelonsofsociety.Therewasnomodernscienceinvolved:theproblemwasperhapsavisualblotonthemonarch'slandscape,anappallingsmellorapassionforhunting.Ineverycase,thecontrolorprohibitionwasimposedwithoutanyneedtoresorttothescientificknowledgebaseofthetime.IntheWesternworld,onehastolooktotheRenaissanceandthesubsequentReformationasformingthebasisfromwhicharoseourmodernmethodologiesforscientificenquiry.IntheUK,thischangeinmethodsofenquiryalongsidetheriseofindustrializationinthelatterpartoftheeighteenthcenturyanditsincreasingpaceinthenineteenthcenturyenabledthelikesofDavidHume(1711–1776),JeremyBentham(1748–1832)andJohnStuartMill(1806–1873)toarticulatesocialphilosophiessuchasutilitarianism—philosophieswhichultimatelygavemomentumtocentralizedregulationofwhatwewouldnowdescribeas‘environmentalissues'.ThedirectinterventionoftheBritishGovernmentbywayoflegislationwaslimitedthroughoutthisperiod.TheAlkaliWorksRegulationAct1863anditsAlkaliInspectorateweretheprimeexampleofgovernmentalresponsivenesstoenvironmentalmattersduringthisperiod:necessity,drivenbywidespreadandself-evidenthealthandwelfareproblems,butenactedreluctantly.Initially,itwasthe‘commonlaw’thatwasusedtocombatinstancesofpollutingactivityinEngland.TheEnglish‘civilclaimsprocedure’requiresacomplainant,adefendantandproofonabalanceofprobabilitiesthatthe‘injury’complainedofwascausedbytheactionorinactionofthedefendantbyreasonofbreachofastandardofcare—astandardestablishedandrefinedbythejudiciaryovermanydecadesonacase-by-casebasis.Thiswastherebyinevitablyastandardthatwasintrinsicallysusceptibletocircumstanceandprevailingnorms.Thisrelianceonan‘after-the-fact’procedure,coupledwitharequirementtoestablishaclear,legallyrecognizablecausallinkbetweenallegedcauseandsupposedeffect,wastopermeatetheUK'sapproachtowhatwenowtermenvironmentalregulation.Theapproachwasoneoffuturepreventionofwhatcouldbeshowntohavealreadybeenclearlyunacceptableratherthana‘precautionaryapproach’,thelatternowunderpinningmuchofcurrentthinkinginrelationtomattersoftheenvironmentandsocialwell-beinggenerally.AkeysteponthewaytodevelopingaUKlegalframeworkforairpollutionisthe‘TheLawofNuisance’.Asearlyas1610,WilliamAldred'scase,asitisknown,sawthecourtsinterveneagainstoneThomasBentonforbuildingapigsty‘sonearthehouseoftheplaintiffthattheairtherofwascorrupted’.Thecourtfoundthatlightandcleanairwereconsiderednecessaryforwholesomehabitation.Indiscussingtheissuesraised,thecourtdrewadistinctionbetween‘triflinginconveniences'thatmadelifeinconvenientoruncomfortable—whenlocationcouldbealegitimateconsiderationinmakingsuchafinding—andmaterialdamagetopropertythatdiminisheditsvaluewhenlocationwaslargelyirrelevant.Theoverallresultwasthatthecommonlawprovedincreasinglyinadequatetoaddressthesortsofissuesthatsocialphilosophersandreformerswerecomingtofocusonasincreasingurbanizationgaverisetoself-evidentpublichealthandwelfareissues.Between1800and1850,thepopulationinEnglandandWalesdoubledto16millionanddoubledagainby1900,accompaniedbydramaticchangesinthedistributionandconcentrationofthepopulationasindustrializationdrewpeoplefromruralareastowhatsoonbecamehighlyurbanizedareaswithinsanitaryhousing,disease,noxiousemissionsandfossilfuelsaddingtothetoxicmix.The‘RoyalCommissiononNoxiousVapours’of1878recordedmanyexamplesofthekindsofdamageresultingfromwhatatthattimewasuncontrolledindustry.However,theUKgovernmentwasslowtotakeremedialactionbecauseoftheimportanceofindustrytothenationaleconomy.DespitethemanufacturingcontrolsintroducedintheAlkaliAct1863,andtheestablishmentofanAlkaliInspectorate,theincreasingnumberofalkaliworks(manufacturingsodiumcarbonate,whileemittinghydrochloricacidasairpollution)meantthattheUKexperiencednomeaningfuldecreaseinemissionsofpollutants.Legislationrequirementstouse‘bestpracticablemeans',togetherwithapiecemealapproach,exacerbatedwhatwasinanyeventoftenindifferentenforcementofthelegislation.Nevertheless,lawstocontrolairpollutionthatarerecognizablymoderndiddevelopthroughthelatterpartofthenineteenthcentury,andthesealsoreflectedthesanitaryreformthatcharacterizedthebroadpublichealthconcernsofthetime[24].Asmightbeexpected,theywerecommoninEuropeandNorthAmerica,butalsofollowedimperialadministrationsacrosstheworld,sowerewellknowninIndia(e.g.SmokeNuisanceActsinBengal1905andBombay1912)andHongKong.ThewiderangeofinternationallawwasreviewedattheLondonPublicHealthCongressin1905,oftencitedastheplacewhereHenryAntoineDesVoeuxcoinedtheterm‘smog’[25]4.1750–1950UrbanairqualityandtheindustrialrevolutionDuringtheearlyphaseoftheindustrialrevolution,beginningintheUKinthelateeighteenthcenturyandspreadingthroughEuropeandNorthAmerica,arapidgrowthincoalcombustioninthedevelopingcitiessubstantiallyincreasedemissionsofSO2,NO2,NH3andsmoke(e.g.[26,27]).Theproblemofairpollutionfocusedinthisperiodonhumanhealth.Inpart,emissionswereduetoindustrialdevelopmentandrapidlyincreasingemissionsfromshortstacks.Additionalsourceswerefromdomesticemissionsbytherapidlygrowingurbanpopulationoffactoryworkerswhomostlyburnedcoalforwarmthandcooking.Ambientconcentrationswerenotmeasuredduringtheeighteenthandearlynineteenthcenturies,andvaluesareamatterofspeculation.Emissionsfromcombustionwerethemaincontributorstopoorairquality,buttheywerenottheonlypollutants.ItisimportanttomentionemissionsofNH3fromthelargeurbanpopulationofhorsesfortransport,whichwouldhaveaddedtoNH3releasedbycoalcombustion[16].Thequantityofhorsedungonurbanroadswasrecognizedasagrowingprobleminthelatenineteenthcentury,forexample100 000horsesinNewYorkproducing1000tonnesofmanuredaily(the‘greatmanurecrisis’inNewYorkandLondon;[28]),withamajorproblemprojectedintofuturedecades.Priortothetwentiethcentury,horsepopulationsweresubstantialinallmajorcities.Thepoorstateofsewagetreatment,especiallyduringtherapidexpansionoftheeighteenthandnineteenthcenturies,alsocontributedtoemissionsofNH3.TherapidreplacementofhorsedrawntransportbymotorvehiclesintheearlydecadesofthetwentiethcenturyavoidedtheproblemsforecastforcitieslikeLondonandNewYork.LittleattentionhasbeendrawntothecombinationofSO2,NOxandNH3intheurbanchemicalclimateofthenineteenthcentury,perhapsduetothelackofmeasurementsandthefocusonpollutantsfromcombustionsources.ButthepresenceoflargeemissionsofNH3wouldhavepromotedtheformationofparticulate(NH4)2SO4[29]andtherapiddepositionofSO2toterrestrialsurfaces[30].Amongthefewearlyurbanmeasurements,Smith[31],recordedconcentrationsofNHx(NHxisthesumofgaseousNH3andparticulateNH4+)inLondonof80togreaterthan1000 µg m−3,withthehighestvaluesrecordedduringfog.ThedepositionofNH3wouldalsohavecontributedtochangesinspeciesrichnessofplantcommunitiesinurbanareas[32].Thedegradationofairqualityduringtheperiod1750intothetwentiethcenturywasprimarilyinurbanareasorclosetolargeindustrialpointsources.MostmajorEuropeancitiesinthelatenineteenthcenturyhadairqualityproblems.LondonandEdinburgh,respectivelyknowncolloquiallyas‘theSmoke’and‘AuldReekie’,werenotablebutfarfromunique.AllmajorcitiesoftheUKsuffered.PopularworksofEnglishliteraturebyDickensandConanDoylecontainmanydescriptionsofdenseswirlingsmogcontributingtoanairofdangerandgloominVictorianLondon.Likewise,themajorcitiesthroughoutEurope,wherecoalprovidedthemainfuelforindustryanddomesticheating,developedsimilarairqualityproblems.ThepollutantsfromcoalcombustionincludedSO2,NO2,smokeand,toalesserextent,HClfromthechlorineincoal[33,34].UrbanconcentrationsofSO2andsmokeinthelargecitiesinthemiddledecadesofthetwentiethcenturywerecommonlybetween50and100 µg m−3,andmanyUKcitieshadannualvaluesinthisrange[35].Meteorologicalconditionsinthewintermonthsleadingtolowwindspeedandacoldsurfaceairgreatlyreducedispersionofpollution,andintheseconditions,concentrationsofsmokeandSO2couldexceed1000 µg m−3,asintheinfamous1952Londonsmogepisode[19].5.1952TheGreatLondonSmogAirpollutionwas,untilthe1950s,largelyacceptedasaconsequenceofindustrialactivity,withaperceivedwillingnesstotoleratethegrime,degradedvisibility,erosionandblackeningofvaluedbuildingsandeffectsonhumanhealth,agricultureandnaturalecosystems.Ittookamajoreventtochangethepublicandpoliticalperceptionoftheproblemandtheneedforcontrolmeasures.The1952Londonsmogresultedintheprematuremortalityofapproximately12 000people[1].ThepublicandthenmoreslowlythepoliticalreactionledtotheintroductionoftheCleanAirActin1956,some3yearsaftertheevent.ItarosefromaBilltotheUKParliamentinitiallyproposedbyaback-benchMemberofParliament(SirGeraldNabarro),andnotaninitiativeoftheGovernmentMinistersatthetime,anindicationoftheprevailingfocusonhousing,industrialgrowthandrecoveryfromtheeffectsoftheSecondWorldWar.Thelackofprioritizationformattersoftheenvironmentwasafeatureof1950sBritain,wherefoodrationingwasstillinplacein1952.However,thisActofParliamentwasaveryimportantstep,eventuallyleadingtowidespreadreductionsinemissionsofsmokeandSO2inurbanareas.DuringthethreedecadesfollowingtheLondonsmog,manyurbanpowerstationsandotherpollutingindustrialsourceswereclosed,andnew,larger,moreefficientpowerstationswereconstructedinruralareas.Theseeachtypicallyproduced2000 MWoutputofelectricalpowerandconsumed5milliontonnesofcoalannually.UKemissionsofSO2continuedtoincreasethroughthe1950stoapeakinthe1960s,mainlydrivenbyindustrialemissionsandespeciallypowergeneration.ThenewlargepowerstationswereequippedwithreasonablyeffectivecontrolsforPM,butnoneofthenewunitshadSO2removingequipmentuntilDraxin1988andRatcliffein1995.TheclosureofthelargenumberofsmallerverypollutingurbanpowerstationsandotherindustrialsourceswithshortstacksfurtherreducedemissionsofSO2andsmokeincitiesandcontributedsignificantlytotheimprovingurbanairquality.AmbientconcentrationsofsmokeandSO2declinedby60%between1962and1975inLondon,nearlyaquarterofacenturyaftertheeventthattippedthescalesinfavourofeffectiveactiononurbanairquality(figure 2). Figure2.ThedeclineinSO2andsmokeinLondonfollowingtheCleanAirAct(1956),includingdatafromthe‘bubblermethod’samplingairthroughaperoxidesolutioninwaterandultraviolet(UV)spectroscopy.(M.L.Williams,personalcommunication,2017).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointRecognizingneedstoreduceground-levelconcentrationsofSO2andsmoke,newpowerstationsfromthe1950swerebuiltwithincreasinglyhighchimneystacks.Thelargeruralpowerstations,manyintheTrentandOusevalleysoftheEnglishMidlandsandindustrialnorth,hadlargerstackheights,manyat200 m,promotingdispersionandreducinglocaleffects[36].SimilarchangesinpowergenerationweretakingplaceacrossEuropewhereSO2emissionspeakedinthe1980s[37].Itisnotablethatonaglobalscale,EuropeandNorthAmericawereresponsibleformost(greaterthan80%)oftheglobalSO2emissionspriorto1970(figure 3).EmissionsinNorthAmericagrewratherfasterthanthoseinEuropeandwithtallstacksalsousedinNorthAmericatodispersepollutants,tominimizelocaleffects.GlobalemissionsofNOx,non-methanevolatileorganiccompound(NMVOC)andNH3alsoincreasedrapidlyduringthelatetwentiethcentury(figure 3),asconsequencesofincreasedenergyconsumption,transport,solventsandagriculturalactivity.Thesegraphsshowthemajorshiftssince1980,whereChinaandtheAsia/PacificregionhavereplacedEuropeandNorthAmericaasthemainglobalsourcesofairpollution. Figure3.GlobalandregionalemissionsofSO2,NOx,NH3andNMVOCbetween1750and2010.AdaptedfromHoeslyetal.[37].Thedotsshowglobalestimatesofanearlierstudy(CMIP5[38]).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPoint6.Therecognitionofregionalairqualityissuesandlong-rangetransportofairpollutionAlthoughtherehadbeenearlierconcernsregardingecologicaleffects,thepoliciestocontrolairpollutionduringthe1950sand1960swereaimedatprotectinghumanhealth,withafocusonurbanairquality.But,asnotedabove,thegradualimprovementofurbanairqualitytookplacewhilecountry-scaleemissionsofSO2wereclosetotheirmaximum,asaconsequenceofincreasingemissionsfromlargecombustionplantswithtallchimneystacks.Duringthisperiod,annualUKemissionsofSO2reachedtheirpeakof3Mt Sannually[39].AnnualEuropeanandNorthAmericanemissionsofSO2alsopeakedduringthisperiodat32Mt-S[40]and31 Mt-S[41],respectively.ThescaleandeffectsonthecountrysidefromthehighlevelsofSO2(andNO2)werenotimmediatelyrecognizedasanissue.InthePenninehillsbetweenSheffieldandManchester,theForestryCommissionwasunabletoestablishplantationsofScotsPineduetotheambientexposuretoSO2andlargeareasofcentralEnglandaswellasallofthemajorcitiesweredevoidoflichenspeciessensitivetoSO2[42].Effectsonagriculturalcropsweresubstantial,withsomecultivarsofgrassdevelopingresistancetoSO2[43],butknowledgeofthesedomesticproblemsofairpollutionwasinsufficientfortheUKGovernmenttointroducefurtherlegislationtoreduceemissions.TheCleanAirActwasregardedasadequate,andtherewerenolimitsontheoverallscaleofSO2emissions,justarequirementtousestackheightstallenoughtominimizetheconcentrationsdownwindatthesurfacefollowingthephilosophyofBestPracticalMeans[44].Policyprioritiesatthisstagewerefirmlyfocusedonhumanhealth.ElsewhereincontinentalEurope,tallstacksandlargepowerplantslocatedoutsidethecitieswerealsoregardedaseffectivepoliciestominimizeeffectsonhumanhealth.AreashighlypollutedbySO2wereextensiveoverEngland,Germany,easterncentralEuropeandtheLowCountries(figure 4).Ecologicaleffectswerenotconsideredsufficientlyimportanttointroducefurthercontrolmeasures,eventhoughitwasknownthatsomeindustrialprocesses,especiallysmelting,producedstrikingexamplesoflocaldamagefromSO2andmetaldeposition.Forexample,emissionsfromtheSudburysmelterineasternCanadaduringtheearlytwentiethcenturycausedextensiveareasofnaturalvegetationtobedestroyedbythecombinationofexposuretoverylargeconcentrationsofSO2andlargedepositionratesofarangeofmetals[45,46].Smelterswerepresentinmanycountriesglobally,andlargeexposurestoSO2andmetaldepositionwerecommonintheirproximitywithexamplesinSlovenia,Peru,Canada,USA,Russia,China,France,PolandandZambia[47]. Figure4.AnnualmeanEuropeanSO2concentrations(µg m−3)in1970,ataroundthetimeofpeakSO2emissions,modelledusingEMEP4UKwith1970emissionsand2012meteorology(M.Vienoetal.,personalcommunication,2020).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPoint7.EarlyevidenceofairpollutiontransportfrommeasurementsTherewereseventeenth-centuryanalysesofrainfall,possiblythefirstbyOleBorchinDenmark.Thesebecamemorecommonlyundertakenbyagriculturalistsduringthe1800s[19]andincreasinglyusedworldwide[10,48,49],providingearlyevidenceofinter-countryexchangeofpollutantsfromobservationsofcontaminatedsnowfall.ThedepositionofurbansulfateinLondonrainfallwasdeterminedbyRobertAngusSmithin1869–1870[7].Thenumberofestimatesoftheconcentrationsofsubstancesinairincreasedrapidlythroughthenineteenthcentury.Russell[50]measuredtotalPMgravimetricallyincentralLondonat120,360and860 µg m−3infine,dullandfoggyweather,respectively[51].Althoughmeasurementsofcarbondioxidewerefrequent(aslistedinCallendar[52]),thisoccurredonlyoccasionallyfortracegasessuchasammonia[31,53].Theearlytwentiethcenturysawthedevelopmentofthedepositgaugethatmeasuredwetdepositionandwhateverelsefellintothelargeglassbowl[54]andtheuseofleadperoxidecandlestodeterminedepositedsulfurdioxide[55].ThewidespreadoccurrenceofSO2ledtoincreasinglysophisticatedmethodsthatinvolveddrawingairthroughDreschelbottles(bubblers)containingsolutionsofiodine,hydrogenperoxideordisulfitomercurate[56].Table 2showsthedateswhenregionalnetworkstomeasureatmosphericcompositionwereintroduced,revealingthatonlytheEuropeanAirChemistryNetwork(EACN)wasinplacepriortothepeakinEuropeanemissionsofSO2.Attheglobalscale,monitoringofglobaltrendsinbackgroundatmosphericcompositionisnowcoordinatedthroughtheGlobalAtmosphericWatch(GAW)network[58],whoseoriginscanbetracedbacktotheBackgroundAirPollutionMonitoringNetwork(BAPMoN)firstestablishedin1974[59]. Table 2.Long-termmonitoringactivitiesinrelationtoacidrainandotherpollutants(adaptedfromGrennfeltetal.[57]). Collapse activityandtimegeographicalcoverageandnumberofsitesprogrammecentrewebpagecommentsatmosphereEACN(IMInetwork)1955–1976Europe>100sitesStockholmUniversitysomesitescontinuedwithinEMEPafter1976(L.Granat,personalcommunication,2019)WMOGAW/BAPMoN1964–global>200sitesWorldMeteorologicalOrganizationhttp://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.htmlEMEP1977–EuropeandECEregionofAsiaapproximately350NorwegianInstituteforAirResearch(NILU)http://www.emep.int/NADP1977–USAapproximately260sitesUniversityofWisconsin-Madisonhttp://nadp.slh.wisc.edu/CAPMoN(incl.APN)1978–Canadaapproximately25sitesEnvironmentCanadahttps://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/canadian-air-precipitation.htmlEANETEastAsiaAsiaCenterforAirPollutionResearch(ACAP)http://www.eanet.asia/MaleDeclaration2003–SouthAsia15sitesOriginallytheSouthAsiaCooperativeEnvironmentProgramme;nowAsianInstituteofTechnologyhttp://www.sacep.org/programmes/male-declarationhttp://www.rrcap.ait.asia/maleEcosystemsICPForests1985–Europe5000plotsand500intenseplotsThünenInstituteofForestEcosystemshttp://icp-forests.net/ICPWaters1985–EuropeandNorthAmericaapproximately250sitesNorwegianInstituteforWaterResearchhttp://www.icp-waters.no/ICPMaterialEuropeandNorthAmericaapproximately40sitesRiseKIMABAB,Swedenhttp://www.corr-institute.se/icp-materials/web/page.aspxICPIntegratedMonitoringEuropeapproximately50sitesFinnishEnvironmentInstitutehttp://www.syke.fi/nature/icpimICPVegetationEuropeCentreforEcology&Hydrology,UKhttps://icpvegetation.ceh.ac.uk8.Long-rangetransportofairpollutionTheNorwegianplaywrightHenrikIbsen'splay‘Fire’(Brand)showedthatpeoplewereawareoflong-rangetransportofpollutantsinthenineteenthcentury[60]: Worsetimes,worsesinsthroughthenightoffutureflashesofBritain'ssuffocatingcoaldustisslowlydescendingoverthecountrysidesoilingallthatisgreenstranglingallthatstrivestogrowcreepinglowandmixedwithpoisonstealingsunandlightfromthevalleypeltingdownasrainofashes.Evenintheearly1950s,itwasknownthatthemajorityofUKsulfuremissionswereexportedfromtheUKcoastline,asMeetham[61]demonstratedusingnationalmonitoringdataandasimpleatmosphericmassbalance.However,themagnitudeoftheeffectsoflong-rangetransportofairpollutantsfromthemajoremittingcountriesinEuropeonthenetimportingcountrieswasnotconsideredanimportantissueuntilthelate1960sand1970s.ThepotentialfortransboundarytransportwithinEuropecanbereadilyvisualizedfromthedatainfigure 4,giventypicalboundarylayerwind-speedsof10 m s−1andanatmospherice-foldinglifetimeforSOxofafewdays.9.1960sAcidrainSwedishscientistSvanteOdeninitiallyadvancedtheideathatthelong-rangetransportofsulfurandacidityinEuropefromthemajorsulfuremittingcountries(UK,Germany,FranceandPolandinparticular)wasresponsibleforwidespreadacidificationoffreshwatersandlossoffishpopulationsinScandinavia[62].MonitoringdataforairandprecipitationestablishedbyEgnerandcolleaguesfrom1955(theEACN)providedthevitalchemicaldatashowingboththegeographicalpatternsandtrendsinconcentrationsofthemajorionsinprecipitation(e.g.[10]).TheEACNdatashowedacidityandsulfateinprecipitationincreasingsteadilythroughthe1950sand1960s[63].OdenattractedconsiderableSwedishinterestwiththeseideas,muchofitcritical.Theideaswerenewandmanyaspectsoftheatmosphericchemistryandphysicsofthecompoundsinvolvedwerepoorlyunderstood.However,theevidencewaspersuasive,andfurtheranalysisbySwedishcolleaguesprovidedstrongsupportforhisarguments.AUnitedNationsconferenceontheHumanEnvironmentinStockholmin1972advancedthewidercasethatthepollutionofonecountrybyanotherthroughemission,atmospherictransportanddepositionwasunacceptable[64],buildingontheevidenceoflong-rangetransportofsulfurcompoundswithinEuropeandtheeffectsinScandinavia.TheStockholmConferenceof1972wasaturningpointinenvironmentalscience.Thereislittledoubtthatlong-rangetransportandeffectsofpollutantshadbeentakingplacefordecades;infact,manyhadnotedtheinter-countrytransportofpollutantsinEurope(e.g.[60]).ItwasonlyfollowingOden'sanalysisthatinternationalscientificandpoliticalattentionwasdrawntothesubjectandmonitoringandprocessstudiesdemonstratedthescaleandecologicalsignificance.TheinitialreactionofthemajorpollutingcountriesinEuropewasmixed.Allrecognizedtheneedtoquantifythescaleofinter-countrytransportofthemajorpollutants,theunderpinningatmosphericchemistryandphysics,andtheeffectsonecosystems.However,thelegalinstrumentsneededtobedeveloped,andthesupportingmonitoringandanalysistoolswerestilllacking.Theindustrialnationshaddesignedtallstackstodispersethepollutantswithoutconsideringpossibleeffectsoutsidetheirjurisdiction.ThecombinationofthescienceandpoliticalbackgroundisdescribedindetailbyGrennfeltetal.[57].AnearlierdescriptionofthepoliticalbackgroundintheUKbyRose[65]providesfurtherinsightsandistypicalofthelargenumberofpublicationsonthepoliticsofacidrain.ResearchandmonitoringactivitiesexpandedacrossEuropeandtheessentialdetailsoftheemissions,atmosphericchemistryanddepositionwerepresentedatDubrovnikin1977[66].ThefirstmajorinternationalconferenceonacidrainwasheldinColumbus,OH,USAin1975,beginninganimportantseriesofmeetingsonthesubjectapproximatelyevery5yearsfrom1975to2015.Table 3provideslinkstothisseriesofmeetingswhichshowsthedevelopingglobalscaleofairpollutionissuesthroughthelatterdecadesofthetwentiethcentury,beginningwithacidrain.TheresultsoftheNorwegianSNSFresearchprogrammeintothecausesandeffectsofacidrainwerepresentedatthesecondinternationalAcidRainconferenceinSandefjordin1980[68].ClearlinksbetweensulfuremissionsintheindustrialnationsofEuropeandlong-rangetransportto,anddepositionandeffectswithin,NorwayandmorewidelyinScandinaviaweredemonstrated.Theeffectswereprimarilyonfreshwaters,withlargedeclinesinfishpopulationsinthemostacidifiedregions.TheearlystudiesinScandinaviadidnotshownegativeeffectsonforestsofthelong-rangetransportofpollutants.DiscussionmeetingsattheRoyalSocietyofLondonreportedthePathwaysofpollutantsintheatmospherein1979(Phil.Trans.A,vol.290)andTerrestrialEffectsofdepositedsulfurandnitrogencompoundsin1984(Phil.Trans.B,vol.305). Table 3.Theseriesofinternationalconferencesonaciddepositionshowingthebroadeningofissuesandscalefrom1976to2016. Collapse dateissuelocationreferencetoproceedings1976acidrainColumbus,OH,USADochinger&Seliga[67]1980acidrainSandefjord,NorwayDrabløs&Tollan[68]1985aciddeposition,forestdeclineMuskoka,Ontario,CanadaMartin[69]1990aciddeposition,eutrophication,ozoneGlasgow,UKLast[70]1995aciddeposition,eutrophication,ozone,criticallevelsGothenburg,SwedenGrennfelt[71]2000aciddeposition,eutrophication,ozone,recoveryTsukuba,JapanSatake[72]2005aciddeposition,eutrophication,ozone,recoveryPrague,CzechRepublicBrimblecombeetal.[73]2011aciddeposition,eutrophication,ozone,recoveryBeijing,China2016aciddeposition,eutrophication,ozone,recoveryRochester,NY,USAAherneetal.[74]Bythelate1970s,therequirementtoreduceEuropeanemissionsespeciallyofSO2,andtherebyreducedepositionofacidifyingcompounds,inScandinavia,wasclear.ThisledtotheestablishmentoftheConventiononLong-rangeTransboundaryAirPollution(LRTAP)asamajorinternationalframeworktoaddresstheproblem[75].Thisrequiredextensivemonitoringofthechemicalcompositionofairandprecipitationandassociatedmeteorologicalvariables,thedevelopmentofatmospherictransportanddepositionmodelstoquantifythenettransferofpollutantsbetweencountries(theEuropeanMonitoringandassessmentProgramme(EMEP)),andaframeworkforinterpretationandnegotiationoftheissuesbetweenthecountries.ThedevelopmentoftheLRTAPConventionhasprovedaveryeffectiveprocesstobringtogethertheprocess-basedscience,themonitoringandthemodelling(withintheEMEP)andpolicydevelopment,ultimatelyleadingtointernationalagreementstoreduceemissionsofSO2andsubsequentlyNO2,VOCandotherairpollutants.Likethehuman–health-orientedmeasurementprogrammesinstigatedintheUSA,theLRTAPprogrammerecognizedtheneedtosimultaneouslymeasureawiderangeofconstituents,butalsorecognizedtheneedtomakemeasurementsoverlongtimeperiodstoovercometheconsiderableinter-annualvariabilityinmeteorologicalconditions[76].TheLRTAPprogrammealsointroducedtheexplicitgoalofmakingmeasurementstosupportassociatedatmosphericmodelling.Intheearly1980s,agroupofEuropeancountriesconsideredareductioninSO2emissionsappropriate,butintheabsenceofcountry-specificcontributionstotheecologicaldamageinScandinavia,anarbitraryagreementtoreduceemissionsby30%wasproposed.Many,butnotallcountries,supportedthemeasure,formingthe30%club.Argumentswerepresentedthatthecostsofcontrolweresubstantiallygreaterthanthebenefits.Forexample,itwasstated(incorrectly)that‘aciddepositionisamilliondollarproblemwithabilliondollarsolution’[77].Nevertheless,the30%clubwasthebasisforthefirstSulphurProtocol,signedinHelsinkiin1985,whichstipulatedareductioninsulfuremissionsof30%between1980and1993.Freshwateracidificationandadeclineinfishpopulationsweretheinitialfocusandtheevidencethatthecausewaslong-rangetransportofpollutants,mainlysulfur,wascompelling.TherewasasecondaryfocusonthehealthofforestsinScandinaviabutheretheevidencewasnotpersuasive.ThescientificandpoliticalinterestinacidraininScandinaviaandmorewidelyinEuropestimulatedinterestelsewhere,especiallyNorthAmerica,wheresimilarlylargeincreasesinemissionsofSO2hadoccurred(figure 3).TheUSAhadestablisheditsownNationalAtmosphericDepositionProgram(NADP)in1977.ThecombinationofalargesourceareaintheOhioRivervalleyandalargeareadownwindwithgeologyandecosystemssensitivetoacidificationsoonledtotherecognitionofproblemsfromlong-rangetransportofpollutantssimilartothoseidentifiedinEurope.Thefactthatsubstantialareasofacid-sensitiveecosystemswerelocatedinCanadaaddedapoliticaldimensionsimilartothatinEurope,withonecountrybeingresponsibleforecologicalproblemsinaneighbouringterritory.10.1980sForestdeclineBy1980acidrain,ormorecorrectlyaciddeposition,recognizingtheimportanceofbothwetanddrydepositiontothetotalinputtotheground[78],wasestablishedasaninternationalissue,andallindustrialcountriesengagedinresearchandmanyinthedevelopmentofcontrolmeasures.InterestinaciddepositioninEuropewasgreatlystimulatedintheearly1980sbyadeclineinthehealthofforestsinthemostpollutedregions[79].ThemostdamagedforestswerethoseintheuplandsinborderregionsoftheCzechRepublic,PolandandtheGermanDemocraticRepublicwheredie-backoftheforestwasextensive.InpartsofGermany,especiallytheHarzMountains,thetree-linemoveddownthehillsasdamageathighelevationwhichwasafeatureoftheproblemprogressedtolowerlevels.ThelargeareasofforestdeclinethroughoutGermany(Waldsterben)becameadefiningenvironmentalissueofthelatetwentiethcentury[32].Thecausesofforestdeclinewerehotlydebatedandcontentious[79].Themaincausalagentsappearedtobeaciddepositionandozone,butexcessivenitrogendepositionandmetalswerealsopossiblecontributorsand,atmanyofthesitesofforestdecline,exposurestolargeinputsofacombinationofthesepollutantswerecommon.Whilemanypublicationsaddresstheproblem,thereisnoconsensustodateontheproportionsoftheobserveddamageattributabletoeachofthepollutantsandmechanismsofdamage.ForestdeclinewasanimportantpartoftheaciddepositionstoryinNorthAmerica,andaparticularspecies,redspruce,showedwinterinjurythatwasshowntobeassociatedwiththeexposuretoacidiccloud-waterandsulfateintheAppalachians[80].Fromthemid-1980s,sulfurandaciddepositiondeclinedsteadilyinEuropeandNorthAmerica,withrecoveryinatmosphericcompositionprecedinganysignsofecosystemrecovery[81,82].WhiletherewereclearlinksbetweenaciddepositionandforestdeclineinbothEuropeandNorthAmerica,ground-levelozonewasalsoimplicatedinbothregions[83,84].11.Ground-levelozoneThebroadeningoftheecologicalfocusfromfreshwaterstoforestsandtheexpansionofthenumberofpollutantsimplicatedineffectswasanimportantdevelopment.Inexpandingtherangeofeffectsandpollutants,theregionalscalewasalsoexpandingconsiderably.Ozoneisformedwithintheatmospherefollowingphotolysisofoxygeninthestratosphere,andsomeistransferredintothetroposphereandcontributestoozoneatthegroundlevel[85].However,ozoneisalsoproducedthroughthephotochemicaldegradationofcarbonmonoxideandVOCsinthepresenceofNO2,andtheissueofozoneinsurfaceairiscommonlyreferredtoasground-levelozonetodistinguishitfromstratosphericozoneissues.ItwasfirstrecognizedasaproblemforhumanhealthandvegetationinCalifornia,andespeciallytheLosAngelesbasin,whereitwasfirstdescribedbyMiddletonetal.[86].ThepresenceofozoneconcentrationsthatposedarisktovegetationandhumanhealthoverEuropewasdemonstratedintheearly1970s[87].OverEurope,thebackgroundconcentrationofozonehasincreasedbyapproximatelyafactoroftwosincepre-industrialtimes[88],andepisodesofelevatedozonewereshowntobewidespreadinEuropeinthe1980s[89].TheeffectsofozoneonnaturalvegetationandcropsarediscussedbyStevensetal.[32]andEmberson[90],respectively.ThediscoveryofdamagingozoneconcentrationsinEuropeandNorthAmericagreatlyincreasedtherecognitionofphotochemicaloxidantsinregionalairqualityissuesinthe1970sand1980s.ThefocusofcontrolmeasuresthereforebroadenedfromsulfurandnitrogenoxidestoincludeVOCsinmanyotherindustrialcountries[57].Therelativelylonglifetimeofozoneinthetroposphere(approx.20days)andphotochemicalproductionoverregionalscalesmakesground-levelozoneacontinentalandhemisphericscalepollutant[91].TheindustrialregionsofEuropeandNorthAmericaexperiencedfrequentsummerepisodesofozoneinthe1970sand1980swithconcentrationsexceeding200 µg m−3.Thecontrolmeasurestodatehaveallbeencountryorregionalinscale,andwhileimportantprogresshasbeenmadeinreducingpeakvalues,especiallyinCalifornia,butalsoacrossmuchoftheUSAandEurope,ozoneremainsasubstantialthreattocrops,naturalvegetationandhumanhealth[32,90].Methaneisplayingamajorroleintheformationofbackgroundozone,andthereisincreasinginterestintakingpolicyactionstocontrolmethaneemissionsasitisbothagreenhousegasandanozoneprecursor[92].12.1990Eutrophication:theeffectsofnitrogendepositiononecosystemsAsanunderstandingofaciddepositiondeveloped,andground-levelozonewasrecognizedasanadditionalregional-scaleairpollutionissue,theimportanceofnitrogencompoundsgrew.Nitrogencompoundswerealwaysapartofaciddeposition,evenwhendepositedinreducedformasNH3orNH4+inprecipitation,astheprotonsgeneratedinsoilfollowingmicrobialoxidationtonitratecreateacidity[93].However,theNetherlandsandtheUKwerefirsttoobservewidespreadchangesinbotanicalspeciescompositionofheathlands[94].Itwassoonshownthatthechangeswerebeingdrivenbynitrogendepositionfromtheatmosphereandbyammoniainparticular.Asalwaysinecology,thestoryisalittlemorecomplex,asthereplacementofheather-dominatedheathlandsbygrasslandintheNetherlandswasmediatedbytheheatherbeetle,buttheunderlyingdriverofchangewasthedepositionofnitrogencompoundsfromtheatmosphere[95].TheeutrophicationofecosystemsbynitrogendepositionhasbeenshowntoreducespeciesrichnessofgrasslandsoverregionalscalesinEurope[96,97].Closetolivestocksourcesofammonia,thechangesinfloracanbesubstantial[98]andtheformofthenitrogendepositedhasbeenshowntobeanimportantfactorinthescaleofeffects,withgaseousammoniabeingmoredamagingtoheatherthanwet-depositedNO3−orNH4+[16,99].SimilareffectsofdepositednitrogenonecosystemshavebeenreportedinNorthAmericaandChina.Thescaleofeffectsofpollutantsonecosystemsquantifiedattheturnofthetwenty-firstcenturyshowedthat24%ofglobalforestswereexposedtophytotoxicexposuresofozone[100].ThedevelopmentoftheCriticalLoadsapproachandintegratedassessmentmethodsprovedvaluableinstrumentsinthedevelopmentofpoliciestomaximizetheecologicalbenefitsofcontrolmeasureswithintheLRTAPConvention[57].13.1990sHumanhealthregainsthefocusofpoliticalattentiononairqualityAsnotedabove,theearlyevidenceofairpollutioneffectswerelargelyhumanhealth-relateduntilthediscoveryofacidraineffectsinScandinaviainthelate1960s.Therecognitionofeffectsoflong-rangetransportandthedepositionofpollutantschangedthescientificand,forawhile,thepoliticalattention.Thebroadeningofthescienceinterestintoground-levelozoneandeutrophicationwereimportantinthescienceandeffects,andledtocontrolsontheprecursorpollutantemissionsinEuropethroughLRTAPprotocols.InNorthAmerica,effortstocontroltheprecursorgasesfollowedadifferentcontrolprocess,butachievedsimilarreductionsinemissionsoverthelongerterm.EmissionsofSO2inEuropeandNorthAmericahavebeenreducedin2016byapproximately90%fromtheirpeakvaluesinthe1970sand1980s,respectively(figure 3).However,intheearly1990s,apublicationshowingassociationsacrosssixUScitiesbetweenhumanmortalityandmorbidityandlevelsofairpollutants,especiallyPM,changedthepoliticalandscientificfocusofeffects[101].Subsequentpublicationsonhumanhealtheffectsofpollutantsfollowingsimilarepidemiologicalapproachesrevealedthescaleofeffectsonhumanhealththroughoutthedevelopedanddevelopingnations.CurrentestimatesarethatoutdoorconcentrationsofPM2.5aloneareresponsibleforannualburdensof4.2millionprematuredeathsand100milliondisability-adjustedlife-yearslostglobally[102].ThesepublicationsshowedairpollutiontobeoneofthemajorglobalcausesofprematuremortalityanddrewattentiontothehumanhealtheffectsofpollutantsatmuchsmallerconcentrationsthanhadbeenimplicatedintheLondonsmogof1952.Thisrefocusedscientificandpoliticalattentiononairpollutantsbacktohumanhealth.Theunderlyinglogicofthechangeinfocusisunderstandable,giventhelargenumbersofindividualsandthesocietalcostsofpoorhealthandmortality.Bycomparison,effectsofpollutantsonnaturalecosystems,whicharealwaysdifficulttovalue,andonagriculturalandforestcropsaresmallerinvaluethanthoseonhumanhealth.Forthesereasons,ecosystemeffectshavebecomeasecondaryconsiderationforthepolicymakers.Humanhealthhasbeentheprimaryfocusforthecontrolofairpollutionsincethelate1990s.CleanairlegislationinEurope,NorthAmerica,Japanandotherdevelopedcountriestargetsbothambientlevelsandemissionsources.Nevertheless,themulti-impacteffectsofPM,NO2andO3onhumanhealthandmanagedandnaturalecosystemsmeanthatUNECE-LRTAPprotocolsstillfulfilacrucialrole[57].14.ParticulatematterThechronologypresentedheredescribesthedevelopmentofairqualityissuesastheyaroseratherthanprovidinganarrativeforeachpollutant.However,itisimportanttodrawattentiontoPManditsroleincurrentairqualityproblems.PMfeaturesintheearliestreportsofairpollution,althoughterminologyhasbeeninconsistentandoftenpoorlydefinedwithtermsincludingsmoke,soot,fume,hazeanddust,frequentlyusedsomewhatindiscriminatelythroughtheliterature.PM,describedindetailbyHarrison[103],inthisissue,referstothesumofallsolidandliquidparticlessuspendedinairandisacomplexmixtureofsize,spanningatleastfourordersofmagnitude(1–10 000 nm)andwithalargerangeofchemicalcomposition.Thelatterreflectsthewidevarietyofcontemporarysourcesandverybroadlycomprisescarbonaceousparticlesemitteddirectlyfromcombustion,dustsfromindustrialprocessesandwithin-atmosphereconversionsofinorganic(SO2,NOxandNH3)andorganic(VOC)gasesintoPM.PMisthemaincontributortohumanhealtheffectsbysomemargin,anditisalsotheforminwhichmostofthelong-rangetransportofsulfurandnitrogen-containingpollutantsoccurs.PMcontributestochangesintheEarth'senergybalancebothbyabsorption(e.g.blackcarbon)andbydispersionandreflectionofradiation.ManyofthelinksbetweenairqualityandclimatechangearethereforeduetointeractionsbetweenPMandtheradiativebalanceandthusclimate[104].Similarly,manyoftheeffectsofpollutantsonecosystemsareduetothedepositionofPMeitherdirectlybydrydepositiononfoliarsurfacesorthroughoccultorwetdeposition[105].Smogincludesbothparticulateandgaseouscomponents,butthevisibilityeffectsaredominatedbyPM.GiventhecontributionofPMtothechemicalclimatologyoftheatmosphereoverthedevelopedandrapidlydevelopingcountriesandthecontributionofPMtoeffectsonhumanhealth,itislikelythatPMwillcontinuetodominatecontrolmeasuresforsomedecadestocome.15.2010–2020AirqualitygloballyEmissionsofmostprimarypollutantshavedeclinedinEurope,NorthAmericaandJapanfromthe1990suntilthepresentwiththegreatestprogressinSO2,butevenNO2andVOCemissionshavedecreasedmorethan50%fromtheirpeaksintheseregions.Bycontrast,duringtheperiod1990–2010,emissionshaveincreasedinEastandSouthAsia,andelsewhere,sothatreductionsinglobaltotalemissions,evenforSO2,aremodest,withareductionof15%fromthepeakin1990(figure 3)[37].ForNOxemissions,theglobaltotalcontinuedtoriseandallthereductionsinemissionsinEurope,NorthAmericaandelsewherehavebeencounterbalancedbyincreaseselsewhereandmainlyinAsia(figure 3).ForNH3andVOC,thecaseissimilartothatforNOx,withtheglobaltotalsteadilyincreasing[37].ThelargeincreasesinemissionsofallprimarypollutantsinSouthandEastAsiahavebeenwidelyreportedanddescribedbyZhengetal.[106].AirqualityinAsianmegacitiesshowsvaluesforPM,SO2andNO2inepisodeconditionsthataresimilartothehighlypollutedatmosphereofLondoninthesmogepisodesofthe1950s,forexampletheBeijing‘haze’eventsinJanuary2012.Theglobalburdenofairpollutantshasthereforecontinuedtoincreaseintothefirsttwodecadesofthetwenty-firstcentury.ThefocusofpoliticalattentionremainsfirmlyonhumanhealthduetothePMandNO2exposureinurbanareasofthedevelopedanddevelopingworld.ThedistributionofambientPM2.5concentrationsexperiencedbydifferentregionalpopulationspresentedinfigure 5showshowthecurrentglobalairpollutionhealthburdenisdisproportionatelybornebycountriesinEastandSouthAsia,ratherthanthecountriesthatwereafflictedintheearlystagesoftheIndustrialRevolution.Evenso,themajorityoftheworld'spopulationliveinlocationswherelevelsofambientPM2.5exceedtheWHOguidelinevalue. Figure5.Distributionsofthepopulationasafunctionofannual(2013)averageambientPM2.5concentrationfortheworld's10mostpopulouscountriesandtherestoftheworld.DashedverticallinesindicateWorldHealthOrganizationInterimTargets(IT)andtheAirQualityGuideline(AQG).Source:Braueretal.[107].(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointItisimportanttonotethatthisfocusonhumanhealthdeflectsattentionfromthecontinuedwidespreadexceedancesofthresholdsforeffectsofpollutantsonmanagedandnaturalecosystems[90].16.SatelliteremotesensingTheneedtoobservetroposphericpollutiongloballydrovethedevelopmentofpassiveandsomeactiveremotesensingtechniquestomeasurethetroposphericburdenofkeypollutantstracegasesandaerosol.In1981,1984andtwicein1994theMAPS(MappingPollutionwithSatellites),agascorrelationradiometerinstrumentflewfortypically9daymissionsonthespaceshuttleandmeasuredmiddleanduppertroposphericCObetweenapproximately55°Nandapproximately55°S.AmoreadvancednadirgascorrelationinstrumentMOPITT(MeasurementsofPollutioninTheTroposphere)measuringinboththethermalandshort-waveinfraredhasnowmadeover20yearsofmeasurementsoftroposphericCOandsomeCH4fromtheNASATerra,whichwaslaunchedattheendof1999.Thetotalcolumnsandverticalprofilesofozone,O3,dataproductsfromNASATOMSandSBUVonNimbus7andlaterTOMSandSAGEIIdata[108,109]wereusedtoretrieveO3,O3amountsanddistributionswithafocusinthetropics.From1984,theSCIAMACHY(SCanningImagingAbsorptionspectroMeterforAtmosphericCHartographY)projectwasdevelopedandproposedtoESAin1988.ThisledtothesmallerGOME(GlobalOzoneMonitoringExperiment),beingflownonESAERS-2(1995–2011,[4])andSCIAMACHYonESAENVISAT(2002–2012,[110,111]).Bothsatellitesflewinpolarorbitswithequatorcrossingtimesof10.30and10.00,respectively,andmeasuredinnadirviewinggeometrytheupwellingradiationinthesolarspectralregionatthetopoftheatmosphere.TheUVandvisiblenadirmeasurementsofGOMEandSCIAMACHYhavebeenexploitedtoretrievetroposphericcolumnsofNO2,O3,SO2,HCHO,CHO.CHO,BrO,IOandH2O[4]incloud-freeregionsandaboveclouds.TheSCIAMACHYshort-waveinfraredspectralmeasurementsenabledCOcolumnsandforthefirsttimethetotaldrycolumnmixingratiosofCH4andCO2tobedeterminedglobally.SatellitemeasurementsrevealedthegrowthinemissionsinAsiaandthedeclinesinEuropeandNorthAmericaduringtheperiod1996–2004[112].SatelliteremotesensinginthesolarspectralregionalsoprovidesglobalfieldsfortroposphericSO2,CO,HCHOandCHO.CHO.ThelaunchoftheinstrumentsAIRSonNASAandIASI,aCNESFTIRonEUMETSATMetOpAB,hasledtothedetectionofNH3(see[113,114]).AcombinationofdatafromtheGOME,SCIAMACHYandOMIinstrumentsprovidesclearevidenceoftheincreaseinNO2inEasternChinabetween1995and2010andthesubsequentdeclinefrom2010to2018,asshowninfigure 6. Figure6.TrendsinthetroposphericNO2columnoverEastChinabetween1995and2018(A.RichterandJ.P.Burrows,personalcommunication,2020).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointSatelliteremotesensingalsoprovidesmeasuresofPM,aerosolopticalthickness,e.g.MODISonNASATerra(1999–present)andAqua(2002–present)[107].17.2020Areweattheglobalpeakofairqualityproblems?Globalemissionsofsulfurhavedeclinedsincethepeakin2000,andrecenttrendsinChinasince2012showareductioninemissionsapproaching50%(figures 3and7).Suchareductionrepresentsremarkableprogress,relativetothetimeittooktoreduceemissionsinEuropeandNorthAmericabyasimilaramount(approx.20years).EmissionsofNOxinChinahavealsodeclined,byapproximately25%overthelast8years[115]andfigure 6,althoughsurfaceozonehascontinuedtoincrease[116].ItisthereforepossiblethattheworldhaspassedthepointofmaximumemissionsofseveralmajorgaseousairpollutantsasacombinationoffurthercontrolsinNorthAmerica,EuropeandEastAsiadrivedownglobaltotals.ClimatechangepoliciesdirectedtowardsreduceduseofcoalandoilareexpectedtocontributefurtherreductionsinemissionsofSO2andNO2overcomingdecades[117].However,therearegoodreasonstobecautious,becauseemissionsofammonia,animportantcontributortoPMandeutrophication,continuetorise,andpossiblefeedbacksbetweenemissionsofthesegasesandclimatemaydriveoverallemissionsupwards[118,119].GlobalemissionsofCH4andVOCalsocontinuetorise,andinthecaseofbiogenicemissions,itispossiblethatchangesinclimateandthewidespreadplantingofnewforestsmayaccelerateglobalemissionsofbiogenicVOC(BVOC).DecisionsoverthespecieschosenfortreeplantingtoincreasecarbonsequestrationwillalsoneedtobemadetosimultaneouslyensurethatBVOCemissionsdonotincrease.Atpresent,itremainsinconsistentininternationalpolicythatlanduse,land-usechangeandforestryarerecognizedasareastocountascarboncreditsintheUNFrameworkConventiononClimateChange,butwhenitcomestotherevisedGothenburgProtocolundertheLRTAPConvention,theaccompanyingBVOCemissionsareconsidered‘natural’andareexcludedfromtheemissionscommitments.BoththebenefitsforcarbonandthepossibledisbenefitsforBVOCwillneedtoberecognizedinfutureinternationalagreements. Figure7.Annualemissionsof(a)SO2,(b)NOxand(c)NMVOCinChinabetween2010and2017(adaptedfromZhengetal.[115]).(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointDespitethewidespreadelevatedlevelsofPM2.5illustratedinfigure 5,datafromtheglobalburdenofdiseaseproject(figure 8)indicatethatgloballytheworldmaynowbeonadownwardtrendofdeathratesfromoutdoorPM2.5andfromground-levelozone. Figure8.AnnualdeathratesattributedtooutdoorPM2.5,outdoorground-levelozoneandindoorpollutionfromsolidfuels1990–2017.Source:www.ourworldindata.org/air-pollution/basedondatafromtheGlobalBurdenofDiseaseproject.(Onlineversionincolour.) DownloadfigureOpeninnewtabDownloadPowerPointGiventhecurrentscaleofeffectsofairpollutiononhumanhealthandecosystemsanduncertaintiesinmeasurementsandmodelling,itisprematuretocelebratethedownturninglobalemissionsoftwoofthemostimportantairpollutants(SO2andNOx).However,thetemporalpatterninemissionsofpollutantsdisplayedintheEnvironmentalKuznetsCurve[120],withincreasingeffortstocontrolemissionsaseconomiesmature,continuestobeconsistentwithobservationsaspartsofAsianowshowsubstantialreductionsinemissions,atleastforpollutionarisingfromcombustionsources.Furthermore,thereisareasonableexpectationthatmeasurestocombatclimatechangeandincreasetheuseofrenewableenergyindevelopingregions,especiallyAfrica,maysubstantiallymitigateemissionsofairpollutantsastheireconomiesdevelop.18.ConcludingremarksInprovidingachronologyofwhathasbecomeaverylargeandcomplexfield,thisnarrativehas,ofnecessity,beenselective.Ithasalsobeenexcessivelybriefondevelopmentsoverthelasttwodecadesduringwhichtherangeofissues,geographicalscaleandverydifferenttrendsindifferentareasoftheworldobscuresthewiderpicture.Thesuggestionthattheworldhaspassedthepeakinairpollutionproblemsisastrongstatement,andmayprovetobeincorrect.However,theevidencefromSO2andNOxemissionsispersuasiveforthemajoremittingcountriesinEurope,NorthAmericaandalsoforEastAsia.Ifsimilarlystrongcontrolswereappliedtoammoniaemissions,whicharecertainlypossibletechnically,thecurrentproblemswiththenitrogencyclecouldalsobeaddressed[121].ItislessclearwhenorhowglobalVOCemissionsmaybecontrolled,buttheseemissionswillbecomelessimportantiftheworldmovestowardsalowerNOxchemicalclimate.19.COVID-19TheDiscussionmeetingattheRoyalSocietyinLondon11thand12thNovember2019tookplacejustbeforethefirstcaseoftheSars-COVID-19wasreportedinChinaonthe17thNovember2019.ByJune2020,6.3millioncaseshadbeenreportedacross188countriesandterritoriesresultingin376 000deaths.Lockdownmeasureshaveledtomajoreffectsonindustrialandtransportactivitiesandreducedemissionsofmanyoftheprimarypollutantscontributingtopoorairquality.Whileitistoosoontoprovideadetailedanalysis,therearemanypreliminaryreports,includingsurfacemeasurementsfrommonitoringnetworksandsatelliteremotesensing.Inthemajorcities,reducedcombustion-relatedemissionsarerevealedbyCO2fluxmeasurements,withreductionsof55%incentralLondon[122].ThereductionsinurbanNO2intheUKduringthefirstweeksoflockdownof20–30%[122]aresimilartoreductionsinothermajorcitiesacrossthedevelopedworld.SimilarreductionshavebeenobservedincolumnNO2satelliteremotesensing(J.P.Burrows,personalcommunication,2020).TheeffectsonPM2,5aremuchsmallerandmorevariablethaneffectsonNO2,withsomeCOVID-19-affectedcitiesinChinareportingreductionsinPM10similarinscaletoreductionsinNO2butforashorterperiod[123].TheanalysisfortheUKduringlockdownsuggestedreductionsinpersonalexposureinLondontoPM2.5intherange5–25%,dependingonthemodeoftravel,buteffectsonambientPMaresmallandveryvariable.Theglobalscaleofthepandemicproducedacleareffectonglobalemissionsofcombustion-relatedemissionsofpollutants,withexpectedhealthandenvironmentalbenefitsduemainlytoreducedNOxemissions.Whetherthesebenefitsleadtolonger-termreductionsinemissionsismuchlessclearastransportandindustrialemissionsgrowfollowingthewidespreadpopulationlockdown.ItseemslikelythataneffectofCOVID-19willbetoreducenetacidityandincreasethegaseousalkalinefraction[16]astransportandcombustionemissionarereduced,butwithlittleanticipatedreductioninNH3emissionsfromagriculture.Whilethismaybeassociatedwithhealthbenefits,additionaladverseeffectsof‘alkalineair’onecosystemswillalsoneedtobeconsidered.DataaccessibilityThebulkofthepaperistextandreview,buttherearedataprovidedforthispaperwhichhavenotbeenpublished.Thedataareshowninfigures 2,4and6.Thesourcesforthedataarelistedinthelegendsforeachfigureandthedatamaybeobtainedfromthenamedsources.Authors'contributionsD.F.,M.R.H.,A.J.andP.B.wrotethecoresectionsofthemanuscriptwithcontributionsandcriticalrevisionsprovidedbyP.G.,D.S.S.,E.N.,M.C.,M.H.U.,M.A.S.,X.L.,Y.C.,Z.K.andG.W.F.M.V.providedtheEMEP4UKmodellingandJ.B.providedthesatelliteremotesensinganalysis.CompetinginterestsWedeclarewehavenocompetinginterests.FundingWereceivednofundingforthisstudy.AcknowledgementsTheauthorsgratefullyacknowledgeconstructivecommentsfromanonymousreviewers.ThecontributionsbyM.C.,M.A.S.,E.N.andM.V.weresupportedbytheUKNaturalEnvironmentResearchCouncil(NERC)NationalCapabilityawardNE/R016429/1,UK-SCAPE.WegratefullyacknowledgesupportfromUKRIforsupportoftheGlobalChallengesResearchFund(GCRF)SouthAsianNitrogenHub(M.A.S.,E.N.,M.V.andD.S.S.)andtheGEF/UNEPproject‘TowardstheInternationalNitrogenManagementSystem’(M.A.S.andM.V.).FootnotesOnecontributionof17toadiscussionmeetingissue‘Airquality,pastpresentandfuture’.©2020TheAuthors.PublishedbytheRoyalSocietyunderthetermsoftheCreativeCommonsAttributionLicensehttp://creativecommons.org/licenses/by/4.0/,whichpermitsunrestricteduse,providedtheoriginalauthorandsourcearecredited.References1.BellML,DavisDL.2001ReassessmentofthelethalLondonfogof1952:novelindicatorsofacuteandchronicconsequencesofacuteexposuretoairpollution.Environ.HealthPerspect.109,389–394.Crossref,PubMed,ISI, GoogleScholar2.Haagen-smitAJ.1952ThechemistryandphysiologyofLosAngelessmog.Ind.Eng.Chem.44,1342–1346.(doi:10.1021/ie50510a045)Crossref, GoogleScholar3.GorhamE,GordonAG.1960SomeeffectsofsmelterpollutionnortheastofFalconbridge,Ontario.CanadianJournalofBotany38,307–312.(doi:10.1139/b60-031)Crossref, GoogleScholar4.BurrowsJPetal.1999Theglobalozonemonitoringexperiment(GOME):missionconceptandfirstscientificresults.J.Atmos.Sci.56,151–175.(doi:10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2)Crossref,ISI, GoogleScholar5.ColbeckI.2007Airpollution:historyofactionsandeffectivenessofchange.InChapter26inTheSAGEHandbookofEnvironmentandSociety(edsPrettyJ,BallAS,BentonT,GuivantJS,LeeDR,OrrD,PfefferMJ,WardH),pp.374–384.London,UK:SAGEPublications.GoogleScholar6.MosleyS.2014Environmentalhistoryofairpollutionandprotection.InThebasicenvironmentalhistory(edsAgnolettiM,SerneriSM),pp.143–170.Cham,Switzerland:SpringerNature.GoogleScholar7.AngusSR.1872Thebeginningsofachemicalclimatology.London,UK:Longmans,GreenandCo.GoogleScholar8.GraedelTE,CrutzenPJ.1993Atmosphericchange:anearthsystemperspective.NewYork,NY:W.H.Freeman.GoogleScholar9.BrimblecombeP.1986AIR,compositionandchemistry.Cambridge,UK:CambridgeUniversityPress.GoogleScholar10.EgnérH,ErikssonE.1955Currentdataonthechemicalcompositionofairandprecipitation.Tellus7,134–139.(doi:10.3402/tellusa.v7i1.8763)Crossref, GoogleScholar11.LambD,BowersoxV.2000Thenationalatmosphericdepositionprogram:anoverview.AtmosphericEnvironment34,1661–1663.Crossref,ISI, GoogleScholar12.ShuffreyLA.1912TheEnglishfireplace.Ahistoryofthedevelopmentofthechimney.London,UK:B.T.Batsford.GoogleScholar13.JonesWHS.1923Hippocrates.(transl.),vol.1.LoebClassicalLibrary.London,UK:W.HeinemannLtd.(https://archive.org/details/hippocrates0000hipp/page/n7/mode/2up)GoogleScholar14.BennettCE.1925Frontinus.TheStrategemsandTheAqueductsofRome(transl.).London,UK:W.Heinemann.(https://archive.org/details/stratagemsaquedu00fronuoft/page/n7/mode/2up)GoogleScholar15.GummereRM.1925SenecaadLuciliumEpistulaeMorales(transl.)vol.3.London,UK:W.HeinemannLtd.(https://archive.org/details/adluciliumepistu03seneuoft/page/n7/mode/2up)GoogleScholar16.SuttonMAetal.2020Alkalineair:changingperspectivesonnitrogenandairpollutioninanammonia-richworld.Phil.Trans.R.Soc.A378,20190315.(doi:10.1098/rsta.2019.0315)Link,ISI, GoogleScholar17.KuoS.2014ProjectGutenberg'sMengXiBiTan,volume1–26[1031–1095AD].Seehttp://www.gutenberg.org/cache/epub/7317/pg7317.html.GoogleScholar18.GariL.1987NotesonairpollutioninIslamicheritage.HamdardMed.30,40–48.GoogleScholar19.BrimblecombeP.1987TheBigSmoke.AHistoryofAirPollutioninLondonSinceMedievalTimes.London,UK:Methuen.GoogleScholar20.EvelynJ.1661Fumifugium,or,TheinconveniencieoftheaerandsmoakofLondondissipatedtogetherwithsomeremedieshumblyproposedbyJ.E.esq.toHisSacredMajestie,andtotheParliamentnowassembled.London,UK.GoogleScholar21.GrauntJ.1662Naturalandpoliticalobservationsmade…uponthebillsofmortality.London.GoogleScholar22.HeidornKC.1978Achronologyofimportanteventsinthehistoryofairpollutionmeteorologyto1970.Bull.Am.Meteorol.Soc.59,1589–1597.(doi:10.1175/1520-0477(1978)059<1589:ACOIEI>2.0.CO;2)Crossref,ISI, GoogleScholar23.BrimblecombeP.1987Theantiquityofsmokelesszones.Atmos.Environ.21,2485–2485.(doi:10.1016/0004-6981(87)90384-2)Crossref,PubMed,ISI, GoogleScholar24.BrimblecombeP.2003Historicalperspectivesonhealth:theemergenceofthesanitaryinspectorinVictorianBritain.J.R.Soc.Promot.Health123,124–131.(doi:10.1177/146642400312300219)Crossref,PubMed, GoogleScholar25.IncollLD.1969London:WhereSmogWasBorn.Science163,339.(doi:10.1126/science.163.3865.339-b)Crossref,PubMed,ISI, GoogleScholar26.MylonaS.1996SulphurdioxideemissionsinEurope1880–1991andtheireffectonsulphurconcentrationsanddepositions.TellusB48,662–689.(doi:10.1034/j.1600-0889.1996.t01-2-00005.x)Crossref, GoogleScholar27.FowlerD,O'DonoghueM,MullerJBA,SmithRI,DragositsU,SkibaU,SuttonMA,BrimblecombeP.2004AchronologyofnitrogendepositionintheUKbetween1900and2000.WaterAirSoilPollut.Focus4,9–23.(doi:10.1007/s11267-004-3009-1)Crossref, GoogleScholar28.DaviesS.2004Thegreathorse-manurecrisisof1894.HistoricUK.https://www.historic-uk.com/HistoryUK/HistoryofBritain/Great-Horse-Manure-Crisis-of-1894GoogleScholar29.CharlsonRJ,CovertDS,LarsonTV,WaggonerAP.1978Chemicalpropertiesoftroposphericsulfuraerosols.Atmos.Environ.12,39–53.(doi:10.1016/0004-6981(78)90187-7)Crossref,ISI, GoogleScholar30.FowlerD,SuttonMA,FlechardC,CapeJN,Storeton-WestR,CoyleM,SmithRI.2001ThecontrolofSO2drydepositionontonaturalsurfacesbyNH3anditseffectsonregionaldeposition.WaterAirSoilPollut.Focus1,39–48.(doi:10.1023/A:1013161912231)Crossref, GoogleScholar31.SmithRA.1879Thedistributionofammonia.Mem.Lit.Phil.Soc.ManchesterSer.6,267–278.GoogleScholar32.StevensCJ,BellJNB,BrimblecombeP,ClarkCM,DiseNB,FowlerD,LovettGM,WolseleyPA.2020Theimpactofairpollutiononterrestrialmanagedandnaturalvegetation.Phil.Trans.R.Soc.A378,20190317.(doi:10.1098/rsta.2019.0317)GoogleScholar33.GorhamE.1958Atmosphericpollutionbyhydrochloricacid.Q.J.R.Meteorol.Soc.84,274–276.(doi:10.1002/qj.49708436109)Crossref,ISI, GoogleScholar34.LightowlersPJ,CapeJN.1988SourcesandfateofatmosphericHClintheUKandWesternEurope.Atmos.Environ.22,7–15.(doi:10.1016/0004-6981(88)90294-6)Crossref,ISI, GoogleScholar35.FowlerD,CapeJN.1982Airpollutantsinagricultureandhorticulture.InEffectsofgaseousairpollutioninagricultureandhorticulture(edsUnsworthMH,OrmrodDP),pp.3–26.London,UK:ButterworthScientific.Crossref, GoogleScholar36.MartinA,BarberFR.1973Furthermeasurementsaroundmodernpowerstations.1.Observedgroundlevelconcentrationsofsulfurdioxide.2.Observationsofchimneyplumebehavior.3.CalculationofpeakconcentrationsofSO2fromlargechimneys.Atmos.Environ.7,17–37.(doi:10.1016/0004-6981(73)90193-5)Crossref,ISI, GoogleScholar37.HoeslyRMetal.2018Historical(1750–2014)anthropogenicemissionsofreactivegasesandaerosolsfromtheCommunityEmissionsDataSystem(CEDS).Geosci.ModelDevelop.11,369–408.(doi:10.5194/gmd-11-369-2018)Crossref,ISI, GoogleScholar38.LamarqueJ-Fetal.2010Historical(1850–2000)griddedanthropogenicandbiomassburningemissionsofreactivegasesandaerosols:methodologyandapplication.Atmos.Chem.Phys.10,7017–7039.(doi:10.5194/acp-10-7017-2010)Crossref,ISI, GoogleScholar39.RGAR.1983AciddepositionintheUnitedKingdom.AreportbytheUKReviewGrouponAcidRain.WarrenSpringLaboratory.GoogleScholar40.SchöppW,PoschM,MylonaS,JohanssonM.2003Long-termdevelopmentofaciddeposition(1880–2030)insensitivefreshwaterregionsinEurope.Hydrol.EarthSyst.Sci.7,436–446.(doi:10.5194/hess-7-436-2003)Crossref,ISI, GoogleScholar41.SmithSJ,vanAardenneJ,KlimontZ,AndresRJ,VolkeA,DelgadoAriasS.2011Anthropogenicsulfurdioxideemissions:1850–2005.Atmos.Chem.Phys.11,1101–1116.(doi:10.5194/acp-11-1101-2011)Crossref,ISI, GoogleScholar42.HawksworthDL,RoseF.1970QualitativescaleforestimatingsulphurdioxideairpollutioninEnglandandWalesusingepiphyticlichens.Nature227,145–148.(doi:10.1038/227145a0)Crossref,PubMed,ISI, GoogleScholar43.BellJNB,CloughWS.1973Depressionofyieldinryegrassexposedtosulfurdioxide.Nature241,47–49.(doi:10.1038/241047b0)Crossref,PubMed,ISI, GoogleScholar44.IrelandFE,BryceDJ,MegawWJ,PageB,SugdenTM.1979ThephilosophyofcontrolofairpollutionintheUnitedKingdom.Phil.Trans.R.Soc.Lond.A290,625–637.(doi:10.1098/rsta.1979.0018)Link,ISI, GoogleScholar45.FreedmanB,HutchinsonTC.1980Pollutantinputsfromtheatmosphereandaccumulationsinsoilsandvegetationnearanickel–coppersmelteratSudbury,Ontario,Canada.Can.J.Bot.58,108–132.(doi:10.1139/b80-014)Crossref, GoogleScholar46.HutchinsonTC,WhitbyLM.1977Effectsofacidrainfallandheavy-metalparticulatesonaborealforestecosystemnearSudburysmeltingregionofCanada.WaterAirSoilPollut.7,421–438.(doi:10.1007/BF00285542)Crossref,ISI, GoogleScholar47.EttlerV.2016Soilcontaminationnearnon-ferrousmetalsmelters:areview.Appl.Geochem.64,56–74.(doi:10.1016/j.apgeochem.2015.09.020)Crossref,ISI, GoogleScholar48.MillerNHJ.1905Theamountsofnitrogenasammoniaandasnitricacid,andofchlorineintherainwatercollectedatRothamsted.J.Agric.Sci.1,280–303.(doi:10.1017/S0021859600000320)Crossref, GoogleScholar49.BrøggerWC.1881NoteonacontaminatedsnowfallundertheHeadingMindreMeddelelser(shortcommunications).Naturen5,47.GoogleScholar50.RussellR.1880Londonfogs.London,UK:EdwardStanford.https://www.victorianlondon.org/weather/londonfogs.htm.GoogleScholar51.BrimblecombeP.1982TrendsinthedepositionofsulfateandtotalsolidsinLondon.Sci.TotalEnviron.22,97–103.(doi:10.1016/0048-9697(82)90027-4)Crossref,PubMed,ISI, GoogleScholar52.CallendarGS.1958Ontheamountofcarbondioxideintheatmosphere.Tellus10,243–248.(doi:10.3402/tellusa.v10i2.9231)Crossref, GoogleScholar53.BrownHT.1869Ontheestimationofammoniainatmosphericair.Proc.R.Soc.Londn.18,286–288.(doi:10.1098/rspl.1869.0063)GoogleScholar54.ShawN,OwensJS.1925Thesmokeproblemofgreatcities.London,UK:Constable.GoogleScholar55.ThomasFW,DavidsonCM.1961Monitoringsulfurdioxidewithleadperoxidecylinders.J.AirPollut.ControlAssoc.11,24–27.(doi:10.1080/00022470.1961.10467964)Crossref,PubMed, GoogleScholar56.WestPW,GaekeGC.1956Fixationofsulfurdioxideasdisulfitomercurate(II)andsubsequentcolorimetricestimation.Anal.Chem.28,1816–1819.(doi:10.1021/ac60120a005)Crossref,ISI, GoogleScholar57.GrennfeltP,EnglerydA,ForsiusM,HovØ,RodheH,CowlingE.2020Acidrainandairpollution:50yearsofprogressinenvironmentalscienceandpolicy.Ambio49,849–864.(doi:10.1007/s13280-019-01244-4)Crossref,PubMed,ISI, GoogleScholar58.SchultzMGetal.2015TheGlobalAtmosphereWatchreactivegasesmeasurementnetwork.ElementaSci.Anthrop.3,000067.Crossref,ISI, GoogleScholar59.WallenCC.1980Monitoringpotentialagentsofclimatechange.Ambio9,222–228.ISI, GoogleScholar60.IbsenH.1866Brand(reprintedbyPenguin1996).GoogleScholar61.MeethamAR.1950Naturalremovalofpollutionfromtheatmosphere.Q.J.R.Meteorol.Soc.76,359–371.(doi:10.1002/qj.49707633002)Crossref,ISI, GoogleScholar62.OdenS.1968Acidificationofairandprecipitationanditsconsequencesonthenaturalenvironment.Energycommitteebulletin1.Stockholm,Germany:SwedishNaturalSciencesResearchCouncil.GoogleScholar63.ErikssonE.1968Airandprecipitationassourcesofnutrients.SectionG.InHanbuchderpflanzeneenahrangundDungun(edsLiserH,SchatterK),pp.774–792.Berlin,Germany:Springer.GoogleScholar64.UnitedNations.1972ReportoftheUnitedNationsConferenceontheHumanEnvironment,Stockholm5–16June1972.Seehttps://www.un.org/ga/search/view_doc.asp?symbol=A/CONF.48/14/REV.1.GoogleScholar65.RoseC.1990ThedirtymanofEurope:thegreatBritishpollutionscandal.London,UK:Simon&SchusterLtd.GoogleScholar66.HusarRB,LodgeJP,MooreDJ.1978Sulfurintheatmosphere.InProc.Int.Symp.heldinDubrovnik,Yugoslavia,7–14September1977.Pergamon.GoogleScholar67.DochingerLS,SeligaTA.1975Proceedingsofthefirstinternationalsymposiumonacidprecipitationandtheforestecosystem,12–15May1975.Columbus,OH:OhioStateUniversity.GoogleScholar68.DrabløsD,TollanA.1980Ecologicalimpactofacidprecipitation.InProc.Int.Conf.,Sandefjord,Norway,March11–14.1980SNSFProject.Seehttps://trove.nla.gov.au/version/24031620.GoogleScholar69.MartinHC.1986ProceedingsoftheInternationalSymposiumonAcidicPrecipitation,Muskoka,Ontario,15–20September1985,pp.1–528(Water,Air,andSoilPollution30).GoogleScholar70.LastFT.1990Internationalconferenceonaciddeposition:itsnatureandimpacts;Glasgow(UnitedKingdom)(16–21Sep1990).Proc.R.Soc.Edinb.BBiol.Sci.97,1–343.(doi:10.1017/S0269727000005261)GoogleScholar71.GrennfeltP.1996Proceedingsofthe5thInternationalConferenceonAcidicDeposition,Goteborg,Sweden,26–30June1995.Kluwer.GoogleScholar72.SatakeK.2001AcidRain2000.InProc.6thInt.Conf.AcidicDeposition,Tsukuba,Japan,10–16December2000.Kluwer.GoogleScholar73.BrimblecombeP,HaraH,HouleD,NovakM.2007Acidrain—depositiontorecovery.InPapersfromAcidRain2005,the7thInt.Conf.AcidDepositionPrague,CzechRepublic,12–17June2005,Berlin,Germany:Springer.GoogleScholar74.AherneJ,BurnD,GayD,LehmannC.2016Acidrainanditsenvironmentaleffects:recentscientificadvances.InPapersfromthe9thInt.Conf.AcidDeposition,Rochester,USA,19–23October2015,pp.1–346(AtmosphericEnvironment146).GoogleScholar75.UNECE.1979The1979GenevaConventiononLong-RangeTransboundaryAirPollution.UnitedNationsEconomicCommissionforEurope,Geneva,Switzerland,13November1979,inforce16March1983.http://www.unece.org/fileadmin//DAM/env/lrtap/lrtap_h1.htm.GoogleScholar76.TørsethK,AasW,BreivikK,FjæraaAM,FiebigM,HjellbrekkeAG,LundMyhreC,SolbergS,YttriKE.2012IntroductiontotheEuropeanMonitoringandEvaluationProgramme(EMEP)andobservedatmosphericcompositionchangeduring1972–2009.Atmos.Chem.Phys.12,5447–5481.Crossref,ISI, GoogleScholar77.SingerSF.1984Acidrain:abillion-dollarsolutiontoamillion-dollarproblem?PolicyRev.27,56–58.GoogleScholar78.FowlerD.1984Transfertoterrestrialsurfaces.Phil.Trans.R.Soc.B305,281–297.[Alsopublishedin:Theecologicaleffectsofdepositedsulphurandnitrogencompounds,edsJ.W.L.Beamentandothers,23–39.London:RoyalSociety].Link,ISI, GoogleScholar79.KrauseGHM,ArndtU,BrandtCJ,BucherJ,KenkG,MatznerE.1986ForestdeclineinEurope:developmentandpossiblecauses.WaterAirSoilPollut.31,647–668.(doi:10.1007/BF00284218)Crossref,ISI, GoogleScholar80.CapeJN,LeithID,FowlerD,MurrayMB,SheppardLJ,EamusD,WilsonRHF.1991Sulfateandammoniuminmistimpairthefrosthardeningofredspruceseedlings.NewPhytol.118,119–126.(doi:10.1111/j.1469-8137.1991.tb00572.x)Crossref,ISI, GoogleScholar81.ROTAP.2012ReviewofTransboundaryAirPollution(RoTAP):acidification,eutrophication,groundlevelozoneandheavymetalsintheUK.AreportforDefraandtheDevolvedAdministrations.GoogleScholar82.UNECE.2016Towardscleanerair:ScientificAssessmentReport2016.EMEPSteeringBodyandWorkingGrouponEffectsoftheConventiononLong-RangeTransboundaryAirPollution,Oslo.GoogleScholar83.McLaughlinSB,KohutRJ.1992Theeffectsofatmosphericdepositionandozoneoncarbonallocationandassociatedphysiologicalprocessesinredspruce.InEcologyanddeclineofredspruceintheEasternUnitedStates(edsEagarC,AdamsMB),pp.338–382.NewYork,NY:Springer.GoogleScholar84.PrinzB.1987Majorhypothesesandfactors:causesofforestdamageinEurope.Environment29,11–37.(doi:10.1080/00139157.1987.9931357)ISI, GoogleScholar85.RoyalSociety.2008Ground-levelozoneinthe21stcentury:futuretrends,impactsandpolicyimplications.SciencePolicyReport15/08,London.Seehttp://royalsociety.org/policy/publications/2008/ground-level-ozone/.GoogleScholar86.MiddletonJT,KendrickJB,SchwalmHW.1950Injurytoherbaceousplantsbysmogorairpollution.PlantDiseaseReporter34,245–252.GoogleScholar87.DerwentRG,McInnesG,StewartHNM,WilliamsML.1976TheoccurrenceandsignificanceofairpollutionbyphotochemicallyproducedoxidantintheBritishIsles.WarrenSpringLaboratory,ReportNo.LR227(AP),HMSO.GoogleScholar88.VolzA,KleyD.1988EvaluationoftheMontsourisseriesofozonemeasurementsmadeinthenineteenthcentury.Nature332,240–242.(doi:10.1038/332240a0)Crossref,ISI, GoogleScholar89.GrennfeltP,SchjoldagerJ.1984Photochemicaloxidantsinthetroposphere—amountingmenace.Ambio13,61–67.ISI, GoogleScholar90.EmbersonL.2020Effectsofozoneonagriculture,forestsandgrasslands.Phil.Trans.R.Soc.A378,20190327.(doi:10.1098/rsta.2019.0327)Link,ISI, GoogleScholar91.StevensonDSetal.2006Multimodelensemblesimulationsofpresent-dayandnear-futuretroposphericozone.J.Geophys.Res.111,D08301.(doi:10.1029/2005JD006338)Crossref,ISI, GoogleScholar92.ShindellDetal.2012Simultaneouslymitigatingnear-termclimatechangeandimprovinghumanhealthandfoodsecurity.Science335,183–189.(doi:10.1126/science.1210026)Crossref,PubMed,ISI, GoogleScholar93.SuttonMA,PitcairnCER,FowlerD.1993Theexchangeofammoniabetweentheatmosphereandplantcommunities.InAdvancesinecologicalresearch(edsBegonM,FitterAH),pp.301–393.London,UK:AcademicPress.GoogleScholar94.HeilGW,DiemontWH.1983Raisednutrientlevelschangeheathlandintograssland.Vegetatio53,113–120.(doi:10.1007/BF00043031)Crossref, GoogleScholar95.BobbinkRetal.2010Globalassessmentofnitrogendepositioneffectsonterrestrialplantdiversity:asynthesis.Ecol.Appl.20,30–59.(doi:10.1890/08-1140.1)Crossref,PubMed,ISI, GoogleScholar96.PhoenixGKetal.2012Impactsofatmosphericnitrogendeposition:responsesofmultipleplantandsoilparametersacrosscontrastingecosystemsinlong-termfieldexperiments.Glob.ChangeBiol.18,1197–1215.(doi:10.1111/j.1365-2486.2011.02590.x)Crossref,ISI, GoogleScholar97.StevensCJ,DiseNB,MountfordJO,GowingDJ.2004Impactofnitrogendepositiononthespeciesrichnessofgrasslands.Science303,1876–1879.(doi:10.1126/science.1094678)Crossref,PubMed,ISI, GoogleScholar98.PitcairnCER,LeithID,SheppardLJ,SuttonMA,FowlerD,MunroRC,TangS,WilsonD.1998Therelationshipbetweennitrogendeposition,speciescompositionandfoliarnitrogenconcentrationsinwoodlandflorainthevicinityoflivestockfarms.Environ.Pollut.102,41–48.(doi:10.1016/S0269-7491(98)80013-4)Crossref,ISI, GoogleScholar99.SheppardLJ,LeithID,MizunumaT,CapeJN,CrossleyA,LeesonS,SuttonMA,vanDijkN,FowlerD.2011Drydepositionofammoniagasdrivesspecieschangefasterthanwetdepositionofammoniumions:evidencefromalong-termfieldmanipulation.Glob.ChangeBiol.17,3589–3607.(doi:10.1111/j.1365-2486.2011.02478.x)Crossref,ISI, GoogleScholar100.FowlerD,CapeJN,CoyleM,FlechardC,KuylenstiernaJ,HicksK,DerwentD,JohnsonC,StevensonD.1999Theglobalexposureofforeststoairpollutants.WaterAirSoilPollut.116,5–32.(doi:10.1023/A:1005249231882)Crossref,ISI, GoogleScholar101.DockeryDW,PopeCA,XuXP,SpenglerJD,WareJH,FayME,FerrisBG,SpeizerFE.1993Anassociationbetweenairpollutionandmortalityin6United-Statescities.NewEngl.J.Med.329,1753–1759.(doi:10.1056/NEJM199312093292401)Crossref,PubMed,ISI, GoogleScholar102.CohenAJetal.2017Estimatesand25-yeartrendsoftheglobalburdenofdiseaseattributabletoambientairpollution:ananalysisofdatafromtheGlobalBurdenofDiseasesStudy2015.Lancet389,1907–1918.(doi:10.1016/S0140-6736(17)30505-6)Crossref,PubMed,ISI, GoogleScholar103.HarrisonRM.2020Airborneparticulatematter.Phil.Trans.R.Soc.A378,20190319.(doi:10.1098/rsta.2019.0319)GoogleScholar104.vonSchneidemesserEetal.2015Chemistryandthelinkagesbetweenairqualityandclimatechange.Chem.Rev.115,3856–3897.(doi:10.1021/acs.chemrev.5b00089)Crossref,PubMed,ISI, GoogleScholar105.StevensCJetal.2020Theimpactofairpollutiononterrestrialmanagedandnaturalhabitats.Phil.Trans.R.Soc.B378,20190317.(doi:10.1098/rsta.2019.0317)GoogleScholar106.ZhengM,YanC,ZhuT.2020UnderstandingsourcesoffineparticulatematterinChina.Phil.Trans.R.Soc.A378,20190325.(doi:10.1098/rsta.2019.0325)Link,ISI, GoogleScholar107.BrauerMetal.2016Ambientairpollutionexposureestimationfortheglobalburdenofdisease2013.Environ.Sci.Technol.50,79–88.(doi:10.1021/acs.est.5b03709)Crossref,PubMed,ISI, GoogleScholar108.FishmanJ,LarsenJC.1987Distributionoftotalozoneandstratosphericozoneinthetropics:implicationsforthedistributionoftroposphericozone.J.Geophys.Res.Atmos.92,6627–6634.(doi:10.1029/JD092iD06p06627)Crossref, GoogleScholar109.FishmanJ,WatsonCE,LarsenJC,LoganJA.1990Distributionoftroposphericozonedeterminedfromsatellitedata.J.Geophys.Res.Atmos.95,3599–3617.(doi:10.1029/JD095iD04p03599)Crossref, GoogleScholar110.BurrowsJP,HölzleE,GoedeAPH,VisserH,FrickeW.1995SCIAMACHY—scanningimagingabsorptionspectrometerforatmosphericchartography.ActaAstronaut.35,445–451.(doi:10.1016/0094-5765(94)00278-T)Crossref,ISI, GoogleScholar111.BovensmannH,BurrowsJP,BuchwitzM,FrerickJ,NoëlS,RozanovVV,ChanceKV,GoedeAPH.1999SCIAMACHY:missionobjectivesandmeasurementmodes.J.Atmos.Sci.56,127–150.(doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO,2)Crossref,ISI, GoogleScholar112.RichterA,BurrowsJP,NussH,GranierC,NiemeierU.2005IncreaseintroposphericnitrogendioxideoverChinaobservedfromspace.Nature437,129–132.(doi:10.1038/nature04092)Crossref,PubMed,ISI, GoogleScholar113.DammersEetal.2016AnevaluationofIASI-NH3withground-basedFouriertransforminfraredspectroscopymeasurements.Atmos.Chem.Phys.16,10 351–10 368.(doi:10.5194/acp-16-10351-2016)Crossref,ISI, GoogleScholar114.LiuLetal.2019Estimatingglobalsurfaceammoniaconcentrationsinferredfromsatelliteretrievals.Atmos.Chem.Phys.19,12 051–12 066.(doi:10.5194/acp-19-12051-2019)Crossref,ISI, GoogleScholar115.ZhengBetal.2018TrendsinChina'santhropogenicemissionssince2010astheconsequenceofcleanairactions.Atmos.Chem.Phys.18,14 095–14 111.(doi:10.5194/acp-18-14095-2018)Crossref,ISI, GoogleScholar116.LuX,ZhangL,WangX,GaoM,LiK,ZhangY,YueX,ZhangY.2020Rapidincreasesinwarm-seasonsurfaceozoneandresultinghealthimpactinChinasince2013.Environ.Sci.Technol.Lett.7,240–247.(doi:10.1021/acs.estlett.0c00171)Crossref,ISI, GoogleScholar117.RaoSetal.2017Futureairpollutioninthesharedsocio-economicpathways.GlobalEnviron.Change42,346–358.(doi:10.1016/j.gloenvcha.2016.05.012)Crossref,ISI, GoogleScholar118.FowlerDetal.2013Theglobalnitrogencycleinthetwenty-firstcentury.Phil.Trans.R.Soc.BBiol.Sci.368,20130164.Link,ISI, GoogleScholar119.SuttonMAetal.2013Towardsaclimate-dependentparadigmofammoniaemissionanddeposition.Phil.Trans.R.Soc.B368,20130166.(doi:10.1098/rstb.2013.0166)Link,ISI, GoogleScholar120.SeldenTM,SongD.1994Environmentalqualityanddevelopment:isthereaKuznetsCurveforairpollutionemissions?J.Environ.Econ.Manage.27,147–162.(doi:10.1006/jeem.1994.1031)Crossref,ISI, GoogleScholar121.SuttonMA,HowardCM,ErismanJW,BillenG,BleekerA,GrennfeltP,vanGrinsvenH,GrizzettiB.2011TheEuropeannitrogenassessment:sources,effectsandpolicyperspectives.Cambridge,UK:CambridgeUniversityPress.https://doi.org/10.1017/CBO9780511976988.GoogleScholar122.AQEG.2020Estimationofchangesinairpollutionemissions,concentrationsandexposureduringtheCOVID-19outbreakintheUK.ReportfromtheAirQualityExpertGroup.London,UK:DepartmentforEnvironment,FoodandRuralAffairs.PB14624.https://uk-air.defra.gov.uk/library/reports.php?report_id=1005.GoogleScholar123.ColeMA,ElliottRJR,LiuB2020TheImpactoftheWuhanCovid-19LockdownonAirPollutionandHealth:AMachineLearningandAugmentedSyntheticControlApproach,DiscussionPapers20-09,DepartmentofEconomics,UniversityofBirmingham.GoogleScholar PreviousArticleNextArticle FiguresRelatedReferencesDetailsCitedBy BrolinJandKanderA(2020)GlobaltradeintheAnthropocene:AreviewoftrendsanddirectionofenvironmentalfactorflowsduringtheGreatAcceleration,TheAnthropoceneReview,10.1177/2053019620973711,9:1,(71-110),Onlinepublicationdate:1-Apr-2022. GuptaN,López‐OlveraA,González‐ZamoraE,Martínez‐AhumadaEandIbarraI(2022)SulfurDioxideCaptureinMetal‐OrganicFrameworks,Metal‐OrganicCages,andPorousOrganicCages,ChemPlusChem,10.1002/cplu.202200006,87:6,Onlinepublicationdate:1-Jun-2022. ZhangCandStevensonD(2022)CharacteristicchangesofozoneanditsprecursorsinLondonduringCOVID-19lockdownandtheozonesurgereasonanalysis,AtmosphericEnvironment,10.1016/j.atmosenv.2022.118980,273,(118980),Onlinepublicationdate:1-Mar-2022. WoodD(2022)Localintegratedairqualitypredictionsfrommeteorology(2015to2020)withmachineanddeeplearningassistedbydatamining,SustainabilityAnalyticsandModeling,10.1016/j.samod.2021.100002,2,(100002),. DWIVEDIS,TEWARIA,DWIVEDIS,ARIFS,KHANTandLAWRENCEA(2022)MitigationandChemistryofIndoorAirPollutantsinUrbanandRural EnvironmentsofIndia:AReviewofContemporaryAdvances,AsianJournalofChemistry,10.14233/ajchem.2022.23586,34:3,(508-518),. XuM,UmeharaM,SaseHandMatsudaK(2022)Ammoniafluxesoveranagriculturalfieldingrowingandfallowperiodsusingrelaxededdyaccumulation,AtmosphericEnvironment,10.1016/j.atmosenv.2022.119195,284,(119195),Onlinepublicationdate:1-Sep-2022. DaZhuJ(2022)CooperativeequilibriumoftheChina-US-EUclimategame,EnergyStrategyReviews,10.1016/j.esr.2021.100797,39,(100797),Onlinepublicationdate:1-Jan-2022. OjhaN,SoniM,KumarM,GirachI,SharmaSandGuntheS(2022)AirPollutionEpisodes:BriefHistory,MechanismsandOutlookExtremesinAtmosphericProcessesandPhenomenon:Assessment,ImpactsandMitigation,10.1007/978-981-16-7727-4_12,(283-301),. AntwerpJandHeunM(2022)AFrameworkforSustainabilityThinking:AStudent'sIntroductiontoGlobalSustainabilityChallenges,SynthesisLecturesonSustainableDevelopment,10.2200/S01168ED1V01Y202202SDE004,3:1,(1-275),Onlinepublicationdate:6-May-2022. WoodD(2022)Trenddecompositionaidsforecastsofairparticulatematter(PM2.5)assistedbymachineanddeeplearningwithoutrecoursetoexogenousdata,AtmosphericPollutionResearch,10.1016/j.apr.2022.101352,13:3,(101352),Onlinepublicationdate:1-Mar-2022. StanišićS,PerišićM,JovanovićG,MaletićD,VudragovićD,VranićAandStojićA(2021)WhatInformationonVolatileOrganicCompoundsCanBeObtainedfromtheDataofaSingleMeasurementSiteThroughtheUseofArtificialIntelligence?ArtificialIntelligence:TheoryandApplications,10.1007/978-3-030-72711-6_12,(207-225),. YamagaS,BanS,XuM,SakuraiT,ItahashiSandMatsudaK(2021)Trendsofsulfurandnitrogendepositionfrom2003to2017inJapaneseremoteareas,EnvironmentalPollution,10.1016/j.envpol.2021.117842,289,(117842),Onlinepublicationdate:1-Nov-2021. RiccomiG,CasacciaJ,MinozziS,FeliciC,CampanaSandGiuffraV(2021)Maxillarysinusitisasarespiratoryhealthindicator:abioarchaeologicalinvestigationintomedievalcentralItaly,InternationalJournalofPaleopathology,10.1016/j.ijpp.2021.09.001,35,(40-48),Onlinepublicationdate:1-Dec-2021. MacKenzieL,SpellerC,HolstM,KeefeKandRadiniA(2021)Dentalcalculusintheindustrialage:HumandentalcalculusinthePost-Medievalperiod,acasestudyfromindustrialManchester,QuaternaryInternational,10.1016/j.quaint.2021.09.020,Onlinepublicationdate:1-Oct-2021. UmezawaY,ToyoshimaK,SaitohY,TakedaS,TamuraK,TamayaC,YamaguchiA,YoshimizuC,TayasuIandKawamotoK(2021)Evaluationoforigin-dependednitrogeninputthroughatmosphericdepositionanditseffectonprimaryproductionincoastalareasofwesternKyusyu,Japan,EnvironmentalPollution,10.1016/j.envpol.2021.118034,291,(118034),Onlinepublicationdate:1-Dec-2021. SuttonM,vanDijkN,LevyP,JonesM,LeithI,SheppardL,LeesonS,SimTangY,StephensA,BrabanC,DragositsU,HowardC,VienoM,FowlerD,CorbettP,NaikooM,MunziS,EllisC,ChatterjeeS,SteadmanC,MóringAandWolseleyP(2020)Alkalineair:changingperspectivesonnitrogenandairpollutioninanammonia-richworld,PhilosophicalTransactionsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences,378:2183,Onlinepublicationdate:30-Oct-2020.StevensC,BellJ,BrimblecombeP,ClarkC,DiseN,FowlerD,LovettGandWolseleyP(2020)Theimpactofairpollutiononterrestrialmanagedandnaturalvegetation,PhilosophicalTransactionsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences,378:2183,Onlinepublicationdate:30-Oct-2020.FowlerD,PyleJ,SuttonMandWilliamsM(2020)GlobalAirQuality,pastpresentandfuture:anintroduction,PhilosophicalTransactionsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences,378:2183,Onlinepublicationdate:30-Oct-2020. MonksP,RavishankaraA,vonSchneidemesserEandSommarivaR(2021)Opinion:Papersthatshapedtroposphericchemistry,AtmosphericChemistryandPhysics,10.5194/acp-21-12909-2021,21:17,(12909-12948) AmiraslaniF(2022)ClimateChangeandUrbanCitizens:TheRoleofMediainPublicisingtheConservationofGreenSpacesandMitigationofAirPollution,Conservation,10.3390/conservation2020014,2:2,(219-232) SokhiR,MoussiopoulosN,BaklanovA,BartzisJ,CollI,FinardiS,FriedrichR,GeelsC,GrönholmT,HalenkaT,KetzelM,MaragkidouA,MatthiasV,MoldanovaJ,NtziachristosL,SchäferK,SuppanP,TsegasG,CarmichaelG,FrancoV,HannaS,JalkanenJ,VeldersGandKukkonenJ(2022)Advancesinairqualityresearch–currentandemergingchallenges,AtmosphericChemistryandPhysics,10.5194/acp-22-4615-2022,22:7,(4615-4703) GiechaskielB,MelasA,MartiniGandDilaraP(2021)OverviewofVehicleExhaustParticleNumberRegulations,Processes,10.3390/pr9122216,9:12,(2216) RelatedarticlesCorrectionto‘Achronologyofglobalairquality’May24,2021,12:00:00AMPhilosophicalTransactionsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences ThisIssue30October2020Volume378Issue2183Discussionmeetingissue‘Airquality,pastpresentandfuture’organisedandeditedbyDavidFowler,JohnPyle,MarkSuttonandMartinWilliams ArticleInformationDOI:https://doi.org/10.1098/rsta.2019.0314PubMed:32981430Publishedby:RoyalSocietyPrintISSN:1364-503XOnlineISSN:1471-2962History: Manuscriptaccepted22/06/2020Publishedonline28/09/2020Publishedinprint30/10/2020 License:©2020TheAuthors.PublishedbytheRoyalSocietyunderthetermsoftheCreativeCommonsAttributionLicense http://creativecommons.org/licenses/by/4.0/,whichpermitsunrestricteduse,providedtheoriginalauthorandsourcearecredited. Citationsandimpact KeywordsozoneeutrophicationacidrainairqualityPDFDownload Subjectsatmosphericchemistrybiogeochemistryenvironmentalchemistry CloseFigureViewerBrowseAllFiguresReturntoFigureChangezoomlevelZoominZoomoutPreviousFigureNextFigureCaption
延伸文章資訊
- 1A chronology of global air quality - Journals
Air pollution has been recognized as a threat to human health since the time of Hippocrates, ca 4...
- 2WHO: Finland has world's best air quality
- 3The World's Most and Least Polluted Countries - U-Earth
- 4Air Pollution - Our World in Data
Air pollution is attributed to 11.65% of deaths globally. It is also one of the leading risk fact...
- 5State of Global Air: Home
Air pollution contributed to 6.7 million deaths in 2019. Learn More. The resources you need to st...